

Appendix A Benefit Cost Calculation

Prepared by: North Central Texas Council of Governments 616 Six Flags Dr. Arlington, TX 76011

BENEFIT COST METHODOLOGY, ANALYSIS AND CALCULATIONS

The following description provides the methodology for various sections within the Benefit Cost Analysis (BCA) including an overall benefit of all facilities for the years 2020 through 2040, for each cost and benefit factor. Benefits are assumed to occur after project completion in January 2020 for a 20 year life span of the projects to 2040.

Benefits

Using output from the DFW Regional Travel Model, NCTCOG utilized the following post-processing technique to calculate the non-recurrent and recurrent congestion to analyze the Benefit Cost Analysis for this project. An overall cost-benefit summary sheet was prepared. Costs are calculated from 2018 to 2040. All monetized estimates were discounted at 3% and 7% rates to 2015 , and Benefit to Cost ratios were calculated for the values based on 3% and 7%. The detail tables (Excel) include a Constants (tab) to list the multipliers used in the analysis.

Mobility Benefits

Post-Processing Technique, Task 1: Travel time reduction due to mitigation of non-recurrent congestion

Reduction in non-recurrent congestion per day on congested freeways (vehicle hours/weekday) = Vehicle hours of congestion delay on freeways per weekday x Percentage of freeway centerline miles that are congested x Percentage of nonrecurrent congestion eliminated on congested freeways with ITS deployment during peak hours.

Reduction in non-recurrent congestion per day on uncongested freeways (vehicle hours/weekday) = Vehicle hours of congestion delay on freeways per weekday x Percentage of freeway centerline miles that are uncongested x Percentage of nonrecurrent congestion eliminated on uncongested freeways with ITS deployment during peak hours.

Total reduction in non-recurrent congestion per day (vehicle hours/weekday) = Reduction in non-recurrent congestion per day on congested freeways + Reduction in non-recurrent congestion per day on uncongested freeways.

Annual Saving of Non-Recurrent Congestion (\$/year) = Total reduction in non-recurrent congestion per day x Vehicle occupancy x Number of weekdays per year x Value of time.

Post-Processing Technique, Task 2: Travel time reduction due to mitigation of recurrent congestion

Reduction in recurrent congestion per day on congested freeways (vehicle hours/weekday) $=$ Vehicle hours of congestion delay on freeways per weekday x Percentage of freeway centerline miles that are congested x Percentage of recurrent congestion eliminated on congested freeways with ITS deployment during peak hours.

Reduction in recurrent congestion per day on uncongested freeways (vehicle hours/weekday) $=$ Vehicle hours of congestion delay on freeways per weekday x Percentage of freeway centerline miles that are uncongested x Percentage of recurrent congestion eliminated on uncongested freeways with ITS deployment during peak hours.

Total reduction in recurrent congestion per day (vehicle hours/weekday) = Reduction in recurrent congestion per day on congested freeways + Reduction in recurrent congestion per day on uncongested freeways.

Annual Saving of Recurrent Congestion (\$/year) = Reduction in total recurrent congestion per day x Vehicle occupancy x Number of weekdays per year x Value of time.

Total Annual Saving ($\$ /$ Year) = Annual Saving of Non-Recurrent Congestion (\$/year) + Annual Saving of Recurrent Congestion (\$/year).

Assumptions:

Vehicle hours of congestion delay on freeways per weekday provided by the DFW Regional Travel Model.
Percentage of freeway centerline miles congested (LOS D, E, and F) and uncongested (LOS A, B, and C) provided by DFW Regional Travel Model.
Percentage of non-recurrent congestion eliminated on congested freeways with ITS deployment during peak hours $=0.048\left(48 \%{ }^{1}\right.$ of non-recurrent congestion eliminated on congested freeways with ITS deployment and 10% of daily traffic is assumed to occur during the peak hour).
Percentage of non-recurrent congestion eliminated on uncongested freeways with ITS deployment during peak hours $=0.023\left(23 \%{ }^{1}\right.$ of non-recurrent congestion eliminated on uncongested freeways with ITS deployment and 10\% of daily traffic is assumed to occur during the peak hour).
Percentage of recurrent congestion eliminated on congested freeways with ITS deployment during peak hours $=0.03\left(30 \%{ }^{11}\right.$ of recurrent congestion eliminated on congested freeways with ITS deployment and 10% of daily traffic is assumed to occur during the peak hour).

