November Air Quality Health Monitoring Task Force Meeting

North Central Texas Council of Governments

November 6, 2020

North Central Texas Council of Governments Join Meeting Audio via Computer Audio OR Dial In: +1 346 248 7799 Meeting ID: 898 7565 1514 *Please Remain Muted If Not Speaking*

UPDATE ON PARTICULATE MATTER (PM) EXCEEDANCE DAYS

Vivek Thimmavajjhala NCTCOG

Air Quality Health Monitoring Task Force Meeting

November 6, 2020

REGIONAL PARTICULATE MATTER (PM) EPISODES

- October 19, 2017 (Source: Unknown)
- January 22, 2018 (Source: Grass Fires)
- June 27 and June 28, 2020 (Source: Saharan Dust)

NCTCOG'S ACTIONS - OCTOBER 19^{TH} , 2017 (RECAP)

- Issued a PM alert through the "Air North Texas"
- Responded to various enquires throughout the region
- Coordinated with the cities and local governments in an effort to determine source of the haze
- Discussed with the EPA and the TCEQ regarding the source of the haze and further actions
- The event could not be classified as an exceptional event in accordance with EPA's definition

Orange Particulate Matter Alert Level Orange

Particulate matter (PM) is currently at Level Orange in the Dallas-Fort Worth area. Children, older adults and people with lung disease, such as asthma, emphysema, or chronic bronchitis, should limit outdoor activity. If PM reaches Level Red, Children, older adults and people with lung disease, such as asthma, emphysema, or chronic bronchitis, should avoid outdoor activity. All other people should limit prolonged outdoor exertion if PM reaches Level Red.

For more information, visit <u>AirNorthTexas.org</u>.

HOW WERE THE MONITOR READINGS? PARTICULATE MATTER (PM) 2.5

TEXAS DEPARTMENT OF STATE HEALTH SERVICES 2017 ANNUAL DATA

County	Population	COPD Hospital Discharges	Asthma Outpatient Visits
Collin	1,025,618	١,07١	2,655
Dallas	2,552,920	3,542	15,890
Denton	846,738	I,125	2,882
Ellis	183,618	468	985
Erath	40,353	77	174
Hood	58,168	164	218
Hunt	96,586	360	347
Johnson	175,030	574	1,192
Kaufman	133,652	264	476
Navarro	53,020	135	301
Palo Pinto	30,638	3	173
Parker	145,104	301	437
Rockwall	103,544	165	306
Somervell	9,844	20	*
Tarrant	2,023,985	3,284	,77
Wise	202	121	69,449

Note: * Indicates fewer than 12 visits were reported, corresponding rates were not reported

DATA REQUIREMENTS AND NEXT STEPS

 Looking for daily health data (COPD Hospital Discharges, Asthma Outpatient Visits) at the county-level a week prior to and after October 19th, 2017 to analyze the trends

- Continue similar analysis for other identified regional PM episodes
- Channel discussion towards local/neighborhood-level hotspots
- Combine/consolidate regional interests/analysis with various cities, local governments, and communities

Discussion

EFFECTS OF COVID-19 ON TRANSPORTATION and AIR QUALITY

Air Quality Health Monitoring Taskforce Meeting November 6, 2020

North Central Texas Council of Governments Nick Van Haasen

1. TRANSPORTATION

Average Weekday Freeway Volumes: Respective 2019 to 2020

Traffic Decrease vs 2019

Source: TxDOT Dallas/TxDOT Fort Worth Radar Traffic Counters

Regional Average Freeway Speed By Time of Day

Average Weekday Speeds, Weighted by Traffic Volumes

Source: TxDOT Sidefire Devices

Percentage of Crashes: March and April 2019 vs March and April 2020

Crashes and Fatalities: 2019 vs 2020

Source: TxDOT Crash Records Information System Crash data is accurate as of August 12, 2020. Traffic enforcement was significantly reduced during the COVID-19 shelter-in-place orders.

