miovision

Digital Intersection Safety: An Evolution in Progress

Continuous Safety Monitoring -Unlocking Inflection Points on the Road Towards Zero Deaths

Craig Milligan, Ph.D., P.Eng. Road Safety Engineer and Senior Product Manager craig.milligan@miovision.com

Context

Traffic crashes are on the rise despite increased Vision Zero effort

Inflection points are needed

The digitalization of intersections offers a platform for evolutionary innovations that can yield the required inflection points on the vision zero journey alongside a host of other mobility and traffic benefits.

Analog Problems

Although the ITS industry has been chipping away at these 'analog problems', the inertial impact of these problems on road safety management paradigms continues to be felt strongly.

Isolated

Intersections and their components do not communicate with users or central management.

Rigid

Intersections operate according to preprogrammed schedules.

Blind

Intersections have little awareness or no awareness of the users within the intersection.

Dumb

Intersections have little or no processing capabilities and do not have the ability to perform inference, decision-making, learning, and optimization.

Discrete

Only infrequent, manually implemented changes are possible based on limited manual data and analysis.

Digital Promise

The digitalization of intersections sets the foundation for inflection points across traffic operations and especially in road safety.

Blind \rightarrow Aware

Sensors and computer vision allow live intersection object list creation, documenting the current and historical positions of all road users along with stochastic nforward path predictions. Isolated \rightarrow Connected

Intersections, their components, and road users are IP addressable with low-latency, secure connectiosn.

Dumb \rightarrow Intelligent

"Supercomputers" (processors) in cabinets, intersection components, vehicles and VRUs enable inference, decisionmaking, learning, and optimization. Rigid \rightarrow Adaptive

Intersections operation can change autonomously and instantly.

Discrete \rightarrow Continuous

Information flow, analysis, monitoring, interventions, and capability enhancements can happen on an ongoing basis.

Digital Measurement

The snapshot diagnostic study that transformed 100 cities

Miovision's Safety Studies Process -Full Intersection

Action Plan

A road safety plan is developed by the agency or consultant, or, optionally, by Miovision experts.

Gather Video

Video is captured on location for 3 days or longer by agency or contractor with Scout or 360.

Implement Changes

The recommended changes are approved and implemented to the network by the agency.

Risk Identification

Miovision produces a risk diagnostic report by measuring near-misses with Al.

Monitoring

Optional: Another report can be run afterwards to measure the risk reduction achieved

How It Works

There are 6 components to Miovision Safety Studies for every pair of potentially interacting movements

Detection

Road users are detected and classified in every frame using AI

Tracking

The tracking systems links together the detected users in adjacent frames to create green tracks

Mapping

Spatial mapping is completed to translate the locations of the road user to their location in the intersection

How It Works (cont)

There are 6 components to Miovision Safety Studies for every pair of potentially interacting movements

Trajectory

Trajectories are developed and intersecting trajectories are filtered by near - miss criteria

Near Miss

Near miss interactions and risk models are used to develop scatterplots for each encounter coloured by severity

Report

We then output the results for every possible conflict configuration at an intersection

Impacts

Making a real impact on your network safety

94% Validated accuracy of Miovision Safety Studies risk indicators for predicting injury collisions*

- 80% Typical risk reduction achieved when responding to diagnostics
- **36X** Faster measurement of safety improvement compared to crash data

100+ Cities deployed

Austin Results

Austin has performed several before after studies using short - term digital measurement with mobile cameras to diagnose safety issues, select countermeasures, and track risk reduction.

Before (L) vs After (R) Conflicts at Lamar and Morrow, Austin TX 63% risk reduction - all modes combined 80% risk reduction - vulnerable road users

Canada 50 Results

50 Before - after studies in Canada with interventions guided by precise, short term near - miss measurement attained an average risk reduction of 85%.

119 Interventions at 50 intersections focused on pavement markings, signage, left turn calming, LPIs, radius reduction, and lane width reallocation.

Inflection Point 1

Digital measurement with portable video studies has enabled precise and predictive snapshot diagnostics, informed countermeasure selection, and impressive risk reduction results. However, temporary camera deployment is cumbersome and this approach is blind to risk trends outside of the short study period.

Digital Monitoring

How a new continuous safety monitoring tool unlocks inflection points on the road to vision zero

What does Flower Mound Have Today

Like hundreds of cities, Flower Mound has been digitizing its intersections by placing 360 cameras above intersections, and connected edge compute devices in the cabinet running a range of applications.