Percentage of recurrent congestion eliminated on uncongested freeways with ITS deployment during peak hours $=0.005\left(5 \%{ }^{1}\right.$ of recurrent congestion eliminated on uncongested freeways with ITS deployment and 10% of daily traffic is assumed to occur during the peak hour).

Vehicle occupancy provided by the Mobility 2035-2014 Amendment $=1.35$
Number of weekdays per year provided by the Mobility 2035 - 2014 Amendment $=251$
Value of time provided by the 2015 TIGER Discretionary Grant $=\$ 19.00$

Air Quality Benefits

Air Quality Benefits were calculated based on the total vehicle hours of congestion delay on freeways per weekday and MoSERS methodologies used for the 2013 Transportation Conformity process. ${ }^{2}$ A detailed methodology on the calculation of Nitrogen Oxides (NOx), Volatile Organic Compounds (VOC), and Carbon Dioxide (CO_{2}) are available at the web link in the reference. The Recommended Monetized Values of the above air quality benefits provided by the BCA Online Supplement were used to estimate the value of emission benefits. The following outlines the methodology.

Change in estimated $\mathrm{NO}_{x}, ~ V O C$ and CO_{2} Emissions from alleviating peak hour nonrecurrent congestion (tons/day) $=$ Total $\mathrm{NO}_{x}, \mathrm{VOC}$ and CO_{2} generated during the peak period in tons per day x Percentage of freeway emissions caused by peak hour non-recurrent congestion x Percentage of freeway coverage with ITS deployment x Percentage of non-recurrent congestion eliminated on freeways with ITS deployment

Change in estimated $\mathrm{NO}_{x}, \mathrm{VOC}$ and CO_{2} Emissions from alleviating peak hour recurrent congestion (tons/day) = Total $\mathrm{NO}_{\mathrm{x}}, \mathrm{VOC}$ and CO_{2} generated during the peak period in tons per day x Percentage of freeway emissions caused by peak hour recurrent congestion x Percentage of freeway coverage with ITS deployment

Change in estimated Total NO_{x}, VOC and CO_{2} Emissions from alleviating peak hour congestion (tons/day) $=$ Change in estimated $\mathrm{NO}_{\mathrm{x}}, \mathrm{VOC}$ and CO_{2} Emissions from alleviating peak hour non-recurrent congestion (tons/day) + Change in estimated $\mathrm{NO}_{x}, \mathrm{VOC}$ and CO_{2} Emissions from alleviating peak hour recurrent congestion (tons/day)

ASSUMPTIONS:

Total emissions ($\mathrm{NO}_{\mathrm{x}}, \mathrm{VOC}$ and CO_{2}) generated in the four county areas is developed through the Environmental Protection Agency's Motor Vehicle Emissions Simulator Percentage of freeway coverage with ITS deployment which is obtained from the DFW ITS Map (total centerline miles with ITS deployment / total centerline miles).
Percentage of freeway emissions caused by peak hour non-recurrent congestion = 0.049^{1} (49\% of urban freeways are congested due to an incident and 10\% of daily traffic is assumed to occur during the peak hour).

Percentage of non-recurrent congestion eliminated on freeways with ITS deployment $=$ 48\%. ${ }^{1}$

Percentage of recurrent congestion eliminated on freeways with ITS deployment $=5 \% .^{1}$

Safety

Crash data were used to measure the impact this project is expected to have on the number of crashes. Crash data were obtained in the project area for the five-year period from January 2010 through December 2014, and were used as the basis for predicting the expected number of crashes in the future. Over this five-year period, there were a total of 6,832 accidents in the project area.

The impact of the project on the number of crashes on the regional network in four counties was determined using methods outlined in Part D of the Highway Safety Manual (American Association of State Highway and Transportation Officials, First Edition, 2010). The method uses Crash Modification Factors (CMFs). A CMF is a factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site. It is defined as the ratio of expected crash frequency with improvement over the situation without improvement. The numbers of existing crashes along the roadway network were multiplied by CMF to determine the number of crashes that could be expected after the project is complete. CMF for this analysis were obtained on the Crash Modification Factors Clearinghouse website (http://www.cmfclearinghouse.org/). The data on that website indicates that ITS projects like the one in this proposal that improve real-time traffic information, reduce injury accidents on a corridor by 44% (CMF $=0.56$).

