NORTH CENTRAL TEXAS COUNCIL OF GOVERNMENTS 17TH ANNUAL PUBLIC WORKS ROUNDUP JUNE 8, 2016

Concrete Street Insanity

Jerry Murawski, P.E.

With Special Thanks to Jan Prusinski, P.E. Cement Council of Texas

Do these look like any of your streets? Especially before they are 20 years old?

CONCRETE STREET INSANITY

Building concrete streets the same way over and over again and expecting different results each time?

CRITICAL QUESTION

Q: Why did the engineers cross the road?A: Because they looked in the file and that's what they did last year.

CRITICAL QUESTION

Almost every element of a street is engineered – geometry, profile, drainage, utilities, traffic control, signage, signals, sidewalks (ADA), etc.

BUT the pavement design often comes from standards developed decades ago.

I contend that it is time to stop the insanity and take action to design pavements that will have longer lives.

CONCRETE STREET INSANITY

Quick Overview:

- North Texas clays
- Subgrade Treatment
- Pavement Design highways vs streets
- Concrete Pavement facts & types
- Considerations joints, strength, depth
- Design options
- My thoughts

NORTH TEXAS CLAY SOILS

Wet: expansive and slick as snot!

Dry: shrunken, cracked, hard.

Clay soils water absorption is 0.02"/hour
 Volume change up to 10 times
 Bearing capacities range from 10 to 20 psi

NORTH TEXAS CLAY SOILS

"Treating 6" to 8" of soil with lime or cement doesn't add anything to the pavement's strength." - *Barry Grubbs, president of Terra Mar 1987*

12'-14' deep borings in dense clay soil had moisture contents exceeding 30%. – *My experience 1994*

Does treating 6" to 8" of clay with lime/cement have any real benefit for clay 8' to 20' deep? – *My rhetorical question 1996*

CONCRETE STREET DESIGN

What is this insanity that we've been perpetuating:

- Dallas standard since 1970s or earlier.
- Developed from AASHTO Road Test in 1958-60.
- No longer supported by AASHTO. (Obsolete)

PAVEMENT DESIGN FOR MANY NORTH TEXAS CITIES

6"to 8" Concrete #3 or #4 bars at 18" or 24" c-c

6" Lime or Cement Stabilized Soil

Deep Expansive Clay Soil

PAVEMENT DESIGN BY THE BOOK

- 1. Stabilize the subgrade to support loads.
 - Modify with lime/cement or replace existing soil to -
 - Minimize volume changes
 - Add strength/bearing capacity
- 2. Cover subgrade protect/maintain the subgrade.

(TXDOT designs based on PVR - often requires removal of several feet of high PI soils replacement with low PI material.)

PAVEMENT DESIGN TXDOT HIGHWAYS

PAVEMENT DESIGN CITY STREETS

Continuously reinforced concrete pavement (CRCP)

- Heavy continuous reinforcement.
- Small cracks distribute movement (<u>no</u> <u>saw cut</u>).
- Used extensively by TxDOT and others DOTs.

Continuously Reinforced Concrete Pavement (CRCP)

Jointed plain concrete pavement (JPCP)

- Unreinforced continuous concrete slabs
- <u>Moderately</u> spaced saw cuts distribute movement, narrow cracks
- Can be placed with or without dowels, depending on design
- Now used by many state DOTs and local governments in U.S.

Jointed Plain Concrete Pavement (JPCP)

Jointed reinforced concrete pavement (JRCP)

- Light reinforcement
- Doweled "expansion" joints at long intervals
- Slab ends can move significantly
- State DOTs, AASHTO, and most U.S. local agencies no longer permit JRCP, due to performance problem at joints and cracks

Yet, that's what we use!!!

Jointed Reinforced Concrete Pavement (JRCP

Roller Compacted Concrete Pavement (RCCP)

- A sub-type of JPCP
- Zero-slump concrete, usually produced in pug mill
- Placed with high-density asphalt-style pavers, compacted w/ vibratory rollers
- No reinforcing, no dowels, no finishing
- Fast, efficient placement on large projects

Roller Compacted Concrete Pavement (RCCP)

WHAT DO 26 OTHER STATES USE?

BEFORE PROCEEDING, I HAVE ONE QUESTIONS TO ASK:

Are you satisfied with your concrete streets?

If so, please feel free to take a break.

If not, then stop building them the way you have been!!!

MY GOAL

- 1. Use sound engineering in the design of streets
- 2. Recognize that we can't build streets like highways -
 - ROWs are utility corridors
 - Too costly to design based on PVR
 - Focus more on pavement and less on subgrade

CONSIDERATIONS - JOINTS

Mitigation:

- Supportive Subgrade
- Load Transfer Steel Dowels
- Aggregate Interlock
- Increased Flexural Strength

CONSIDERATIONS - CONSTRUCTION

New Street

Street Reconstruction

CONSIDERATION - JOINTS

Joint Spacing:

- ACI and most codes recommend 75' to 120' maximum expansion joint spacing. What does your city do?
- The greater the sawed joints spacing, the wider the joints and loss in aggregate interlock, which is more load resistant that #4 bars at 18" centers.

CONSIDERATIONS - JOINTS

Distance between Saw Cuts

11	//			11

Distance between Expansion Joints

CONSIDERATIONS - JOINTS

120 ft between Expansion Joints

Shrinkage = 0.0004 in./in. x 600' x 12" x 0.8 friction = 0.0461 in.

- Per Joint @ 20' spacing = 0.0077 in. joint gap(> 1/16")
- Per Joint @ 15' spacing = 0.0058 in. joint gap (1/16'')
- Per Joint @ 12' spacing = 0.0046 in. joint gap (< ¹/₃₂")

(Note: Temperature variations will have a varying effect on joint gap)

CONSIDERATIONS - STRENGTH

Flexural Strength

1111111

1111111

CONSIDERATIONS - STRENGTH

Steel in middle does not have any benefit.

Tension Fatigue

STRENGTH

Flexural Strength = Modulus of Rupture

$$\sigma = \frac{3 \times P \times L}{2 \times b \times d^2}$$

- σ = modulus of rupture
- P = maximum load
- L = span length
- b = average width
- d = average depth

P (lbs)	L	b	d	σ (ksi)	% Increase
4000	20′	10'	8″	76,800	-
4000	20′	10'	9 ″	97,200	26.6%
4000	20′	10'	10″	120,000	56.3%

6 to 10 psi

DESIGN OPTIONS

40,000 ADT, 15% Trucks, 6LD
 StreetPave/American Concrete Pvmt Association 2005
 9" thick (20 yr) or 10" thick (30 yr)
 Non-reinforced, 15' max joint spacing

 ACI 325.12 – Guide for Design of Jointed Concrete Pavements for Streets & Local Roads 10" thick Non-reinforced, 12'-15' joint spacing

OTHER CONSIDERATIONS

Lime or Cement Stabilization \$5.00 per sy

Versus

1" Concrete Pavement (\$90/cy) \$2.50 per sy

MY THOUGHTS

- ✓ We can't build streets like highways.
- ✓ Design pavements for each thoroughfare.
- ✓ Develop new standards for residential streets.
- ✓ Trade lime/cement stabilization for thicker pavements.
 - 6" to 8" of lime/cement does little to deep clay soils.
- Need 10 times more reinforcing to be structural slab.
 ✓ Spacing of expansion and contraction (sawcut) joints is important.
- ✓ Use #4 bars at 18" centers if you must.

A man in love is incomplete until he has married.

Then he's finished.

And I am too!

Questions?

Jerry Murawski, P.E. Senior Project Manager ARS Engineers, Inc. jmurawski@arsengineers.com