App: Red Light Running

What does this data show about safety?

- Split failures could result in frustrated drivers and risk actions
- Turning data can reveal potential conflict points, risk exposure, and cross-product
- Red-light running data can reveal potential for right angle crashes

What does this data not show?

 Continuous monitoring of near-misses, the best leading indicators of safety

Why is this gap important?

- Vision Zero requires a long-term downward trend in risk
- Cities have little feedback on the effectiveness of VZ actions
- This hinders the ability to ability to make course corrections
- Overall, the lagging indicators suggest that progress is not good

The inflection premise of continuous monitoring

- Continuous monitoring enables informed and optimized continuous improvement over days, months, and years
 - Leading predictive indicators of safety for all movements updated every 15 minutes 24-7-365
 - Track improvement or deterioration over any time range
 - Guide intervention selection
 - Monitor impact of intervention
 - Adjust interventions to emerging conditions

Configuration: Highlight Precise Safety Issues

• Near-miss summary: frequency (bar height), Severity (color), Configuration Breakdown (e.g. NBL vs SBT), Modal Breakdown (Veh, Bike, Ped)

Scatterplot: Match Intervention to Root Cause

 Severity Scatterplot : Visualize Speeds and Temporal Separation of a Group of Conflicts in a Data Cloud to inform high level intervention family: speed management or user separation

Link operations and safety by time of day

 Temporal Distribution : Visualize temporal distribution of conflict frequency and severity to optimized strategies by time of day and to understand root cause of safety issues.

Identify trends, inflections, and spikes

 Trends : Visualize trends in daily conflict rates and frequency by severity level over short or long periods to identify progress, deterioration, emerging or recurring problems, and optimize solutions to operating conditions.

Extract hard data to build business cases

 Diagnostic Table : Summary numerical data on conflict frequency, severity, annual extrapolations, rate, and benchmark comparisons. Used to quantify inferences made from charts and support reporting, business case development, etc.

Didghootioo				
Risk Level	Critical	High	Medium	Low
Frequency	3,545	2,636	20,013	33,356
Annual Estimate	42,540	31,632	240,156	400,272
Conflict Rate (%)	50.64	51.69	20013.00	641.46
Relative Risk	4.22	25.84	2,859	11.45

Diagnostice

miovision

Drill down on what matters

- Interactive Filtering : Adjust all other tables and graphs according to
 - Conflict Configuration: (e.g. all right hooks)
 - User type (e.g. only ped, only bike, only veh, ped & bike)
 - Severity (e.g. only critical risk, critical + high risk, etc)
 - Time period (today, yesterday, last week, last 30 or 90 days, year to date, or custom date range)

Inflection Point 2 Digital monitoring with permanent video, edge compute, and over the air app deployment allows a shift in the road safety management paradigm to a continuous measurement continuous improvement approach. The latest trends and the impact of iterative interventions are in the dashboard to inform planning and operations on a daily basis during the long drive towards zero.

Digital Mitigation

Our concept for White Alert, a system to detect and mitigate collision risk in real time that won the USDOT Intersection Safety Challenge

Concept Overview

White Alert: A Digital Multi - Channel Vision for Scalable Intersection Safety

The White Alert system will provide real-time warnings and traffic control interventions to prevent imminent crashes at intersections by using innovations in sensor fusion, path prediction, risk evaluation, and a multi-channel mitigation layer comprising adaptive control, V2X, mobile phones, digital signs, digital signals, and digital crosswalks.

California Crash

Warning: Video of Serious Pedestrian Crash

Preventing the California Crash

- Demand Conflict: Traffic Control
- Likely Conflict: Level 1 White Alert (steady white + audio + haptic)
- Imminent Crash: Level 2 White Alert (rapid flash + audio + haptic)

miovision

White Alert Foundational Principles

The White Alert System is designed around four foundational principles to maximize its reach and impact.

Safe Systems

Kinetic energy and biomechanics approach to risk measurement

Resilience

Multi-channel sensing and sensor fusion.

Inclusiveness

Multi-channel warning and bias-free perception models.

Scalability

Open digital standards, interoperable designs, and cost effectiveness.

