On-Board Sensing, Analysis, and Reporting (OSAR) Update

North Central Texas Council of Governments (NCTCOG)

April 21, 2022

Dr. Kent Johnson and Mike Allen kjohnson@cert.ucr.edu

resented By

o-Authors Thomas D. Durbin, Georgios Karavalakis, and Dr. Wayne Miller www.cert.ucr.edu (951) 781-5786

University of California, Riverside Center for Environmental Research and Technology (CE-CERT)

www.cert.ucr.edu

2

Data Binning : Background

3

These Higher Emissions Result from Real Operation

Source: UCR Miller et al (2013), Final report to SC-AQMD and CWI "In-Use Emissions Testing and Demonstration of Retrofit Technology for Control of On-Road Heavy Duty Engines", Sep 2013

Local Goods Movement Vehicles Have Moderate Duty Cycles

----Vehicle Speed*10 ---- Exhaust Temperature

-Accumulated Nox

 Representative of HDIUT, maybe slightly low since NTEs count are low.

UC RIVERSITY OF CALIFORNIA

- Binning may look reasonable.
- How significant is this data to the inventory?

Local Delivery Vehicles Have Very Low Duty Cycles

UCRIVERSITY OF CALIFORNIA

Real Emissions Impact Real Communities: Location Is Important

UCRIVERSITY OF CALIFORNIA

MOVES and **EMFAC** Models View Diesels like this

In-use Data

HHD with NOx FEL ≤ 0.20 g/bhp-hr | 85 vehicles, 2.90 million windows Work-windows are calculated over continuous seconds. Consecutive windows have overlapping seconds. Error bars are SD of the mean.

13

EPAs Draft 3-Bin NOx Binning Specifics (#1)

- Bars are the 95th%-ile confidence interval
- Each data point is one vehicle test day

Source: James Sanchez, EPA In-Use Approach and Assessment of In-Use Measurement Allowance (1/15/2020), at SC-AQMD

ARB Binning Method (second by second data)

REAL bins in HD OBD regulation

- Implementing this method to look at variability on data sets and compare
 - EPA
 - ARB
 - **CE-CERTs**

Source: Yi Tan, CARB Monitor In-Use Emissions with On-Board Nox Sensors (1/15/2020), at SC-AQMD

Binning Prediction Using Some Form of History

In-use Data

HHD with NOx FEL ≤ 0.20 g/bhp-hr | 85 vehicles, 2.90 million windows Work-windows are calculated over continuous seconds. Consecutive windows have overlapping seconds. Error bars are SD of the mean.

13

Data Binning : UCR Approaches

- > Used existing on-road data
 - > Binned by temperature and power (OSAR #2)
- Designed Engine Dyno Thermal Model Experiment Nox spikes occur with transition from idle to 100% load. (OSAR #3)
 - > Binned by temperature (OSAR #3)
 - > Binned by power and rate of change of power (OSAR #4)
- > OSAR, Other, and 2030 Engine NOx data
 - > Binned by physical activity or return to service conditions (OSAR #5)
 - > Comparisons with EPA and ARB binning methods

SC-AQMD Phase 1: Hardware completed

EmTrac-6 Core Telemetry System

For more information on EmTrac: pt@emisense.com

Data Logger

Initial Field 20 Day Deployment of OSAR Systems

- > 8 vehicles from two fleets for a period of two weeks each
- > Test vehicles included class 8 trucks and a box truck.
- > Cross comparisons with PEMS testing

Activity Patterns from the 20 Days

Daily Average Distance

- > Average Hours of Operation per Day
 - > 7.4 (F2_Diesel2) ~ 14.0 (F1_Deisel4) hr/day
- > Average Distance per Day
 - > 52.8 (F2_Diesel2) ~ 160.8 (F1_Diesel1) mile/day
- > Daily Average Speed
 - 8.7 (F2_Diesel1) ~ 40.5 (F2_Diesel3) mph

Integrated NOx Emissions

Σ

- Brake-specific, distance-specific
 NOx emissions
 - With corresponding average exhaust temperatures for the vehicles
 - On a g/bhp-hr basis
 0.17 (F2_Diesel4) ~ 1.79 (F2_Diesel1)
- Exhaust temperatures ranged
 113 to 245 °C

Source ARB funded ZANZEFF project Lights and AQMD Phase 1

NOx Emissions Change by a Factor of 10 Between Cycles

Time (s)

- Accumulated NOx with Vehicle speed and SCR inlet temperature
 - > Graphs for NOx 0.11 & 1.33 g/bhp-hr
- Average NOx emissions change for different days.
 - Route for vehicles was usually different from day to day operation,
 - This impacts the SCR temperature and the formation of NOx emissions.

17

NOx Emissions – Comparisons with PEMS Data

- The emissions change between days on the same vehicle.
- PEMS data presented the emissions measured by one day.
- OSAR data showed several days continuous monitoring results.