Injury and fatality numbers used for this calculation were drawn from the TxDOT Crash Record Information System (CRIS) (2014). A modification factor was applied to the accident data due to the impact of the proposed project. This data was converted to Abbreviated Injury Scale (AIS) using KABCO scale accident numbers, and then the formula provided in the TIGER Benefit-Cost Analysis Resource Guide was applied. The dollar benefit of reduction in injury and fatal crashes was estimated using the DOT's monetized values of a statistical life (2013). The 2013 monetized values were converted to 2015 monetized values using the Consumer Price Index (CPI).

Likelihood Multiplier

The mobility, air quality and safety benefits were determined for the region. In order to determine benefits of the baseline and proposed project separately, it was assumed that the baseline infrastructure provide benefits proportional to the total existing fiber optic coverage and total existing connections. This number was multiplied by the 21% increase in coverage for filling in gaps and the 56% increase in new connections was applied. These percentages were calculated as outlined below to create a likelihood multiplier of 0.12 . In other words, the baseline system is assumed to provide 88% of the
total benefits and the proposed TIGER Grant funds project to provide 12% of the total benefit.

Percent new coverage

134 new miles / (134 new miles +498 existing miles $)=21 \%$
Percent new connections
13 new connections / (13 new connections +10 existing connections $)=$ 56\%

Likelihood Multiplier $=$ Mobility Benefit $\times 0.21 \times 0.56$
Air Quality Benefit $\times 0.21 \times 0.56$
Safety Benefit x 0.21×0.56

[^0]
benerit-cost ratio

$\begin{array}{c}\text { Total Values } \\ 3 \% \text { Discount Rate }\end{array}$

7% Discount Rate

Benefit Cost Analysis - Costs

					Discounted to 2015			
Year	Project Cost	Operation and Maintenance Cost	Total Cost	Years from Start		3\%		7\%
2018	\$5,000,000		\$5,000,000	3	\$	4,575,708	\$	4,081,489
2019	\$5,000,000		\$5,000,000	4	\$	4,442,435	\$	3,814,476
2020	\$5,000,000	\$1,500,000	\$6,500,000	5	\$	5,606,957	\$	4,634,410
2021		\$1,500,000	\$1,500,000	6	\$	1,256,226	\$	999,513
2022		\$1,500,000	\$1,500,000	7	\$	1,219,637	\$	934,125
2023		\$1,500,000	\$1,500,000	8	\$	1,184,114	\$	873,014
2024		\$1,500,000	\$1,500,000	9	\$	1,149,625	\$	815,901
2025		\$1,500,000	\$1,500,000	10	\$	1,116,141	\$	762,524
2026		\$1,500,000	\$1,500,000	11	\$	1,083,632	\$	712,639
2027		\$1,500,000	\$1,500,000	12	\$	1,052,070	\$	666,018
2028		\$1,500,000	\$1,500,000	13	\$	1,021,427	\$	622,447
2029		\$1,500,000	\$1,500,000	14	\$	991,677	\$	581,726
2030		\$1,500,000	\$1,500,000	15	\$	962,793	\$	543,669
2031		\$1,500,000	\$1,500,000	16	\$	934,750	\$	508,102
2032		\$1,500,000	\$1,500,000	17	\$	907,525	\$	474,862
2033		\$1,500,000	\$1,500,000	18	\$	881,092	\$	443,796
2034		\$1,500,000	\$1,500,000	19	\$	855,429	\$	414,762
2035		\$1,500,000	\$1,500,000	20	\$	830,514	\$	387,629
2036		\$1,500,000	\$1,500,000	21	\$	806,324	\$	362,270
2037		\$1,500,000	\$1,500,000	22	\$	782,839	\$	338,570
2038		\$1,500,000	\$1,500,000	23	\$	760,038	\$	316,420
2039		\$1,500,000	\$1,500,000	24	\$	737,901	\$	295,720
2040		\$1,500,000	\$1,500,000	25	\$	716,408	\$	276,374
Total	\$15,000,000	\$31,500,000	\$46,500,000			\$33,875,261		\$23,860,454