White Alert Context

Progression of safety innovation:

Snapshot Studies Continuous Monitoring <u>Continuous Mitigation</u>

USDOT Intersection Safety
Challenge
Digital Intersection
Collaboration Ecosystem

White Alert Layers

Sensing Decision Execution Data Brokerage and Security Learning, Reporting, and Tracking

Sensing Layer

Four Channels

From above: Video Lidar / Radar From users: V2X BSMs Emerging phone location technologies **Resilient Sensor** Fusion

Decision Layer

Three Engines

Path Prediction Stochastic Massive Training Data **Risk Assessment** Kinetic Energy Mitigation Decision 3 levels, 4 channels

Execution Layer

Four Channels

Traffic Control Connected VRUs Via phones Hyper-precise geofencing Connected vehicles V2X Non-connected users Digital signals, VMS & crosswalks

Supporting Layers

Data Brokerage and Security

Access Standards Security Privacy Interoperability Learning, Reporting, and Tracking AV ODD Scenario Data System performance and effectiveness Human factors models Diagnosis for traffic engineers for non-automated countermeasure planning

White Alert Timeline

Concept

Develop Concept Submit paper to USDOT Gather Partners Identify Test Track TRL $1 \rightarrow$ TRL 3

Prototype

Build Layer Components Test Track Demos Concept Refinement USDOT Phase 1B Demo (Dec) TRL $4 \rightarrow$ TRL 6

Validate

Refine Layer Technologies Test in Operational Environment TRL $7 \rightarrow$ TRL 8

Share & Scale

Publish Open Standards Deploy to All Jurisdictions Leverage Learning Layer TRL 9

Inflection Point 3 Digital mitigation through the White Alert concept will allow intersections to predict imminent collisions and adapt the traffic control or send a warning to help prevent them.

Three Digital Inflection Points

Our evolving journey in digital intersection safety

MIOVISION 42

Using Advanced Techniques To Datamine Pedestrian Crash Data

Minh Le, TTI

Regional Safety Advisory Committee January 2024

Pedestrian Fatalities in United States, 2008-2020

Texas Fatal Crashes vs. Fatal Pedestrian Crashes

Problem

- Crash data lack details for VRU crashes- critical for developing appropriate countermeasures
- Often, this information can be inferred from the crash
 - -Narratives
 - Diagrams

Goal: Gain deeper insights into VRU crashes & develop robust crash database

Objectives:

- develop a crash database for alternative travel modes, starting with pedestrians
- database will include 'unstructured' data information (e.g. crash typing & intentionality)
- integrate with weather & sun glare data

FHWA's Pedestrian & Bicycle Crash Analysis Tool v.3

(81 crash types)

Requires manual review of crash narratives & diagrams.

Non- Motorist Maneuver	CR: <u>C</u> rossing Path from Motorist's	CL: <u>C</u> rossing Path from Motorist's	CU: <u>C</u> rossing Path, Unknown	PS: <u>P</u> arallel Path Same	PO: Parallel Path Opposite	PU: Parallel Path	MU: <u>M</u> oving in Upknown	ST: <u>St</u> ationary	OU: Other/ Unusual	UN: <u>Un</u> known	FC: Non- motorist Fall or
Motorist Maneuver	Right	<u>L</u> eft	Direction	Direction	Direction	Direction	Path/ Direction	_			<u>C</u> rash
S: Going <u>S</u> traight	S-CR	S-CL	S-CU	S-PS	S-PO	S-PU	S-MU	S-ST	s-ou	S-UN	
R: Turning <u>R</u> ight	R-CR	R-CL	R-CU	R-PS	R-PO	R-PU	R-MU	R-ST	R-OU	R-UN	
L: Turning Left	L-CR	L-CL	L-CU	L-PS	L-PO	L-PU	L-MU	L-ST	L-OU	L-UN	n/a²
P: Parked	P-CR	P-CL	P-CU	P-PS	P-PO	P-PU	P-MU	n/a	P-OU	P-UN	
E: <u>E</u> ntering Traffic Lane	E-CR	E-CL	E-CU	E-PS	E-PO	E-PU	E-MU	E-ST	E-OU	E-UN	
B: Backing	B-CR	B-CL	B-CU	B-PS	B-PO	B-PU	B-MU	B-ST	B-OU	B-UN	
0: <u>O</u> ther Maneuver	O-CR	O-CL	O-CU	O-PS	O-PO	O-PU	0-MU	O-ST	0-0U	O-UN	
U: <u>U</u> nknown Maneuver	U-CR	U-CL	u-cu	U-PS	U-PO	U-PU	U-MU	U-ST	u-ou	U-UN	
N: <u>N</u> on- Collision				Not Ap	plicable – No	Crash type re	turned				N-FC

Pedestrian Crash Classification based on Mining Crash Narratives

Applied crash typing framework to 2 classifications:

- Binary

Center for

- Intended or Unintended Peds
- Multiclass

Transportation Safety

• Pedestrian Maneuvers e.g. crossing, parallel, moving, stationary, etc.

