#### Plastics in the environment: The state of the science



Margaret B. Murphy, PhD AAAS Science & Technology Policy Fellow Hosted by the Office of Water, Marine Pollution Control Branch EPA What's the problem?

What are the impacts?
Macro- and micro Human and ecological health

What are the uncertainties?

What do we need to know?

What's the problem?



http://www.relatably.com/q/img/just-one-word-plastics-quote/plastics.png

#### A brief timeline...

| Year | Material                         |
|------|----------------------------------|
| 1868 | Cellulose Nitrate                |
| 1907 | Phenol-Formaldehyde (Bakelite)   |
| 1927 | Cellulose Acetate (Rayon)        |
| 1929 | Urea Formaldehyde                |
| 1931 | Polystyrene                      |
| 1933 | Polyvinyl Chloride               |
| 1935 | Ethyl Cellulose                  |
| 1936 | Acrylic, Polyvinyl Acetate       |
| 1938 | Nylon                            |
| 1941 | Polyethylene Terephthalate (PET) |
| 1942 | Polyester                        |
| 1943 | Silicone                         |
| 1947 | Ероху                            |
| 1954 | Polypropylene                    |

http://www.modip.ac.u k/resources/curators guide/plastics\_timeline

#### A brief timeline...

| Year | Material                       |
|------|--------------------------------|
| 1868 | Cellulose Nitrate              |
| 1907 | Phenol-Formaldehyde (Bakelite) |
| 1927 | Cellulose Acetate (Rayon)      |
| 1929 | Urea Formaldehyde              |

#### Plastics are widely available, useful, durable and cheap

|                         | 1938 | Nylon                            |
|-------------------------|------|----------------------------------|
|                         | 1941 | Polyethylene Terephthalate (PET) |
|                         | 1942 | Polyester                        |
|                         | 1943 | Silicone                         |
| http://www.modip.ac.u   | 1947 | Ероху                            |
| guide/plastics_timeline | 1954 | Polypropylene                    |

#### Plastics in the environment



#### Plastics in the environment





### Majority of plastics in the environment are from land-based sources $\rightarrow$ Local and global problem



#### Aquatic Trash—Plastic

Jambeck et al. 2015



#### Microplastics

Plastic fragments, beads and fibers less than 5 mm in size

<u>Primary microplastics</u>: Commercially produced microplastics E.g. microbeads, plastic nurdles

Secondary microplastics: Formed by the breakdown of larger plastic items







#### Microplastics

Eriksen et al. 2015



#### Research in the US—Great Lakes





#### Great Lakes microplastics



#### Gulf of Mexico estuary—Alabama

Wessel et al., 2016



What are the impacts?





Wilcox et al. 2016

| ltem                          | Rank of Expected Impact |      |        |        |  |  |
|-------------------------------|-------------------------|------|--------|--------|--|--|
|                               | Mean                    | Bird | Turtle | Mammal |  |  |
| Buoys/traps/pots              | 1                       | 1    | 1      | 1      |  |  |
| Monofilament                  | 2.3                     | 3    | 2      | 2      |  |  |
| Fishing nets                  | 2.7                     | 2    | 3      | 3      |  |  |
| Plastic bags                  | 5.7                     | 4    | 9      | 4      |  |  |
| Plastic utensils              | 5.7                     | 7    | 4      | 6      |  |  |
| Balloons                      | 6.7                     | 8    | 5      | 7      |  |  |
| Cigarette butts               | 7.3                     | 5    | 12     | 5      |  |  |
| Caps                          | 7.7                     | 9    | 6      | 8      |  |  |
| Food packaging                | 8.7                     | 10   | 7      | 9      |  |  |
| Other EPS packaging           | 9.7                     | 11   | 8      | 10     |  |  |
| Hard plastic containers       | 11.3                    | 6    | 13     | 15     |  |  |
| Plastic food lids             | 11.3                    | 13   | 10     | 11     |  |  |
| Straws/Stirrers               | 12.3                    | 14   | 11     | 12     |  |  |
| Takeout containers            | 15.3                    | 15   | 18     | 13     |  |  |
| Cans                          | 15.7                    | 17   | 14     | 16     |  |  |
| Beverage bottles              | 16                      | 12   | 17     | 19     |  |  |
| Unidentified plastic fragment | 16.3                    | 16   | 19     | 14     |  |  |
| Cups & plates                 | 16.7                    | 18   | 15     | 17     |  |  |
| Glass bottles                 | 17.7                    | 19   | 16     | 18     |  |  |
| Paper bags                    | 20                      | 20   | 20     | 20     |  |  |

Risk of impact

#### Plastics impacts: Macro-scale

Entanglement & ingestion

→ Entanglement: energetic costs, reduced feeding, impaired behavior, injury, death

→ Ingestion: energetic costs, digestive injury/blockage, nutritional costs, death

Transport of invasive species (biofilms, pathogens?)

Habitat damage, vessel damage/navigation hazards, tourism costs

#### Plastics impacts: Micro-scale

Ingestion

→ Energetic costs, digestive injury/blockage, nutritional costs, death

→ Exposure to chemicals in plastics (e.g. flame retardants [PBDEs, etc.]) and sorbed onto plastics (e.g. PCBs, DDTs, etc.)

Transport of invasive species → Biofilms, pathogens?

#### Microplastics effects studies: Overview

Microplastics have been studied in various species groups, with more studies being published every day

Focus on invertebrates and fishes

Birds and mammals are more studied for macroplastic impacts than microplastic impacts

## Rochman et al. 2016: "The ecological impacts of marine debris: unravelling the demonstrated evidence from what is perceived"



## Rochman et al. 2016: "The ecological impacts of marine debris: unravelling the demonstrated evidence from what is perceived"



#### What are the uncertainties?

#### Methodology

No standardized sampling methods

No standardized methods for extraction, quantification and characterization of microplastics from any sample type

No standardized reporting methods

Wagner et al. 2014



#### Impacts across scales

Macroplastics, microplastics, nanoplastics...

Individuals, populations, species, communities, ecosystems



#### Human health impacts

Microplastics reported at low levels in seafood (especially shellfish), sea salt

Chemical exposure?

Impacts on human health are not known

Impacts on subsistence communities in the US and globally?

Mosquito-borne diseases

#### What do we need to know?

- 1. Establish metrics and processes for data collection and analysis for microplastics
- 2. Understand the sources, frequency, fate and transport of plastics
- 3. Assess potential human health risks from microplastics
- 4. Evaluate ecosystem impacts of plastics at individual and population levels



# Thank you!

Murphy.Margaret@epa.gov