Total cost	$\$ 15,000,000$	
Start	End	Yrs
	2020	3
Per year	$\$ 5,000,000.00$	

	202	202	202	203	${ }^{2024}$	2025	2025	102	2028	2029	30	2031	2032	2033	234	2035	2036	2037	2038		,
${ }_{\text {Norathe }}$	${ }_{6}^{6,465}$	${ }_{6}^{6,301}$	${ }_{6}^{6,136}$	5.971	${ }_{5,807}$	$\frac{5.642}{}$	${ }_{5}^{5,778}$	${ }_{5,313}$	${ }_{5}^{5,49}$	4,984	${ }_{\text {S }}^{819}$	4.655	4,900	${ }^{4.326}$	4,161	3,996	${ }^{3,832}$	3,67	3,033	${ }_{\text {, } 3,38}$	
Norther	${ }_{2,359,826}$	2299, ${ }^{2}$	${ }^{2239,62^{2}}$	${ }^{2172,955}$	${ }_{2,119,518}$	${ }_{20,59,411}$	${ }_{\text {1,993, }}$	${ }_{\text {L }}^{1,939287}$	${ }_{\text {L }}^{18792920}$	${ }_{1,8,19,13}^{1,1}$	59,0	1.688999	388,	${ }_{\text {L,57, } 82}$							
Voctibstax)	${ }_{\substack{10.68 \\ 398821}}$		${ }_{\text {l }}^{1.028}$	${ }_{\text {L }}^{10.939}$	${ }_{\text {c, }}^{1025} 5$		$\xrightarrow{10.00}$ (68482	${ }_{\substack{1.000 \\ 369929}}^{\text {a }}$	${ }_{\substack{\text { 36, } 1372}}^{\text {a }}$		${ }_{\text {394235 }}^{97}$	$\frac{961}{56,710}$	${ }^{377,15}$	43,601	${ }_{\text {332 }}^{300045}$	33697		2,382	${ }_{3}^{325887}$	2273	${ }_{\text {cien }}^{\substack{8,78}}$
Coillibley	6,994,73			\%,50,944	,603,07		6.507, 34		5,A11,21			${ }_{6,267,45^{1}}$	6,219,515	6,171,58		6,075,75					
Cozllbs (learl	${ }^{2,880,089,959}$	${ }^{462,5888.212}$		${ }^{2,272,59,444}$,410,097,066	${ }^{2382,5007888}$	2375,103, 292	${ }^{23,35,6,07,091}$	230,210,23	${ }^{23226,6,4,45}$	${ }^{2,305,16,5,56}$	${ }^{2828,6,19,788}$	2,27,122,9000	${ }^{2,252,26,5062}$	${ }^{1235,1292924}$		${ }^{22000,13,597}$	${ }_{2,1828,88,7,09}$	${ }_{\text {2, } 25,514,1,871}$		30,188, ${ }^{\text {a }}$
food Mutipe:	23	0.12	${ }^{0.12}$	0.12	0.12	0.12	0.12	0.12	${ }^{0.12}$	${ }_{0}^{0.12}$	${ }^{0.12}$	${ }^{0.12}$	${ }^{0.12}$	${ }^{0.1}$	0.12	${ }^{0.12}$	${ }^{0.12}$	${ }^{0.1}$	${ }^{0.12}$	${ }^{0.12}$	${ }^{0.12}$
Noxtherea	${ }_{27}^{27,515}$	${ }^{20,450}$	${ }^{26,3835}$	${ }^{256,320}$	${ }^{2992925}$	242,190	${ }^{235,225}$	228,060	20,995	213,380	${ }^{200,865}$	199,800	${ }_{\text {122,3, }}$	${ }^{18,5672}$	${ }_{178,05}$	${ }^{121,59}$	${ }_{164945}$	${ }_{15,41}^{15}$	${ }_{150,35}$	${ }^{143,280}$	${ }^{136,215}$
Voctiverear	${ }_{\text {chend }}^{4,5929}$	${ }^{4,4,44}$	${ }^{\text {S5,066 }}$											(0,007	,197		, $\frac{3,1,53}{\substack{3590}}$,		56,	