EPA 3 BIN Analysis: Selected OSAR and PEMS data

Bin			PEMS	OSAR					OSAR_AVE	
				day1	day2	day3	day4	day5	Ave. NOx	STD
BIN1	Idle	g/hr	24.88	21.00	35.74	22.32	30.06	37.20	29.26	7.45
BIN2	MedLoad	g/bhp-hr	0.59	0.68	1.77	0.78	0.94	1.47	1.13	0.47
BIN3	HighLoad	g/bhp-rh	0.26	0.46	0.91	0.31	0.33	0.36	0.48	0.25
Bin			PEMS	OSAR					OSAR_AVE	
				day1	day2	day3	day4	day5	Ave. NOx	STD
BIN1	Idle	Нр	12.11	5.21	8.52	7.63	11.03	10.87	8.65	2.42
BIN2	MedLoad	Нр	59.64	58.49	39.81	53.04	45.36	45.55	48.45	7.32
BIN3	HighLoad	Нр	116.96	163.14	166.50	137.38	137.61	135.98	148.12	15.30
Bin			PEMS	OSAR					OSAR_AVE	
				day1	day2	day3	day4	day5	Ave. NOx	STD
BIN1	Idle	Deg C	155	132	152	156	130	133	141	12
BIN2	MedLoad	Deg C	224	221	202	240	192	201	211	19
BIN3	HighLoad	Deg C	307	336	387	354	297	309	336	36

- New regulations should show significant reductions for all three BINs
- Figures show variability between days not measurement uncertainty

- In-Use 3 BIN analysis starts in MY 2024 with full phase in by 2030
- The 3 BIN includes Idle/low load, medium load, an high load

UCRIVERSITY OF CALIFORNIA

Binning on Physical Activity: Return To Service, Modified

> Bin 1 cold start (work 5 hp-hr)

> Bin 2 idle

- (no vehicle speed and > 5 min)
- > Bin 3, 4, 5 and 6 return to service
 - > Bin 3 Load 0-5%
 - Bin 4 Load 5-10%
 - Bin 5 Load 10-20%
 - > Bin 6 Load >20%
 - Bin 7 and 8 higher loads
 - > Bin 7 hp 10-30%
 - > Bin 8 hp method >30%
- Approach promising. More analysis needed to implement method ¹⁹

UC RIVERSITY OF CALIFORNIA

20

ARB and EPA BIN Analysis: Low NOx Truck

ARB binning

- NOx ranged from 0.002 to 0.8 g/bhp-hr >
- NOx range needed to be plotted on a log > scale
- > EPA binning shows less variability between bins

Source ARB funded via CALSTART, Achates project

3

4

5

6

ARB BINS: REAL

12 13 14

10 11

g

1 2 *

0.20

0.15

0.10

0.05

0.00

Binning Physical Activity: Return To Service, Modified

Low NOx Engine

- > Hot running emission range from 0.005 to 0.145 g/bhp-hr
- > Cold start at 1.49 and 50% of the emissions in 40 min from a 10 hr day

Source ARB funded ZANZEFF project Lights and AQMD Phase 1

Back Up Slides

OSAR Funded Project And Other OBD Projects

OBD Project: Devil's Gate Project: 100% Completed

- Remove 1.7 million cubic yards of excess sediment in 4 year (2 more years)
- > Hauling 5 days a week from 7am-3pm
- Conduct mobile source emissions testing of sediment removal trucks to evaluate emissions performance measures

Devil's Gate: NOx Results OBD Sensors

□ ~1/3rd of trucks operating at or below NOx standard of 0.2 g/bhp-hr

- $\sim 2/3^{rd}$ of trucks operating at or below 0.4 to 0.5 g/bhp-hr (~average emissions level)
- Overall fleet average = 0.45 g/bhp-hr, for non-credit engines = 0.38 g/bhp-hr
- □ Three highest emitters are 2011-2012 "credit" engines

OSAR Specific Funded Project

SC-AQMD phase 1 (50% completed)

- > Eight trucks (two vocations)
- > Integrate ECU, GPS, NOx, PM sensors
- > Operate for 12 months (maybe extend)
- Operate at key on (and leave on for short delay)

> Lights ZANZEFF (completed)

- > Eight trucks
- > Two weeks
- Compare to PEMS data from one day
- Compare to PAMS data from 90 plus days

- ARB (in-use PEMS testing validation), inkind (kick off meeting March 2022)
- CARTEEH (changed to binning, 50% completed)
- > EPA (started first set of sensors)
 - > Bring sensors back to CERT and evaluate
 - > Evaluate at 0, 3, 6, 9, and 12 mo
 - > Evaluate up to 5 sensors from in-use
 - Evaluate (TEM, Impedance, interference, accuracy..)

27

EPA Project: Status

- Contract renewal approved and work started
- > CAN data messaging did not follow standard outputs.
- > Working on CAN messaging for OEM specific NOx sensors.

The OSAR laboratory is in partner ship with EmiSense

OSAR: New and Future Project

New and Future Project

> ARB OSAR sensor study started (Kick off meeting March 2022)

- Testing 40 OBD sensors (NOx, CO2, and others as available PM, NH3, and N2O)
 - Include current and future OBD versions
 - > Advanced versions (lasers) and other startups
- > Deploy systems on up to 100 on-road trucks and 20 large off-road diesel engines
- Possible co-funding to expand the study (EMA and EPA)
- Attorney General (AG) VW Funds 1.6Mil OMEGA (Kick off meeting Feb 2022)
 - > Work a local fleet (changed from Amazon to DHE)
 - Instrument 40 trucks with OSAR for extended period of time
 - > Tom will present more on this
- **DOT** (Awarded and in preparation)
 - > CA Locomotives, low carbon fuels, Amtrak

UCRIVERSITY OF CALIFORNIA

How the projects fit together

> System development

- SC-AQMD phase 1
- Lights ZANZEFF
- > CARTEEH
- > Aging evaluation
 - > EPA
- New Sensors and Advances
 - > ARB Research

- Community impacts and mitigation and eco routing
 - Attorney General (AG) VW Funds
 1.6Mil OMEGA
 - > AQMD Phase 2
- Fuels impacts and improved efficiency engines. Compare CO2 vs work metric differences
 - > DOT
 - > Achates

31

What is still needed

- Use binning method to predict local community impacts
- What can be done about regulations to protect community based on binning
- Databasing this data for other evaluations

- What is the impact of Marine OGV and port communities
- What is impact of Loco and communities
- What is impact of Construction on community
- > Other