Transit Impacts: Weekday Ridership

Passenger Decrease : 2019 vs 2020

Airport Impacts: Passenger Trends

Change in Airport Passengers - 2019 vs 2020

2. AIR QUALITY

Regional Air Quality Impacts During COVID-19

- Emissions from vehicles reduced
- Lowest frequency of high-level, unhealthy, exposure days to ozone (prior to exceedances on August 3, 2020)
 - Ozone levels influenced by meteorological conditions: high temperatures, low winds, high UV index, limited rain, and little cloud coverage
- Cleaner air = blue(r) skies
- Leading to a healthier populous (under review)
- Real world analysis on local contributions suggest multi-state SIP's to reduce background
- How Can We Sustain Impacts? (To be determined)
 Electric and Fuel Cell Vehicles
 Travel Demand Management (Telecommuting)

Real world analysis on local contributions suggest multi-state SIPs to reduce background

DFW OZONE NONATTAINMENT AREA

Colors represent Air Quality Index breakpoints

Attainment Goal - According to the US EPA National Ambient Air Quality Standards, attainment is reached when, at each monitor, the three-year average of the annual fourth-highest daily maximum eight-hour average ozone concentration is less than or equal to 70 parts per billion (ppb).

		North Central Texas Ozone Comparison						
			3 Year Design Value					
	2017	2018	2019	2020*				
March	2 yellow days	8 yellow days	10 yellow days	3 yellow days				
	High: 62 at Eagle Mtn Lake	High: 63 at Denton	High: 66 at Cleburne	High: 64 at Pilot Point				
April	10 yellow days	16 yellow days	12 yellow days	8 yellow days				
	High: 68 at Dallas Hinton	2 orange days	High: 69 at Greenville	High: 69 at Rockwall				
		High: 81 at Dallas North High: 81 at Dallas Hinton		High: 69 at Grapevine				
May	15 yellow days	9 yellow days	6 yellow days	10 yellow days				
	5 orange days	6 orange days	5 orange da y s	3 orange day				
	High: 80 at Dallas North	2 red days	High: 80 at Pilot Point	1 red day				
	High: 80 at Dallas Hinton	High: 92 at Eagle Mtn Lake		High: 86 at Grapevine Fairway				
June	6 yellow days	7 yellow days	12 yellow days	16 yellow days				
	4 orange days	2 orange days	5 orange days	5 orange days				
	High: 84 at Cleburne Airport	High: 85 at Dallas North	High: 76 at Frisco	High: 77 at Eagle Mountain Lake				
			High: 76 at Arlington Municipal					
			High: 76 at Cleburne Airport					
July	14 yellow days	14 yellow days	6 yellow days	15 yellow days				
	3 orange days	8 orange days	7 orange days	High: 69 at Dallas North				
	High: 81 at Cleburne Airport	3 red days	High: 83 at Cleburne Airport					
	High: 81 at Granbury	High: 92 at Grapevine Fairway						
August	11 yellow days	12 yellow days	14 yellow days	14 yellow days				
	3 orange days	6 orange days	5 orange days	8 orange days				
	High: 83 at Grapevine Fairway	2 red days	High: 84 at Keller	2 red days				
		High: 91 at Parker County		High: 89 at FT. Worth Northwest				
September	11 yellow days	6 yellow days	7 yellow days	6 yellow days				
	8 orange days	High: 69 at Pilot Point	6 orange days	High: 69 at Frisco				
	High: 82 at Dallas Hinton		1 red day High: 88 at Frisco					
	Data Source: TCEQ							
	Data Analysis: NCTCOG							
	-							

* as of October 5, 2020. At this time last year (October 5, 2019), there were three Yellow days, whereas 2020 has 1 Yellow day.

Data Source: Texas Commission on Environmental Quality

Data Analysis: North Central Texas Council of Governments

11

North Central Texas Ozone Exceedance Comparison: 2019-2020

Yellow (55 - 70 ppb)
Orange (71 - 85 ppb)
Red (86 - 105 ppb)

Data Source: Texas Commission on Environmental Quality

Data Analysis: North Central Texas Council of Governments 12

Cumulative Ozone Exceedances, 2016-2020

Data Source: Texas Commission on Environmental Quality Data Analysis: North Central Texas Council of Governments

Weekly Ozone Design Values, 2016-2020

Data Source: Texas Commission on Environmental Quality Data Analysis: North Central Texas Council of Governments

Percent Change in Average Regional Ozone Emissions: 2019 vs 2020

*ozone levels are influenced by meteorological conditions: high temperatures, low winds, high UV index, limited rain, and little cloud coverage.