Natural Language Processing (NLP)

- "NLP refers to the branch of computer science—and more specifically, the branch of artificial intelligence or AI—concerned with giving computers the ability to understand text and spoken words in much the same way human beings can." – IBM
- Used open-source language models for classifying pedestrian maneuver types: BERT and RoBERTa

Pedestrian Intentionality

Intended

Unintended

Binary Classification (1000 training)

- Accuracy was 70.9%, with average F1-measure 62.7%
- Given results, researchers applied the RoBERTa Large XLM model to the full dataset

Binary Results (4442)

Overall

- 70% intended
- 30% unintended
- 324 on Controlled Access (Fwy.)
 - 49% intended
 - 51% unintended
- 4188 on Non-Controlled Access
 - 72% intended
 - 28% unintended

Overcounting pedestrian crashes?

Multiclass Classification Framework (1000 training)

1. Grouped ped maneuvers due to data imbalance

- a. 8 classes (Accuracy=34%, F1=25%)
- b. 4 classes (Accuracy=65.2%, F1=50.9%)
- c. 2 classes (Accuracy=72.5%, F1=72.1%)

2. Multistep, Multiclass Classification Approach

- a. Model 2 classes: Crossing vs Non-Crossing
- b. Apply computer vision techniques & Support Vector Machine (SVM) models to crash diagrams
- c. Determine Acceptable Probability Threshold: p>90%

Multistep, Multiclass Classification Approach (1000 training)

TTI Center for Transportation Safety

Crossing Class \rightarrow 218 of 600 (36%) were classified as Crossing with p > 90% (3 outliers)

Non-Crossing Class → 109 of 400 (27%) were classified as Non-Crossing with p > 90% (3 outliers)

Pedestrian Crash Diagram Mining

Multistep, Multiclass Classification Approach Results (1000 training)

p-value	Radial SVM	Subclasses	No. of	С	Accuracy
	Model		Records		
< 0.9	Crossing	CL, CR, CU	382	128	0.498
	Non-crossing	OT, PO, PS, PU, ST	291	4096	0.370
≥ 0.9	Crossing	CL, CR, CU	218	512	0.589
	Non-crossing	OT, PO, PS, PU, ST	109	1024	0.569
All	Crossing	CL, CR, CU	600	4096	0.484
	Non-crossing	OT, PO, PS, PU, ST	400	4096	0.370

 Results demonstrate the framework's potential for a multistep, multiclass classification

Appending Weather Data

Developed API to add:

- Temperature (degF)
- Dew Point Temperature (degF)
- Visibility (miles)
- Wind Speed (mph)
- Rain/No Rain (boolean)
- Cloud Coverage (BKN/Broken, SCT/Scattered, OBS/Obscured, OVC/Overcast, CLR/Clear)
- Precipitation/Rain (inches)
- Sun Glare Flag

Pedestrian Crashes with Possible Sun Glare Issues

Number of Keywords or Flags	Crash Count					
in CRIS	All Crashes	Sun Glare Flag = 1	Sun Glare Flag = 0			
0	4377	<u>565</u>	3812			
1	<u>15</u>	10	5			
2	<u>29</u>	24	5			
3	<u>16</u>	12	4			
4	<u>4</u>	4	0			
5	<u>1</u>	1	0			
Total	4442	616	3826			

- o 65 (1.5%) CRIS; 616 (13.9%) SRCC; 630 (14.2%) combined
- Possible explanations for Discrepancy:
- Some may have been sun glare-related but the glare issue did not get identified or recorded in the crash investigation and documentation process
- Some may not have been affected by sun glare even though they occurred in conditions when sun glare could have been a contributing factor (time of day, sun position, vehicle direction of travel, etc.)

TTI Center for Transportation Safety

Crash Distribution by Hour

Pedestrian Crash Severity Prediction

- Intended Ped Crashes
 - Controlled Access (66)
 - Predict K Crashes
 - Non-Controlled Access (637)
 - Predict KA Crashes
- Consider: speed limit, geometry, ADTs; crash type, visibility, truck AADT, glare, demographics, etc.