	Annual $\mathrm{CO2}$ Reduction		Social Cost of Carbon (2013\$)	Emission Reduction Benefit $(\$ 2014)$	CO2 Emission Reduction Benefit (2014\$)	$\begin{array}{r} \text { YEARS from } \\ 2015 \\ \hline \end{array}$	Discounted (to 2015)	
	lss/vear	metric tons/vear					3\%	\%
2020	291,657,991	132,294	54	54.88	7,260,295	7	5,903,284	4,521,347
2021	289,600,363	${ }_{131,361}$	${ }_{5}$	55.89	7,341,766		5,795,658	4,272,975
2022	287,542,735	130,427	56	56.91	7,42,601		5,688,806	4,037,003
2023	285,48,107	129,494	57	57.92	7,50,292	10	5,580,922	3,812,768
2024	283,427,478	128,561	58	58.94	7,57,385	11	5,474,064	3,599,961
2025	281,369,850	127,627	60	60.97	7,781,418	12	5,45,7,30	3,455,043
2026	279,312,222	126,694	61	61.9	7,85,761		5,348,029	3,259,032
2027	277,254,594	125,761	62	63.01	7,924,201	14	5,238,830	3,073,142
2028	275,196,966	124,827	63	64.02	7,991,425	15	5,129,392	2,896,460
2029	273,139,338	123,94	63	64.02	7,931,694	16	4,942,769	2,686,739
2030	271,081,709	122,961	65	66.05	8,121,574		4,913,886	2,571,082
2031	269,024,081	122,027	66	67.07	8,184,351	18	4,807,444	2,421,454
2032	266,96,453	121,094	67	68.09	8,245,290	19	4,702,174	2,279,891
2033	264,90, 825	120,161	68	69.10	8,30,125	20	4,597,239	2,145,685
2034	262,85,197	119,27		70.12	8,36,197	21	4,944,018	2,019,097
2035	260,93,569	118,294	71	72.15	8,534,912	22	4,454,307	1,926,42
2036	258,73,940	117,361	72	73.17	8,587,04	23	4,351,116	1,811,465
2037	256,678,312	116,427	73	74.18	8,636,555	24	4,248,613	1,702,668
2038	254,620,684	115,494	74	75.20	8,685,149	25	4,148,076	1,600,232
2039	252,56, 3 ,56	114,561	76	77.23	8,847,546	26	4,102,560	1,523,508
2040	250,50,428	${ }_{113,627}$	77	78.25	8,891,313	27	4,002,72	1,430,882
	5,692,715,897]	2,582,174		1,389	169,98, 154	Total	103,381,487	S $57,047,275$

	BLSCPI
YEAR	cp1
2013	232.957
2014	${ }^{236.736}$
Nox (52013)	57877
Voc (S201313)	$\stackrel{\text { s1,999 }}{ }$

Benefit Cost Analysis - Safety Benefits

Year	\# Crashes	\# Not Injured	\# of Possible Injury	\# of Non-Incapacitating	\# of Incapacitating Injury	\# Fatalities	\# Unknown Injury Crashes
2014	8,192	5,189	1,574	958	225	58	188
2013	7,999	4,868	1,625	1,032	225	63	186
2012	7,269	4,242	1,563	1,028	243	59	134
2011	6,397	3,718	1,399	925	207	43	105
2010	6,781	3,942	1,490	932	239	63	115
Total Crashes		21,959	7,651	4,875	1,139	286	728
Annual Crash Rate Likelihood Factor*Crash		4391.80000	1530.20000	975.00000	227.80000	57.20000	145.60000
Modification Factor		${ }^{0.0695868}$	${ }^{0.006586}$	${ }^{0.065866}$	${ }^{0.06586} 15.00200$	${ }^{0.06586}$	0.068868

KABCO Accident Classification System													
(1)	(2)		(3)		(4)		(5)		(6)		(7)		(8)
KABCO Type \rightarrow	$\begin{gathered} 0 \\ \text { No Injury } \\ \hline \end{gathered}$		c Possible Injury		B Non-Incapacitating		A Incapacitating		$\begin{gathered} \text { Killed } \end{gathered}$		Injured Severity Unknown		Annual Crash Reduction
Als Rating System	Number	Factor	Number	Factor	Number	Factor	Number	Factor	Number	ftor	Number	Factor	
0	289.22638	0.92534	100.77285	0.23437	64.20960	0.08347	15.00200	0.03437	3.76696	0.00000	9.58863	0.21538	299.19127
1		0.07257		0.68946		0.76843		0.55449		0.00000		0.62728	154.14181
2		0.00198		0.06391		0.10898		0.20908		0.00000		0	18.14446
3		0.00008		0.01071		0.03191		0.14437		0.00000		0.03858	5.68711
4		0.00000		0.00142		0.00620		0.03986		0.00000		0.00442	1.18156
5		0.00003		0.00013		0.00101		0.01783		0.00000		0.01034	0.45326
Fatal		0.00000		0.00000		0.00000		0.00000		1.00000		0.00000	3.76696

