

NCTCOG UAS Safety & Integration Task Force May 2022

New infrastructure is required for AAM to achieve liftoff

To offer sustainable service, eVTOLs need places to take off, land, re-charge their batteries, and discharge passengers

Landowners are in a unique position to augment their assets to act as key nodes in a broader transport network

Skyports leases, builds and operates vertiports, the dedicated landing areas in urban environments for electric air taxis

Video with illustrative vision <u>here</u>

Strong partnerships

- Partner with top vehicle OEMs across regions
- Strong relationships with key regulators, including the FAA, and local stakeholders

Proven ability to deliver

- Designed and built the world's first vertiport prototype in 2019 in Singapore
- First permanent commercial operations planned in 2023

Strategic investor base

- Large infrastructure operators (Groupe ADP, Deutsche Bahn)
- World's premier low cost carrier airline developer, including Ryanair (Irelandia Aviation)

3

Where we are

Skyports has operations across the world, with core commercial ops based in the Americas, EMEA, and APAC

Cergy-Pontoise Testbed

Europe's first test vertiport in France

Aim to launch commercial ops at Paris Olympics (2024)

Supported by DGAC (French Civil Aviation Authority) and EASA

ConOps in Miami-Dade County (with Eve)

X

(MIA) and the Miami Beach Convention Center

Miami International Airport

"Listen and learn" sessions with community stakeholders, peers, and operators

ConOps will explore:

- Operating environment
- Flight profiles
- Charging infrastructure
- Community concerns

Los Angeles region

Collaborating with South Bay Workforce Investment Board on upskilling / apprenticeships

Participant in Long Beach Economic Partnership's AAM Working Group

Ongoing conversations with CalSTA, CalTrans and FAA's ADO in Los Angeles

Passenger vertiport description

The main features of a vehicle-agnostic passenger vertiport are landing areas, aircraft stands, recharging and turnaround equipment, passenger terminal, control room and safety and security facilities.

Vertiport technical considerations

Skyports

Airspace provisions and procedures	Aircraft ground movement operations
Resource management and scheduling	Passenger check-in, security, and processing
Situational awareness	Safety Features
Federal, state, and local permitting	Electrification

Building Infrastructure for Diverse OEMs and Operators

Information-sharing with vehicle manufacturers ensures our vertiports are designed and sited according to manufacturers' and operators' needs and requirements.

NON-EXHAUSTIVE LIST

Pathway to Development and Operation

Government Body	Likely application
FAA	 Establishment of Vertiport Deign and Operation Guidance Jurisdiction over Public-use Infrastructure Design (received federal funding) Aeronautical study of any vertiport based on design and site selection
Texas \star	Guidance for Airport Land Use
Counties & Cities	 Licensing Permitting Inspecting Approving

Zeroing in: North Texas

- Short-term: Repurposing existing assets for AAM infrastructure
 - Parking structures
 - Surface parking lots
- Integration with existing transportation system
 - Multi-modal mobility hubs
 - AAM can serve as nice complement to existing transportation alternatives
- Longer term: opportunities for integration with regional airports
 - Feeder vertiport to airside / groundside locations
 - Minimize traffic congestion
 - Provide a compelling first-mile and last-mile transportation alternative

Laying the groundwork: North Texas

Short-term:

- Understand North Texas' goals and objectives
 - Key gaps in existing transport system
 - Transit deserts
 - Traffic congestion chokepoints
- Identify key barriers or obstacles to enabling AAM services
 - Airspace, land use, electrification
- Collaborate with local Fire Department / Police / EMS personnel to better understand emergency preparedness
- Identify potential changes to land use policy (e.g., zoning, building heights, density requirements, parking minimums)

Longer-term:

- Workforce development opportunities
- Public acceptance
 - Demonstration vertiport project (passenger journey, surface accessibility, etc.)
 - Noise simulation
 - Identify opportunities to co-create / codevelop a strategic plan for AAM

Skyports

Addison Ferrell Head of Americas <u>addison@skyports.net</u> Steven Spinello Infrastructure Lead <u>steven@skyports.net</u> Andrew Giacini Regulatory Affairs Lead andrew.giacini@skyports.net

Airport Electrification & Mead & Hunt

MAY 31, 2022

Agenda

→ Aircraft and Infrastructure

- → Considerations
 - Planning
 - Environmental
 - Design
- → Guidance
 - FAA
 - Other Organizations

Advanced Air Mobility (AAM) Network, Mead & Hunt, Inc.