	Contro	lled Access	Non-controlled Access		
Severity	Freq.	Percent	Freq.	Percent	
К	46	69.7	128	20.13	
А	14	21.21	189	29.72	
В	2	3.03	173	27.2	
С	1	1.52	130	20.44	
0	3	4.55	16	2.52	
Total	66	100	637	100	

Pedestrian Crash Severity Prediction

•
$$g(\mathbf{x}) = ln \left[\frac{P(Y_{it}=1|\mathbf{x})}{1 - P(Y_{it}=1|\mathbf{x})} \right] = \beta_0 + \beta_1 x_{1,it} + \dots + \beta_K x_{K,it}$$

•
$$P(Y_{it} = 1 | \mathbf{x}) = \frac{e^{g(x)}}{1 + e^{g(x)}} = \frac{e^{\beta_0 + \beta_1 x_{1,it} + \dots + \beta_K x_{K,it}}}{1 + e^{\beta_0 + \beta_1 x_{1,it} + \dots + \beta_K x_{K,it}}}$$

- $P(Y_{it})$ = probability of high-severity crash occurrence on segment *i* in time *t*, given a crash has occurred.
- $g(\mathbf{x}) = \text{logit} (\text{log-odds}).$
 - **x** = vector of predictor variables.
 - x_i = predictor variable representing a site condition.
 - β_i = regression coefficient.

K Ped Crashes on Controlled Access (66)

- Probability of fatality increases with
 - Higher truck AADT
 - S-CL; motorist going straight, pedestrian crossing from left (driver less likely to expect pedestrian crossing from left than from right)
 - Male pedestrian; different risk-taking behavior for men than women

Variable	Estimate	Standard Error	Wald Chi- Square	Probability > Wald Chi- Square
Intercept	-1.5026	0.8800	2.9155	0.0877
Truck AADT	0.000092	0.000052	3.1833	0.0744
Maneuver type S_CL	1.5613	0.8641	3.2646	0.0708
Pedestrian gender male	1.9756	0.6401	2.8233	0.0929

K or A Ped Crashes on Non-Controlled Access (637)

- Probability of fatality or incapacitating injury increases with
 - pedestrian's age
 - S-CL or S-CR; motorist going straight, pedestrian crossing from motorist's left or right (S-CL coefficient value is greater)
 - visibility drivers may choose higher speeds with greater visibility
 - increasing outside shoulder width
- Probability decreases if sun glare is present drivers may choose higher speeds in absence of sun glare

Variable	Estimate	Standard Error	Wald Chi- Square	Probability > Wald Chi- Square
Intercept	-2.7803	0.5680	23.9587	< 0.0001
Outside shoulder width	0.0570	0.0179	10.1716	0.0014
Maneuver type S_CL	1.1076	0.2327	22.6477	< 0.0001
Maneuver type S_CR	0.7369	0.2328	10.0243	0.0015
Visibility	0.1673	0.0541	9.5617	0.0020
Sun glare presence	-0.5595	0.2815	3.9502	0.0469
Pedestrian age	0.0152	0.00483	9.9352	0.0016

Texas A&M Transportation Institute Team

Minh Le (PI) Research Engineer

Subasish Das Associate Research Scientist (formerly)

Amir Oliaee PhD Student

Mahin Ramezani Research Data Scientist Michael Pratt Associate Research Engineer

Jason Wu Associate Research Scientist

Marcie Perez Associate Research Scientist

Jim Cline Senior Research Engineer Srinivas Geedipally Research Engineer

Sky Guo PhD Student (formerly)

Joan Hudson Senior Research Engineer

Fighting Against Human Trafficking

Jessica Powers Trinity Metro Chief Safety Officer

What is Human Trafficking?

Human trafficking is the exploitation of persons for sexual services or forced labor through the use of force, fraud, or coercion.

- 1. Though sex and labor trafficking are the most common types of trafficking in Texas, other forms include domestic servitude, forced marriage, forced criminality, child soldiers, and organ harvesting.
- This crime affects all demographic categories (e.g., gender, age, race, income level, education level) around the globe and can be facilitated through online and in–person means.

STOP HUMAN TRAFFICKING

Modern-day slavery is global

- There are approximately 27.6 million victims of trafficking worldwide.
- Human trafficking is the fastest-growing criminal enterprise, generating \$150 billion/yr.