ANNUAL REDUCTIONIN CRASHES (Br Als rating Category)							
year	0	1	2	3	4	5	Fatal
2020	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2021	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2022	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2023	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2024	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2025	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2026	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2027	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2028	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2029	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2030	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2031	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2032	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2033	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2034	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2035	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2036	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2037	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2038	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2039	299.19	154.14	18.14	5.69	1.18	0.45	3.77
2040	299.19	154.14	18.14	5.69	1.18	0.45	3.77

ANNUAL CRASH REDUCTION BENEFIT (BY AIS Rating Category)													Discounted (to 2015)			
0		1		2	3	${ }_{4}$		5		Fatal		OTAL CRASH REDUCTION BENEFIT	YEARS from	3\%		7\%
\$ 1,193,984	\$	4,417,312	\$	8,146,261	5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467		52,632,478	\$	43,503,185
\$ 1,193,984	S	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467		51,099,49	5	40,657,182
\$ 1,193,984	5	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467		49,611,15	\$	37,997,366
\$ 1,193,984	5	4,417,312	5	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	015,46		48,166,17	S	35,511,557
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467		46,763,275	\$	33,188,371
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	10	45,401,238	\$	31,017,170
\$ 1,193,984	S	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	11	44,078,872	\$	28,988,009
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	12	42,795,021	\$	27,091,597
\$ 1,193,984	5	4,417,312	5	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	13	41,548,564	5	25,319,250
\$ 1,193,984	5	4,417,312	5	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	14	40,338,412	5	23,662,850
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	\$ 3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	15	39,163,507	\$	22,114,813
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	16	38,022,822	\$	20,668,050
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	\$ 3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	17	36,915,361	\$	19,315,934
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	18	35,840,156	\$	18,052,275
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	\$ 3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	19	34,796,268	\$	16,871,285
\$ 1,193,984	5	4,417,312	5	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	20	33,782,785	\$	15,767,556
\$ 1,193,984	\$	4,417,312	\$	$8,146,261$	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	21	32,798,820	\$	14,736,034
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	22	31,843,515	\$	13,771,994
\$ 1,193,984	\$	4,417,312	5	8,146,261	\$ 5,704,234	\$ 3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	23	30,916,034	\$	12,871,023
\$ 1,193,984	\$	4,417,312	5	8,146,261	\$ 5,704,234	\$ 3,002,298	\$	2,567,547	5	35,983,831	\$	61,015,467	24	30,015,567	\$	12,028,993
\$ 1,193,984	\$	4,417,312	\$	8,146,261	\$ 5,704,234	3,002,298	\$	2,567,547	\$	35,983,831	\$	61,015,467	25	29,141,327	\$	11,242,050
												281,324,812		5,670,8		504,376,545