Data Source: Texas Commission on Environmental Quality

Data Analysis: North Central Texas Council of Governments 15

FOR MORE INFORMATION, PLEASE CONTACT:

Chris Klaus Senior Program Manager (817) 695-9286 <u>CKlaus@nctcog.org</u>

Vivek Thimmavajjhala Transportation System Modeler (817) 704-2504 VThimmavajjhala@nctcog.org Jenny Narvaez Program Manager (817) 608-2342 JNarvaez@nctcog.org

Nick Van Haasen Air Quality Planner (817) 640-3300 <u>NVanhaasen@nctcog.org</u>

Nondiscrimination Analysis for Long-Range Planning

Potential Air Quality Metric

North Central Texas Council of Governments Long-range planning and nondiscrimination requirements at NCTCOG

- 20+ year planning horizon with updates every 4 years (because of nonattainment)
- Compliance with EO 12898 and EO 13166; environmental justice and limited English proficiency, respectively
- Compliance with Title VI of Civil Rights Act of 1964; race, color, national origin

Environmental Justice Index

NCTCOG

Goals for revising non-discrimination analysis

- Expand to include Title VI of Civil Rights Act of 1964 (limited English-proficient communities)
- Diversify metrics beyond roadway and transit accessibility, such as gradeseparated vs. at-grade rail crossings; access to on-street bike facilities
- Include benefits and burdens
- Continue comparing current conditions to future conditions (post construction of long-range plan projects)
- Conduct a needs assessment that will help inform:
 - Future project selection and prioritization for the long-range plan, 10-year plan, and calls for projects (funding opportunities)
 - Programmatic tasks that are not roadway/transit alignments in the long-range plan

Potential air quality metric

Equity of communities neighboring roadways with >125,000 vehicles per day (VPD)

Reference for selecting 125,000 VPD metric

Population neighboring roadways with >125,000 VPD – focus on PM, CO

2040

Source: SCAG

Source: SCAG

Poverty 1 is households < poverty; Poverty 2 is households 100%-149% poverty; Poverty 3 is households 150%-199% poverty http://scagrtpscs.net/Documents/2016/final/f2016RTPSCS_EnvironmentalJustice.pdf

NCTCOG

Three challenges

Burden generated by individual roadway impact, or burden generated by cumulative roadway impact?

Relevance of 125,000 vehicles per day?

- Why 125,000?
- Volume, congestion, or diesel truck use?
- LA is out of attainment for PM 2.5?

Distance of greatest exposure

- 500-600 feet typically accepted
- Are other distances worth considering?
- Roadway segment lengths, Census geographies, and traffic survey zones (TSZs) exceed these distances

2

1

Individual roadway burden

- ID roadways >125,000 VPD
- ID neighboring communities

VS.

Cumulative burden

 ID communities within 500 feet of cumulative burden of >125,000 VPD

Environmental justice (and other) block groups intersecting roadways with >125,000 VPD

1

Cumulative vehicles per day >125,000 within 500 feet of one block group (in this case with high environmental justice population)

Nondiscrimination Analysis for Long-Range Planning

From TxDOT's Environmental Handbook: Air Quality, https://ftp.txdot.gov/pub/txdot-info/env/toolkit/210-01-gui.pdf

Related Links

5.2 NEPA Triggers

handbook.

meters, or approximately 650 ocation of roads and traffic

A CO TAQA is required if the project is NOT exempt in accordance with Section 6.2 of this

The project is adding capacity and has an Annual Average Daily Traffic (AADT) greater than the 140,000 vehicles per day, or

MSAT consultation is required if the project is NOT exempt from an MSAT analysis in accordance with Section 6.2 of this handbook and any of the following apply:

The project affects or is affected by an intermodal facility or another facility which may be a large generator of diesel traffic, or

is, sooi guidunoo, ourdunoo ioi Qualitative Project-Level "Hot-Spot" cie in PM. Nonattainmont and

levels come from the 2011 National Transportation Atlas Database; data on population come from the 2010 Census.

Reasons for 125,000 (or other) VPD threshold:

- a) Volume?
- b) Congestion?
- c) Presence of trucks?
- d) LA (reference metric) is in nonattainment for PM 2.5?

a) Volume

NCTCOG

b) Congestion

NCTCOG

```
c) Presence of trucks*
```


* NCTCOG truck data is not calibrated for individual locations, so it is less accurate on a local scale than on an aggregated, regional scale

d) LA is in nonattainment for PM 2.5...

