

Integrating Planning for Transportation and Stormwater Infrastructure

Annual Public Works Roundup | September 29, 2023 Kate Zielke

Project Overview

WHY THE REGION NEEDS A STUDY ON INTEGRATING TRANSPORTATION AND STORMWATER INFRASTRUCTURE

Project Details

Purpose

- Prevention vs. response
- Integrate stormwater management, urban development, transportation, and environmental planning
- Develop plan for risk awareness and resiliency
- Identify impacts and alleviate risks from flooding

Timeline & Budget:

- Official kickoff March 2023
- Completion date for first phase: June 2025
- Funding for first phase: \$6 million

Project Team Members

Stormwater Infrastructure

Funding Partners

Texas Water Development Board

Texas Department of Transportation/Federal Highway Administration

Federal Emergency Management Agency

integrating **Transportation** & Stormwater Infrastructure Why TSI?

Source: Gregory Waller, Service Coordination Hydrologist, NWS – West Gulf River Forecast Center, http://www.nws.noaa.g ov/om/hazstats.shtml

Why TSI?

- 60% undeveloped (2015)
- 19% growth in impervious surface (2006 2016)
- 126% increase in population (2020 – 2045)
- >7,000 miles of streams
 >274,000 acres of 100-year floodplain

Challenges

URBANIZATION, WATER QUANTITY, STORMWATER, AND TRANSPORTATION

Urbanization Challenges

After (75%-100% Impervious Cover)

BEFORE (Natural Ground Cover)

Water Quality Challenges

City of Newark

Stormwater Challenges

- No regionwide data
- Piece-meal/lacks connectivity
- NOAA Atlas 14 rainfall estimates
 - Required for infrastructure design, planning, and delineation of flood risk
 - 2022 FLOODS Act
 - 10-year updates

Transportation Challenges

- Transportation spending is high and growing
- Rate of deterioration for transportation infrastructure increasing
- Needs can outweigh resources for local governments

Exhibit 2-4: Major Expenditures

\$42.8
\$9.6
\$1.5
\$44.9
\$49.5
\$148.3

Values may not sum due to independent rounding

*Includes transit system maintenance

**Transit capital expenditures, including those using innovative revenue sources such as publicprivate partnerships

Source: NCTCOG, Mobility 2045 Update

Technical Methodology

ENGINEERING SOLUTIONS TO INCREASED IMPERVIOUSNESS AND FLOOD RISK

How Can WE Accomplish This?

- TSI benefits from valuable flood hazard awareness and resiliency information that has helped reduce uncertainty related to flood risk
- Enables us to further enhance and integrate this information at a regional scale
- Without this information, it would require extensive effort on the front end of the project to get here

Leverage existing Flood Risk Management initiatives...

... to innovate at a regional scale

7.57 integrating **Transportation** & Stormwater Infrastructure

Flood ALERT System

Decision Support System

- Dispatch warning information
- Real time communications
- Case Study (HCFCD; RICE/TMC; City of Austin; Grand Prairie; Houston, etc.)

Source: icons8.com

Modeling Green Stormwater Infrastructure

- GSI reduces modeled overflows for all storms in Dallas study
- GSI 77% less costly than gray infrastructure alone
- Bioretention provides biggest bang for buck

https://www.nature.org/c ontent/dam/tnc/nature/e n/documents/GSIanalysisR EVFINAL.pdf Bardia Heidari, Victoria Prideaux, Katherine Jack, Fouad H. Jaber. 2023. A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas, Journal of Hydrology, Volume 621,

https://doi.org/10.1016/j.jhydrol.20 23.129538.

Questions and Discussion

integrating **Transportation** & Stormwater Infrastructure

Contact

Susan Alvarez, P.E., CFM

Director Environment & Development North Central Texas Council of Governments 817-704-5489 salvarez@nctcog.org

Jeff Neal, PTP

Senior Program Manager Transportation North Central Texas Council of Governments 817-608-2345 jneal@nctcog.org

Matt Lepinski, P.E. Lead Hydraulic Engineer Water Resources Branch – Fort Worth District U.S. Army Corps of Engineers 817-886-1683 matthew.t.lepinski@usace.army.mil

Kate Zielke

Program Supervisor Environment & Development North Central Texas Council of Governments 817-695-9227 kzielke@nctcog.org