Analysis var	$\begin{array}{c}\text { Vehicle Hours } \\ \text { of Congestion } \\ \text { Delay on } \\ \text { Freeways }\end{array}$		$\begin{array}{\|c\|} \hline \text { Percentage of } \\ \text { Uncongested } \\ \text { Freeways } \\ \hline \end{array}$				$\begin{gathered} \text { Reduction in Non- } \\ \text { Recurrent } \\ \text { Congestion Per Day } \\ \text { on Uncongested } \\ \text { Freeways (Vehicle } \\ \text { Hrs/Dav) } \end{gathered}$	Total Reduction Non Recurrent Congestion Per Day (Vehicle Hours/Weekday)	Annual Saving of Non- Recurrent Congestion (\$/Year)					Total Reduction Recurrent Congestion Per Day (Vehicle Hours/Weekday)	$\begin{array}{\|c\|} \hline \text { Annual Saving of } \\ \text { Recurrent } \\ \text { Congestion (\$/Year) } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Total Annual Savings } \\ \text { based on Likelihood } \\ \text { Multiplier } \end{array}$	Year From 2015		Discounted to 2015 (3%)	$\begin{array}{r}\text { Discounted to } 2015 \\ (7 \%) \\ \hline\end{array}$
${ }_{2020}^{2021}$	con	${ }_{\text {\% }}^{\text {70\% }}$	-	${ }_{4}^{4.88 \%}$	${ }_{\text {233\% }}^{23 .}$	$\xrightarrow{16,855} 1$	3,478		Sti3,718,933	come		$\frac{10.516}{10.884}$	${ }_{772}^{77}$	$\xrightarrow{11,272}$						
2022	535,769	7116	29\%6	4.8\%\%	23\%6	${ }_{18,259}$	3,623	${ }_{21,882}$	S140,87, 8 , 2	3.0\%	0.5\%\%	${ }_{11,412}$	${ }_{788}$	12,19	578,54, 9727	S25,803,888			20,980,922	$\xrightarrow{10,4,56,9664}$
2023	553,275	${ }^{71 \%}$	29\%6	4.8\%\%	23\%6	${ }_{18,856}$	3.990	${ }_{22,566}$	S145,154,212	3.08	0.5\%	11.785	802	${ }_{12,587}$	¢81,037.014	¢26,600, 88			20,983,35	15,48,493
${ }^{2024}$	${ }_{5}^{50,781}$	${ }^{719}$	${ }^{299 \%}$	${ }_{48,}^{48 \%}$	23\%\%	${ }^{19,452}$		$\xrightarrow{23,207}$		- ${ }_{\text {3,0\% }}^{306}$								${ }_{5}$		
${ }^{2025}$	568,26920	${ }_{\text {l }}^{726}$	${ }_{\text {cke }}^{\text {288\% }}$	${ }_{4.88 \%}^{4.80 \%}$	${ }_{\text {23\%\% }}^{23,}$	${ }_{\text {20,9,936 }}$		${ }_{\text {24, }}^{2410}$			0.5\%\%	${ }_{\text {12,065 }}^{12,05}$	${ }_{842}$	$1,3,567$ 1.37				s		${ }_{\text {14, }}^{14,3,3,821}$
${ }^{2027}$	623,288	${ }^{73 \%}$	${ }^{27 \%}$	${ }_{4}^{4.8 \%}$	${ }^{233 \%}$	${ }_{\text {21, } 2,40}^{2,45}$		${ }^{25,7688}$	Sti6.90, 68.	3.0\%\%	0.5\%	${ }^{13,650}$	${ }^{854}$	${ }^{14,504}$	${ }_{593,379828}$	S30,991, 388			${ }_{\text {21,36,096 }}$	${ }^{13,5835451}$
	660,804		276\%			${ }_{\text {22,544 }}^{23,54}$		${ }_{\substack{26,433}}^{27,50}$	silo,180,599					(14899	S959,99	¢				${ }_{12,}^{12,985}$
${ }^{2029}$	${ }_{\text {c }}^{668.0095}$	${ }_{\text {7 }}^{75 \%}$	${ }_{\text {chem }}^{260 \%}$	${ }_{4}^{488 \%}$	$\frac{238 \%}{238 \%}$	${ }_{\substack{23,69 \\ 24,697}}$	${ }_{\text {4,0,03 }}^{4}$	${ }_{\text {Lis }}^{28,720}$			0.55\%	${ }_{1}^{1.4,435}$	${ }_{875}^{87}$			¢				
2031	208,621	${ }^{75 \%}$	25\%	4.8\%	23\%\%	${ }^{25,510}$	4,034	29.544	S190,20, 8, 82	3.0\%	0.5\%\%	15.944	877	16.821	${ }_{\text {S108, } 295,581}$	S35,104209		s	21,85,783	${ }^{11,891,0010}$
${ }_{2033}^{2033}$		${ }^{76 \%}$	${ }_{2}^{2446}$	${ }_{\text {4, }}^{489 \%}$	${ }_{23}^{23 \%_{6}}$	$\frac{26,75}{27,762}$	${ }^{4,036} 4$	${ }_{\substack{30,712 \\ 31.193}}$		- ${ }_{\text {3, }}^{\substack{\text { 3,0\% }}}$		$\frac{16,672}{17414}$	${ }_{876}^{87}$	(17,599						${ }^{11,56}$
${ }_{2034}$	${ }_{\text {71, }}^{7638}$	${ }^{78 \%}$	${ }_{23 \%}^{23 \%}$	4.8\%	23\%	29,070	4,018	${ }_{33,088}$	${ }_{5213,024,886}$	${ }_{3.0 \%}$	0.5\%	18.169	873	${ }_{10,042}$					${ }_{\text {L2 } 25086,69}$	${ }_{\text {11, }}^{10,412,517}$
${ }^{2035}$	${ }_{\text {821,699 }}^{8.85}$	${ }^{7996}$	${ }^{219}$	${ }_{4}^{4.89 \%}$	${ }_{2}^{23 \% 6}$	${ }^{31,157} 3$		${ }^{\text {35,126 }}$		${ }^{3.0 \% \%}$	0.5\%\%	${ }_{\text {19,473 }}$	${ }_{\text {8 }}^{\text {863 }}$	${ }_{\substack{\text { 20,366 }}}^{2.117}$		¢		s	${ }_{23,299534}$	${ }^{10.851,3,35}$
${ }_{\text {2033 }}^{2037}$	${ }_{8}^{8864,851}$	${ }_{\text {80, }}^{819 \%}$	${ }_{\text {20\% }}^{200 \%}$	${ }_{\text {4, }}^{4.8 \%}$				${ }_{\substack{36,52 \\ 37.591}}$		- ${ }_{\text {3,0\% }}^{3.06}$	${ }_{\text {0.5. }}^{0.5 \%}$	${ }_{\text {coin }}^{\substack{20,065}}$	${ }_{8}^{885}$							
2038	889,467	81\%6	1996	4.8\%/	23\%\%	${ }_{34,582}$	3,836	${ }_{38,418}$	S247,342,700	3.0\%	0.5\%	${ }_{21,1,14}$	${ }_{834}$	${ }^{22448}$	S144,523,393	¢46,083,411		s	23,350,084	9,721,152
239	${ }_{912,072}$	${ }^{82 \%}$	${ }_{18}^{18 \%}$	${ }_{4.8 \%}$	23\%\%	${ }_{\text {35,899 }}$	3,776	${ }^{39,675}$	${ }_{5255,434,556}$	3.0\%6	0.5%	${ }^{22,437}$	821	${ }^{23,258}$	S149,737.498	\$47,688,234		s	$23,439,74$	9,39
204	${ }_{14,725.550}$	${ }^{833 \%}$	17%	4.5\%	23\%	${ }_{538,74}$	$5 \quad 80.85{ }^{\text {8 }}$	${ }_{619,996}^{6096}$		${ }^{3} .06$	0.59	${ }_{336,715}^{23,275}$	${ }^{81,598}$	${ }_{354,313}^{24,06}$					${ }_{462,147.683}^{20.659}$	${ }_{265,7275,404}^{9,060}$
	Intercity		$\begin{aligned} & \text { Vehicle Occupancy } \\ & \text { ys Per Year (2015) } \\ & \text { ime (All Purposes) } \end{aligned}$	$\begin{gathered} 1.351 \\ 5 \end{gathered}$																