Making 125,000 relevant in LA. Is it also relevant for DFW?

Los Angeles County

Lead (2008)	*	Los Angeles County-South Coast Air Basin, CA
PM-2.5 (1997)	*	Los Angeles-South Coast Air Basin, CA - (Moderate)
PM-2.5 (2006)	*	Los Angeles-South Coast Air Basin, CA - (Serious)
PM-2.5 (2012)	*	Los Angeles-South Coast Air Basin, CA - (Moderate)
8-Hour Ozone (2008)	*	Los Angeles-San Bernardino Counties (West Mojave Desert), CA - (Severe 15)
8-Hour Ozone (2008)	*	Los Angeles-South Coast Air Basin, CA - (Extreme)
8-Hour Ozone (2015)	*	Los Angeles-San Bernardino Counties (West Mojave Desert), CA - (Severe 15)
8-Hour Ozone (2015)	*	Los Angeles-South Coast Air Basin, CA - (Extreme)

https://www3.epa.gov/airquality/greenbook/ancl.html

NCTCOG

Living within 500-600 feet from roadway documented as creating increased health risk <u>www.transportation.gov/mission/health/proximity-major-roadways</u>

But...

a) Geography presents challenges

- Census block (finest-scale) data not always available and can exceed 500-foot distance
- Census block group data can exceed 500-foot distance by greater amount than blocks
- Traffic survey zones can exceed 500-foot distance
- b) Roadway segment lengths present challenge
 - Segment may exceed 500-foot distance

a) Census geography and TSZ sizes

Blocks

Block groups

TSZs – used when projecting demographics into future

b) Roadway segment lengths

Your thoughts?

Contact

Kate Zielke Principal Transportation Planner kzielke@nctcog.org

CO-Benefits Risk Assessment (COBRA) Health Impact Screening and Mapping Tool

Emma Zinsmeister, MPH Presentation to the North Central Texas Council of Governments Webinar | November 6, 2020

Separation United States Environmental Protection Agency

Today

- Provide an overview of EPA's CO-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping Tool
- Offer an example of how COBRA can be used
- Invite <u>you</u> to share ideas for how COBRA can support your work within local governments

EPA's State and Local Energy and Environment Program

Emissions, air quality (AQ), and health benefits are a key component of EPA's multiple benefits framework

Fine particulate matter (PM_{2.5}) and public health

Numerous scientific studies have linked PM_{2.5} exposure to a variety of health problems, including:

- premature death in people with lung or heart disease
- nonfatal heart attacks
- irregular heartbeat
- aggravated asthma
- decreased lung function
- increased respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing.

PM_{2.5} Sources

- Some PM_{2.5} emitted directly
 - construction sites, unpaved roads, fields, smokestacks or fires.
- Most forms in the atmosphere
 - a result of complex reactions of chemicals such as sulfur dioxide (SO₂) and nitrogen oxides (NO_x),
 - pollutants emitted from power plants, industries and automobiles.

EPA offers a suite of tools for quantifying emissions, AQ, and health impacts of clean energy

What is COBRA?

- COBRA is a free, easy-to-use, peer reviewed screening model that quickly:
 - *Estimates county-level health impacts* from changes in criteria air pollutants,
 - Monetizes the economic value of those benefits, and
 - Presents results via tables and maps that facilitate visualization of the results.
- COBRA uses approaches and assumptions consistent with EPA's standard practices
- Intended to support inclusion of health benefits in cost-benefits analyses and policy making

How does COBRA work?

USER INPUTS = Change in 2016, 2023, or 2028 Emissions

- Primary PM_{2.5}, SO₂, NO_x, NH₃, VOCs

COBRA¹

Quantifies Changes in Air Quality (Fine particulate matter, PM_{2.5})

> Calculates Change in Health Outcomes (Resulting from PM_{2.5} changes)²

> > Calculates Monetary Value of Health Outcomes

¹COBRA is a peer-reviewed screening model that based on rigorous methods used by EPA health benefits assessments as described in the User Manual.

² COBRA estimates only particulate matter-related benefits and may be conservative in that respect. **OUTPUTS =** Tables and maps of changes in morbidity and mortality and related economic value.