TRINITY METRO

Texas is a breeding ground 83 #2 Texas ranking APPROXIMATELY for reports to 79,000 the National 40 ARE VICTIMS OF SEX TRAFFICKING IN TEXAS Hotline 27 30 (Human Trafficking Hotline, 2020) 820 35W THERE ARE CURRENTLY AN ESTIMATED VICTIMS OF 313,000 HUMAN TRAFFICKING 10 **IN TEXAS** **************** EXPLOIT ROM VICTIMS OF LABOR TRAFFICKING **************IN TEXAS MINOR AND YOUTH SEX TRAFFICKING COST THE STATE OF 6 TRINITY METRO BILLION

Where are you vulnerable?

Recruitment often happens where there are vulnerable populations that are at risk for exploitation. Places like:

- Hospitals/Clinics
- Homeless shelters
- Schools
- Bus stops/train stations

Fort Worth's most vulnerable are in our backyard. But trafficking can Happen anywhere.

How is transit involved?

- Traffickers transport victims through public transportation because of the easy access and lack of detection.
- Traffickers can easily purchase a ticket for a victim and accompany them to the next location.
- 63% of victims reported using multiple forms of public transportation during their exploitation.
- 35% of victims reported their traffickers used public buses as a form of transportation to facilitate exploitation.

Trinity Metro joined the fight

Trinity Metro embarked on a program to help end trafficking in our area.

- We worked with Unbound Fort Worth to create transitspecific training.
- Trinity Metro staff, TRE, TEXRail, and Bus Operators are trained on what to look for and how to handle potential situations.
- Trinity Metro is a part of the initiative DOT Transportation Leaders Against Human Trafficking (TLAHT) initiative, which is comprised of transportation and travel industry stakeholders working jointly to maximize their collective impact in combating human trafficking.
- Trinity Metro CSO participates in the Human Trafficking Prevention Task Forces.
- Trinity Metro Safety, Security, and Training Leadership participate annually in the Light the Way End Human Trafficking.

Trinity Metro joined the fight

Policy & Protocol Change	 Changes to policies for Reporting Reviewing other transit agencies policies and procedures. CSO is vice-chair on DOT Policy and Partnership Sub-Committee
Training	 Worked with Unbound to create a transit specific training program. Unbound trained Trinity Metro management team on how to engage with Survivors and to be Trauma informed. TM began training new and exiting employees 2022 TM Executive Safety Committee was trained 2022
Public Awareness	 TM works with Unbound and Safe Place to get the community involved in the fight against Human Trafficking. TM push social media to promote awareness to stop Human Trafficking
Partnerships	 TM is partnered with ACH Child and Family Services and our bus and trains are roving safe places and FWCS is a designated Safe Place hub. Partnered with Unbound Active in community outreach Active in DOT Advisory Committee on Human Trafficking
	TRINITY METRO®

Trinity Metro joined the fight

Trinity Metro worked diligently with ACH Child and Family Services to achieve Safe Place status on every bus, train and our hub, Fort Worth Central Station. We are now equipped to identify, protect and assist children and young adults in our community that are in danger of being trafficked

TRINITY METRO®

SAFE PLAC

Trinity Metro joined the fight

Many staff members wore blue on National Human Traffic Awareness day to help promote awareness on social media.

TRINITY METRO

ON THE ROAD TO END HUMAN TRAFFICKING

National Human Trafficking Hotline

888-373-7888

Text 233733

iWatchTexas Reporting System 844-643-2251 iwatchTexas.org Download app on iPhone Download app on Android

Be the One in the Fight against Human Trafficking.

NCTCOG PRESENTATION

Community Schools & Transportation Update

SHAWN CONRAD | RSAC | 1.26.2024

transdev

Community Schools and Transportation Program

Safe Routes to School: Encourage and enable children to safely walk and bicycle to school. <u>www.nctcog.org/SRTS</u>

School Siting:

Encourage location of schools that enable safe routes, avoid unsafe traffic conditions, and promote efficient development. www.nctcog.org/schoolsiting

Activities:

Planning, technical assistance, facilitation/coordination, education, encouragement, special topics studies, tools and resources

Decline in Walking and Biking to School

2017 Mode Share

SCHOOL CROSSING GUARDS INITIATIVE

Request and Problem

- Request at March 15 BPAC meeting for assistance with methods for determining placement of crossing guards
- Address lack of state/federal guidance on crossing guard placement
- Explore possibility of developing regionally-consistent implementation method
- Goal to improve student & guard safety