Benefit Cost Analysis - Jobs

Long Term Jobs

	Total Estimated Economic Impact (Total \$)	Job-Years Created (jobs- year)		Jobs Created (jobs) per year		Median Income $(\$, 2014)$	Annual Benefit (\$,year)
Job Creation and Economic Impact	\$1,420,246,721	18469	20	923.5	\$65,812	\$66,880	\$61,763,680

Short Term Jobs by Qurter

		Construction Spending	$\begin{gathered} \text { JOB-YEARS BY } \\ \text { QUARTER } \end{gathered}$	$\begin{aligned} & \hline \text { JOBS BY } \\ & \text { QUARTER } \end{aligned}$		Payroll By Quarter		Itiplier ect		Benefit	
2018	Q1	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080	\$	2,608,320	
2018	Q2	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080			
2018	Q3	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080			
2018	Q4	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080			
2019	Q1	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080	\$	2,608,320	
2019	Q2	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080			
2019	Q3	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080			
2019	Q4	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080			
2020	Q1	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080	\$	1,304,160	
2020	Q2	\$ 1,500,000	20	78	\$	1,304,160	\$	652,080			
									\$		
										-	
									\$		
										-	
									\$		
									\$		
			195	780					\$6,520,800		

BLS CPI

Table Area Year	National Index
2013	232.957
2014	236.736

		Quarters	Per Quarter
Total Budget	$\$ 15,000,000$	10	$\$ 1,500,000.00$

[^0]: ${ }^{1}$ Texas Transportation Institute, "Dallas Area Wide Intelligent Transportation Plan", July 1996.
 ${ }^{2}$ MoSERS Methodology/ Calculation Description http://www.nctcog.org/trans/air/conformity/2009/Ap919.pdf