What health effects does COBRA estimate and what are their economic values?

Loolth Incidence Avaided	Economic Value (\$2017)					
Health Incidence Avoided	3% discount rate	7% discount rate				
Adult Mortality*	\$10,040,738	\$8,943,125				
Infant Mortality	\$11,191,541	\$11,191,541				
Non-Fatal Heart Attacks*	\$39,174 - \$309,825	\$37,2038 - \$297,494				
Hospital Admissions	\$17,707 - \$47,652	\$17,707 - \$47,652				
Asthma ER Visits	\$457 - \$547	\$457 - \$547				
Acute Bronchitis	\$556	\$556				
Respiratory Symptoms (upper + lower)	\$24 - \$39	\$24 - \$39				
Asthma Exacerbations	\$67	\$67				
Minor Restricted Activity Days	\$77	\$77				
Work Loss Days	\$178	\$178				

*Discounted due to time lag between $PM_{2.5}$ exposure and health outcome.

EPA

Who can use COBRA and why?

 Analysts, planners, and officials from environmental, health, energy, transportation, and economic development agencies can use COBRA to:

Quickly and inexpensively compare different clean energy policies and identify those that:

- Are likely to result in the greatest health benefits
- Are expected to reduce health risks in the most cost-effective manner

Estimate and promote improvements in air quality and economic value of associated human health benefits of:

- Clean and/or renewable energy projects
- Other types of projects, such as transportation or municipal waste

Visually convey - using COBRA's mapping capabilities - how clean energy benefits can go beyond a single county and impact people at the state, regional, and national levels

Strengths & limitations of COBRA

STRENGTHS

- Consistent with EPA's standard practices
- Enriches discussion of cobenefits
- Easy-to-Use screening tool
- Flexible for User
- Inexpensive (free!) compared to rigorous air quality models
- Quick to generate results
- Mapping of results facilitates visualization of impacts

LIMITATIONS

- COBRA is a free, screening tool not a highly sophisticated model
- Requires inputs generated elsewhere
- While there are limitations that users should understand, technical peer reviewers found COBRA to be "a valuable model that produces a screening tool that can contribute to policy analysis and public dialogue"

EXAMPLE: WHAT ARE THE HEALTH BENEFITS OF UTILITY INVESTMENTS IN EE PROGRAMS IN TEXAS IN 2019?

·a'

State	PM2 5 (tons)	SO2 (tons)	NOv (tons)
	-22 657	-208 51	-212 624
Oklahoma	-23.037	-208.31	-213.034
Nobrocko	-1.030	-5.5/5	-12.510
Kennen	-0.165	-17.646	-8.307
Kansas	-0.475	-2.475	-6.719
Missouri	-0.815	-9.219	-6.135
Louisiana	-0.252	-3.026	-4.614
Indiana	-1.947	-3.649	-3.951
Arkansas	-0.206	-6.942	-3.462
Arizona	-0.316	-1.003	-3.447
owa	-0.29	-4.751	-3.268
Michigan	-0.093	-4.214	-2.833
Kentucky	-0.305	-3.517	-2.342
Illinois	-0.136	-4.72	-2.129
Minnesota	-0.135	-1.097	-1.784
Wisconsin	-0.238	-0.578	-1.517
New Mexico	-0.069	-0.374	-1.433
North Dakota	-0.113	-1.307	-1.085
Mississippi	-0.036	-0.02	-0.53
South Dakota	-0.044	-0.1	-0.371
Montana	-0.008	-0.005	-0.072
California	-0.001	0	-0.004

https://www.eia.gov/electricity/data/eia861/

Form 861

e'

State	Total Annual Energy Savings (2019)
Texas	960.51 GWh

👻 cobra		 Ð	Х
File Help			
Introduction 1. Select Analysis Year	⁷ 2. Create Emissions Scenario 3. Execute Run 4. View Health Effects and Valuation Results		
Basic Options Advanced Options	8		^
Choose an Analysis Year: Select the year for which you automatically use the baseline corresponding to that year. A emissions changes. 2016 2016 2023 2028	would like to estimate health impacts of emissions changes. COBRA will e emissions, population, health incidence, and health impact valuation datasets fter clicking "apply analysis year data" you can proceed to step 2 to enter your Apply Analysis Year Data		
	Select baseline year and cick "Apply Analysis Year"		