What We Have Done

- Surveyed stakeholders
- Reviewing state, federal, other guidance
- Comparing examples of city crossing guard guidance in the region
- Hosted a regional coordination meeting to update and receive feedback
- Distributed an updated survey

UPDATED SURVEY

- Closes March 1, 2024
- Based on feedback from September 2023 regional meeting
- Seeking input on crossing guard issues and interest in a regionally- consistent process
- Please share with City or ISD staff with interest in improving child safety through crossing guard placement!
- <u>https://tinyurl.com/SchoolCrossingGuards</u>

WALK TO SCHOOL DAY PROMOTION 2023

2023 1st Place Photo Contest Winner

Atherton Elementary: Walk to School Day 2023 2nd Place Photo Contest Winner

What Is Walk To School Day?

- Annual event where students at schools and communities around the country and the world walk to school on the same day
- Typically held first Wednesday in October (10/4 in 2023)
- Highlights the importance of pedestrian and bicycle safety igodol
- NCTCOG helps schools participate by providing safety-themed ightarrowgiveaways

Raffle Winners (bottom)

Bicycle And Pedestrian Safety-focused Giveaways

- Giveaway items generate excitement for students and families to participate in Walk to School Day while spreading safety messaging
- Schools participated in a photo contest to highlight the success of their event and the giveaway items
- Bicycle raffle to incentivize students and parents to participate and complete a safety pledge

Walk to School Day By The Numbers – 2023

2023 Bike Raffle Winners

- Promise to Street Safety must be signed by parent and student and returned to qualify for raffle
- Four bikes were awarded in 2023
- Winners:
 - Two students at McCall Elementary in Plano
 - Two students at High Country Elementary in Saginaw

2023 School Events

Keller-Harvel Elementary Sonntag Elementary

Miller Elementary

- Most schools held remote walking events
 - Remote walking events entail participants meeting at an off-campus location to walk to school together
- Some schools coupled the remote walking event with an on-campus event to celebrate the participants

WTSD ENGAGEMENT SURVEY

• Closes March 1, 2024

- NCTCOG would like feedback from DFW schools to help shape future Walk to School Day events
- Please share with school / ISD / other contacts with interest in improving or getting involved in WTSD!
- http://tinyurl.com/WTSD23

SAVE THE DATE

- Bike & Roll to School Day
 Promotion
- May 8, 2024
- Highlights the importance of bicycle and other "rolling" modes of active transportation to school
- NCTCOG will provide implementation toolkits, safetythemed giveaways, and a bicycle raffle
- More details to come!

CONTACT US

Devia Joshi Transportation Planner djoshi@nctcog.org | 682-320-2842

Shawn Conrad, PhD Principal Transportation Planner <u>sconrad@nctcog.org</u> | 817-704-5695

Brandi McDow Transportation Planner <u>bmcdow@nctcog.org</u> | 682-338-5448

Regional Safety Advisory Committee

Regional Quarterly Safety Performance Update

Michael Misantonis | Transportation Planner

January 26, 2024

Texas Fatalities and Fatal Crashes

Texas Fatalities and Fatal Crashes 2018-2023

Data as of January 22, 2024 - TxDOT's Crash Records Information System (C.R.I.S.)

Quarterly Performance: All Fatalities and Serious Injuries Change 2022 - 2023

Fatalities and serious injury data taken from TxDOT's CRIS MPO Dashboard January 22, 2024. Percentages represent the change in each injury type from 2022 to 2023. Totals represent total injuries in each quarter for 2023.

Quarterly Performance: Bicyclist and Pedestrian Fatalities and Serious Injuries 2023

Fatalities and serious injury data taken from TxDOT's CRIS MPO Dashboard January 22, 2024. Totals represent total injuries in each quarter for 2023.

