Operating Signals for Transit

Signal Design Toolbox

Key Terms

Stop Location – Near Side

Ę

Near-Side, Pull-Out Stop

Ę

Stop Location – Far Side

Far-Side, In-Lane Stop

Ę

Stop Location – Mid-Block

Transit Lane

Transitway

Transit Approach Lane / Queue Bypass

Queue Jump

Transit Signals

Louvered signal

Transit Signal Head

Active Transit Signal Priority

Toolbox

ΝΑСΤΟ

Using Signals to Give Transit Priority

- Use TSP to support project goals
- Combine TSP with geometric treatments
- Avoid penalizing pedestrians
- Consider predictability for all users

When do I give active priority?

(Rules of thumb!)

- Buses per hour: (typically fewer than 15 per hour)
- v/c ratio? (0.5 0.7, may work up to 0.9)
- Behind the schedule, or always? (policy decision)

Typical Active TSP

Typical Active TSP

Typical Active TSP

Bus to Signal

Ŵ

Bus to Center

Optical detection

• Loop detection (in-ground)

• Emitter / Receiver

Active TSP Tools

Applications

- Typically far-side or no stop location
- Mixed travel, transit lane, or transitway
- May use advance detection

Benefits & Challenges

- Relatively simple to implement
- Doesn't affect pedestrian crossing time (on thru street)

Green Reallocation

Applications

- Near-side, far-side, or no stop location;
- Mixed travel, transit lane, or transitway
- Requires advance detection

Benefits & Challenges

- Doesn't change red / green allocation
- Shortens cross-street pedestrian crossing time

Red Truncation

TSP called

– Typical Phase Length —

Applications

19s

- Far-side stop / no stop
- Congested locations / long queues

(5s)

• High-turning movement counts

Benefits & Challenges

• Metering queue length in front of transit

36s

0

- Difficult to model and implement
- Pedestrian crossing time on cross-street shortened

Before

Applications

- Near- or Far-side Pull-Out stops
- Bus Turns or Merges
- Generally mixed travel conditions

Benefits & Challenges

- Where remerge from stop is a common delay culprit
- No impact to people walking; may impact unprotected bike facilities

Reverse Queue Jump

Upstream Green Truncation

Upstream Green Truncation

Upstream Green Truncation

Applications

- Near-side pull-out stops
- Transit Approach Lanes / Queue Jumps, Transit Lanes

Benefits & Challenges

- Flexible actuation / detection
- Can co-implement with LPI / LBI.

Westlake Ave, Seattle

R

Westlake Ave, Seattle

0

3

1 A 1

25

00.

-

20

ONLY

BUS

Ave N ngton /iew - Sep 2016

Phase Reservice

Applications

- Any stop location type
- Bus turns & Queue Jumps
- Transit Lanes, Transitways, or Mixed Travel

Benefits & Challenges

- Addresses known problems, and requires minimal change to existing phasing
- May impact pedestrian crossing time with conflicting movements

Transit-Friendly Signal Progression

Passive / Fixed Timing Strategies

ΝΑСΤΟ

Timing Corridors for Transit

- Reduce Signal Cycle Length
- Increase Transit Green Time
- Time Progressions to Transit Green Wave
 / Safe Speeds
- Let the bus go straight!

Corridor-Based Timing

96 24 96 24	96	24	96	24
-------------	----	----	----	----

Balanced Signal Timing

Signal Blocks

Two-Way Progression

Two-Way Progression

Two-Way Progression

Two-Way Progression

Shorter Cycle Lengths can help control speeding, reduce delay penalty

- Fill "gaps" in the platoon with slower progression speed
- Use small clusters / signal blocks to disincentivize speeding (decrease "unconstrained arrivals")
- Shorter Cycle Length reduces network delay

Longer Cycle Lengths can offset delay during peak hours

AM Peak			
Street	Before		
S Edmunds St	60		
S Ferdinand St	60		
S Hudson St	60		
39 th Ave S	60		
Brandon St	60		
S Orcas St	60		
S Kenny St	60		

Longer Cycle Lengths can offset delay during peak hours

AM Peak			
Street	Before	After	
S Edmunds St	60	120	
S Ferdinand St	60	120	
S Hudson St	60	120	
39 th Ave S	60	60	
Brandon St	60	60	
S Orcas St	60	120	
S Kenny St	60	60	

Longer Cycle Lengths can offset delay during peak hours

Off-Peak			
Street	Before	After	
S Edmunds St	60	60	
S Ferdinand St	60	60	
S Hudson St	60	60	
39 th Ave S	60	60	
Brandon St	60	60	
S Orcas St	60	60	
S Kenny St	60	60	

Rainier Ave S, Seattle

Motor Vehicle Travel Times

Transit Travel Times

Direction	Before	After	Change				
NB	07:52	08:47	+ :55	NB	19:32	16:31	- 3:01
SB	09:39	10:59	+ 1:20	SB	15:34	15:36	+ :02

Motor Vehicle Speeding $\downarrow 40\%$ High-End Speeding (over 40mph) $\downarrow 75\%$

Identify Sources of Delay

"What's the problem I want to solve?"

Identifying Sources of Delay

- Dwell-time Delay at Stops
- Intersections: Turn Delay
- Intersections: Queue Length Delay
- Remerge Delay

Identifying Sources of Delay

- Stop / Dwell Delay
 - "Doors open to Doors Close"
 - 25^{th} / 50^{th} / 75^{th} percentile dwell
 - May not capture remerge delay
- Intersection / Signal Delay
 - Setting AVL waypoints / frequency
- Runtime
 - May include Queue Delay

Delay by Segment

Intersection Delay: Time-Lapse

Intersection Delay: Time-Lapse

Quantifying delay at a single stop

Broadway / 14th St SB	Weekday 7:30am - 5pm
Total number of buses (southbound)	315
Number of buses delayed	110 (35%)
Maximum delay per bus	77s
Cumulative delay of southbound buses	26m 30s
Avg delay per delayed bus	14.5s
Avg delay across all buses	5.0s
Total daily southbound ridership	3,470
Total customer delay per day	4.9 hours

Stop / Dwell Delay

- ✓ From Pull-Out to In-LaneStops + Passive TSP
- ✓Increase Signal Offsets
- ✓Active TSP (far-side)
- ✓Queue Jump (near- or far-side)

Stop / Dwell Delay

Stop / Dwell Delay

Turning Vehicle Delay

- Transit Approach Lane +
 Active / Passive TSP
- ✓Right Turn Pocket + Split Phase
- ✓Dropped Transit Lane

✓Turn Prohibitions

Queue Length Delay

- ✓Transit Lane + Active / Passive TSP
- ✓ Shared Right Turn / Transit Lane
- ✓ Traffic Metering (Forced Turns, Green Truncation)

Turn Prohibitions

- Reroute Before
- Reroute After
- Right-Left-Left
- Three Rights