Step 2. Create emissions scenario

Introduction 1, Select Analysis Year 2, Create Emissions Scenario 3, Execute Run 4, View Health Effects and Valuation Results

COBRA		- 0 ×
File Help Introduction 1. Select Analysis Year 2. Create Emissions Scenario 3. Execute Run 4. New Health Effects and Valuation Results Select Discourt Rate In order to run the COBRA model, please select a discount rate to use in this COBBA session: Image: COBRA estimates the economic value of current and future avoided deaths and ilnesses expected based on emissions reductions in the year investments, there are trade-offs, or opportunity costs, of picking one investment over another, each with their own set and schedule of expect foregone by investing in emission reductions and to figure out how much future benefits are worth today. COBRA users must select a discount Rather than using just a single rate. EPA's Guidelines for Preparing Economic Analyses (available at https://www.epa.gov/environmental-ecoa analysts use a bounding approach to discounting, developing an upper and lower bound for their estimates. They advise use of both: a 3'', rate, reflecting the interest rate consumers might eam on Government backed securities, and a 7'', rate, reflecting the opportunity cost of private capital, based on estimates from the Office of Management and Budget. NOTE: A higher discount rate favors those investments with immediate benefits and reduces the value of future benefits more than a lower dis For more information on discount rates and how EPA uses them in monetizing health benefits, see the User Manual.	Select Discount Rate and click "Run using above option"	
Run using above option		

Step 4. View health effects and valuation results

SCOBRA

File Help

Introduction 1. Select Analysis Year 2. Create Emissions Scenario 3. Execute Run 4. View Health Effects and Valuation Results

Table Maps

Export to CSV

Export to Excel

FIPS	S State	County	Base PM 2.5	Control PM 2.5	Delta PM 2.5	\$ Total Health Benefits (low estimate)	\$ Total Health Benefits (high estimate)	Mortality (low estimate) \$
Contains:	V Contains: Texas	Y Contains:	🛛 Equals: 🖓	Equals: 🛛 💎	Equals: 🛛 🖓 Eq	uals: 🛛 🖓	Equals: 🛛 🖓	Equals: 🛛 🛛 Equal
						Total: 2,972,201.9	Total: 6,703,253.21	Total: 0.2763
48001	Texas	Anderson	7.968	7.968	0.0002	7,137.07	16,199.05	0.0007
48003	Texas	Andrews	5.95	5.95	0.0002	1,897.68	4,320.99	0.0002
48005	Texas	Angelina	8.222	8.222	0.0001	5,731.59	12,982.31	0.0005
48007	Texas	Aransas	8.398	8.398	0.0002	5,250.63	11,848.21	0.0005
48009	Texas	Archer	6.509	6.508	0.0002	1,131.23	2,555.26	0.0001
48011	Texas	Armstrong	5.25	5.25	0.075	220.38	496.14	0
48013	Texas	Atascosa	8.227	8.227	0.7 -1-2	11,691.98	26,525.07	0.0011
48015	Texas	Austin	7.996	7.0	Total	2,934.43	6 6 9 4 9 4	0.0003
48017	Texas	Bailey	4.88		IOLAI	Health 438.3	Total Heal	th o
48019	Texas	Bandera	7.715		Benefit	ts (low): 3,212.17	Demofite (hi	0.0003
48021	Texas	Bastrop	7.898		62.072	15,047.67	Benefits (ni	gn): 0.0014
48023			6.301	0	ŞZ,97Z	,201.90 624.09	\$6.703.253	.21 0.0001
48025	Narro	N /	8.413	8.412	-	4,701.72		0.0004
48027	ituito		7.465	7.464	0.0004	44,969.75	101,450.44	0.0041
48029	Results	to	8.159	8.158	0.0003	242,233.19	547,053.92	0.0225
48031			7.668	7.668	0.0003	2,401	5,414.77	0.0002
48033	Texas	3	6.038	6.038	0.0002	58.99	133	0
48035	Tonac		7.374	7.374	0.0003	4,609.25	10,391. <mark>8</mark> 7	0.0004
48037	Texas	Bowie	8.186	8.186	0.0002	11,785.66	26,625.95	0.0011
48039	Texas	Brazoria	7.877	7.877	0.0002	23,863.39	53,870.28	0.0022
48041	Texas	Brazos	7.92	7.92	0.0002	10,741.63	24,160.5	0.001
48043	Texas	Brewster	5.727	5.727	0.0001	613.46	1,390.75	0.0001
48045	Texas	Briscop	5 3.86	5 3.85	0.0001	131.26	295.75	0