Questions and Contacts

Sonya J. Landrum Program Manager <u>slandrum@nctcog.org</u>

Camille Fountain Senior Transportation Planner <u>cfountain@nctcog.org</u>

Shreya Bandi Transportation Safety Intern SBandi@nctcog.org Natalie Bettger Senior Program Manager <u>nbettger@nctcog.org</u>

Michael Misantonis Transportation Planner <u>mmisantonis@nctcog.org</u>

NCTCOG PRESENTATION

Safe Streets and Roads for All Grant Program

Catherine Richardson Regional Safety Advisory Committee 1.26.2024

Safe Streets and Roads for All (SS4A) Grant Program

- Created through the Bipartisan Infrastructure Law
- Purpose: prevent deaths and serious injuries on our roadways
 - Focus on comprehensive safety action planning and implementing projects/strategies identified in safety action plans
- \$5 billion discretionary grant program
 - \$1 billion per year over five years
- Inclusive of all types of roadway safety interventions across the Safe Systems Approach

SS4A Grant Program (FY24)

- Notice of Funding Opportunity is anticipated to be announced February 2024
- Political subdivisions of a State (e.g. cities, counties, transportation agencies)
- One application per agency allowed
- Applicants can apply for **Planning and Demonstration Grants** or **Implementation Grants**

SS4A: Planning and Implementation Grants

- <u>Planning and Demonstration Grants</u>: funds to develop, complete, or supplement a comprehensive safety action plan
 - Creation of Action Plan (Action Plan)
 - Sub-plans (Supplemental Action Plan)
 - Pilot program of safety treatments not yet adopted (Demonstration Activity)
- Implementation Grants: funds to implement projects and strategies identified in an Action Plan to address a roadway safety problem
 - Can be infrastructure, behavioral, and/or operational activities.

SS4A: Planning and Demonstration Grants (FY22) Awarded in North Central Texas

Project Title	Lead Applicant	Total Federal Funding
City of Arlington TX Safety Action Plan	City of Arlington	\$240,000.00
DeSoto, TX 2022 Safe Streets and Roads for All Action Plan Grant	City of DeSoto	\$160,000.00
Fort Worth Citywide Safety Action Plan	City of Fort Worth	\$419,505.60
	Total:	\$819,505.60

SS4A: Planning and Demonstration Grants (FY23) Awarded in North Central Texas

Project Title	Lead Applicant	Total Federal Funding
Alvarado Multimodal Transportation Safety Plan	City of Alvarado	\$236,000
City of Arlington - ADA Transition Plan	City of Arlington	\$385,000
SS4A Action Plan Grant for the City of Balch Springs, TX	City of Balch Springs	\$160,000
City of Frisco TX Safety Action Plan	City of Frisco	\$280,000
Mansfield Active Transportation and Safety Plan	City of Mansfield	\$548,800
City of McKinney Safety Action Plan	City Of McKinney	\$240,000
SS4A Action Plan Grant for the City of Mesquite, TX	City of Mesquite	\$256,000
Midlothian Mobility Safety Action Plan	City of Midlothian	\$107,284
Richardson Comprehensive Safety Action Plan	City of Richardson	\$320,000
Saginaw Comprehensive Safety Action Plan	City of Saginaw	\$184,000
City of Terrell Road Safety Action Plan	City of Terrell	\$168,000
Watauga Safe Streets and Roads for All Action Plan	City of Watauga	\$160,000
Weatherford Comprehensive Safety Action Plan	City of Weatherford	\$224,000
Advancing Regional Safety in the Dallas-Fort Worth Region	North Central Texas Council of Governments	\$4,000,000
	Total:	\$7,269,084.00

SS4A: Implementation Grant (FY23) Awarded in North Central Texas

Project Title	Lead Applicant	Total Federal Funding
MLK Jr./Cedar Crest Blvd Complete Street & Safety Upgrades	City of Dallas	\$21,800,000

SS4A: Award Totals (FY22 and FY23) for North Central Texas

Fiscal Year and Grant Type	Total Federal Funding
FY22 Planning Grants	\$819,505.60
FY23 Planning Grants	\$7,269,084.00
FY23 Implementation Grants	\$21,800,000.00
Total:	\$29,888,589.60

CONTACT US

Catherine Richardson Transportation Planner <u>crichardson@nctcog.org</u> 682-433-0485

Karla Windsor, AICP Senior Program Manager kwindsor@nctcog.org | 817-608-2376

kkokes@nctcog.org | 817-695-9275

REGIONAL SAFETY ADVISORY COMMITTEE

North Central Texas Council of Governments Friday, January 26, 2024 10:00 am – 12:00 pm

6) UPDATE ITEMS

- a) 2024 Safety Performance Targets Update and TxDOT Crash Report (Quarterly Update), Michael Misantonis, NCTCOG
- b) CVE Training for Judges and Prosecutors, Michael Misantonis, NCTCOG
- c) Friends of the Safety Task Force, Natalie Bettger, NCTCOG
- d) Upcoming 2024-25 RSAC Term, Sonya Landrum, NCTCOG