Step 4. View health effects and valuation results (cont'd)

COBRA — LI X	
File Help	
Introduction 1. Select Analysis Year 2. Create Emissions Scenario 3. Execute Run 4. View Health Effects and Valuation Results	
Table Maps	^
Use this page to explore the changes in air quality and health effects between the baseline and control scenarios in map form. For more information on viewing and interpreting health impacts and valuation results, see Chapter 5 (Viewing Results) of the COBRA user manual. For more information on using COBRA's mapping functionality, including how to change the ranges or highlight specific values or incidences on the map, see Chapter 6 (Using Mapping Functionality) of the COBRA user manual. Users can view the user manual by clicking "Help" then "Show Manual." To copy the map for use in other publications or presentations, click the 'Print' button in the toolbar. For more information on saving maps created in Select the result to	
Select the field that is to be mapped: Total Health Benefits (low estimate)	
S Total Health Benefits (low estimate)	
Legend Mortality (low estimate)	
Mortality (high estimate) S Mortality (high estimate)	
□ Infant Motality	
□ Value Nonfatal Hadrat Attacks (low estimate)	
<= 255.61 Shorthadar heart Attacks (high estimate)	
255.61 - 582.94 Shorhatal Heart Attacks (nigh estimate) Hospital Admits, All Respiratory	
1/12.05 - 2426.07 Hospital Admits All Respiratory Direct	
2426.07 Shopital Admits, All Respiratory	
Hospital Admits, Cardiovascular (except heart attacks) \$ Hospital Admits, Cardiovascular (except heart attacks)	
Acute Bronchitis \$ Acute Bronchitis	
Use these Supper Respiratory Symptoms	
Lower Respiratory Symptoms	
TOOIS TO ZOOM	
S Emergancy Boom Viets Athma	
nan and	
pan, and \$ Emergency Room Visits, Asthma Minor Restricted Activity Days \$ Minor Restricted Activity Days Work Loss Days	
pan, and export the	~

<u>Step 5</u>. Export Results

Total Health Benefits, \$2017 (3%, Low Estimate)

₿EPA

	Economic Value (\$2017)					
Health Incidence Avoided	3%,	Low Estimate	3%,	High estimate		
Adult Mortality*	\$	2,903,048.35	\$	6,603,554.88		
Infant Mortality	\$	29,188.15	\$	29,188.15		
Non-Fatal Heart Attacks (NFHAs)*	\$	3,683.67	\$	34,228.45		
Hospital Admissions, All Respiratory	Ś	2.101.20	Ś	2.101.20		
Hospital Admissions,	¢	2,202.04	¢	2,292,04		
	Ş	5,202.94	Ş	5,262.94		
Asthma ER Visits	\$	127.26	\$ •	127.26		
Acute Bronchitis	Ş	313.97	Ş	313.97		
Upper Respiratory Symptoms	\$	394.67	\$	394.67		
Lower Respiratory Symptoms	\$	174.95	\$	174.95		
Asthma Exacerbation	\$	704.58	\$	704.58		
Minor Restricted Activity Days	\$	20,998.73	\$	20,998.73		
Work Loss Days	\$	8,183.43	\$	8,183.43		
Total Health Benefits	Ś	2.972.201.90	Ś	6.703.253.21		

*Discounted due to time lag between $PM_{2.5}$ exposure and health outcome.

We welcome your feedback!

- EPA wants to understand how we can make the COBRA tool work for you
- Please reach out with questions and ideas
- Download the software and learn more at: <u>epa.gov/COBRA</u>
- Access all our resources and sign up for our newsletters at: <u>epa.gov/statelocalenergy</u>

Emma Zinsmeister, MPH

Senior Health Analyst & Community Programs Manager U.S. EPA State and Local Energy and Environment Program <u>zinsmeister.emma@epa.gov</u> | (202) 343-9043

State and Local Energy and Environment Program