Key Terms

- → AAM Advanced Air Mobility
- → ADG Aircraft Design Group
- → eCTOL Electric Conventional Takeoff and Landing
- → eVTOL Electric Vertical Takeoff and Landing
- → FAA Federal Aviation Administration
- → RAM Regional Air Mobility
- → UAM Urban Air Mobility
- → UAV Uncrewed Aerial Vehicle

Aircraft and Infrastructure

Air mobility	y startup	market m	ар		
• Drones					
zipline	Skydio	SDS	رل	TroneDeploy	C PRECISION
AIROBÓTICS	A SKYCATCH	-JHONE RACING LENGLE	1 encouche	Makebl@ck	Clobotics
AIRMAP	¥	Dedrone	kespry	YUNEEC	5 THE SPECS
DELAIR			Sop-Fend	@ 1812 AT TONATION	WINGCOPTER V
	Flirtey	JOUAV		FLYTREX	Cloudline
Battery tee	chnology				
northvolt	QuantumScope	microvost [‡]	SILA	SVOLT 聲樂雄線	GFREYR
Лиотех	ENOVIX	C Livent			
Sion Power	GROUP	Solid Power	CUBERG		
• Supersonio	c aircraft				
и воом	RAMGEN INE	AAERION	AMPAIRE	exotoric	SPIKE
Air mobilit	y services				
WHEELS UP	VISTAJET	BLADE	VICTOR	A RELIABLE ROBOTICS	HYBRID Air Vehicles
J JET SUITE	A * B + M	JWDET	OPENJET 🤳	PRIVATEFLY	JET SET 60
FlightBridge	EVOLUX		FLYT	avinode	FLEXJET

Source: Pitchbook Air Taxi Startup Handbook, 2021

Certification Status

→ In five years

- ADG I and II fixed wing and eVTOL
- General aviation, air taxi, small cargo
- → Beyond five years
 - Designs larger than ADG II
 - Air carrier
 - Hybrid, hydrogen, and sustainable aviation fuels vs. pure electric

Roles

	2020	2025	2030	2035	2040	2045	2050
Commuter » 9-19 seats » < 60 minute flights » <1% of industry CO2	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Regional » 50-100 seats » 30-90 minute flights » ~3% of industry CO2	SAF	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Short haul » 100-150 seats » 45-120 minute flights » ~24% of industry CO2	SAF	SAF	SAF	SAF potentially some Hydrogen	Hydrogen and/or SAF	Hydrogen and/or SAF	Hydrogen and/or SAF
Medium haul » 100-250 seats » 60-150 minute flights » ~43% of industry CO2	SAF	SAF	SAF	SAF	SAF potentially some Hydrogen	SAF potentially some Hydrogen	SAF potentially some Hydrogen
Long haul » 250+ seats » 150 minute + flights » ~30% of industry CO2	SAF	SAF	SAF	SAF	SAF	SAF Source: ATAG	SAF Waypoint 2050

Near-term Capabilities

Mead &

Planning & Environmental Considerations

- → Power Supply
 - Simultaneous charging
 - Comprehensive need
- → Airside Planning
 - Aircraft type
 - Airfield compatibility

- → Landside Planning
 - Transit tie-in
 - Auto parking and Road network
- → Environmental
 - Noise and overflight
 - NEPA
 - Source of electricity

& Hunt

Mead

Electricity Demand

- 1 megawatt = 5 10 acres of panels
- In addition to other demands
 - Buildings
 - Rental Cars
 - Passenger Cars
 - Ground Equipment

Data: National Renewable Energy Labs, 2021 Modeling essential air service demand at Denver International (DEN)

Mead & Hunt

FAA Guidance

Desktop planning

- Taxi and parking
- NAVAID interference
- Policy in development
- → Permitting
 - ALP Pen & Ink
 - §163 (ADO/RO)
 - NEPA (if applicable)
 - **7460**
- → Design and Build
- → Implement
 - Revenue
 - Grant assurances

Federal Aviation Administration

Memorandum

Date:	June 22, 2021
To:	All Airports Regional Offices and Airports District Offices
	JOHN R DERMODY Date: 2021.06.22 18:52:46 -04'00'
From:	John R. Dermody, Director, Office of Airport Safety and Standards, AAS-1
Prepared by:	Keri Lyons, Airport Safety and Operations, AAS-300
Subject:	Process for Submitting and Reviewing Proposed Landing Pads and Supporting Equipment for Advanced Air Mobility and Electric Aircraft

FAA Guidance

→ EB No. 105

- Comments submitted 4/18/22
- FAA is revising document

→ Contents

- Design and Geometry
- Marking, Lighting, and Visual Aids
- Charging Infrastructure
- On-Airport Vertiports
- Safety Elements
- → Key Takeaways
 - Much research to be done
 - Plan like helicopters for now

	Federal Aviation Administration
Me	emorandum
Date:	June XX, 2022
Fo:	All Airports Regional Division Managers
From:	Michael A.P. Meyers, P.E. Manager, Airport Engineering Division, AAS-100
Prepared by:	
Subject:	Engineering Brief No. 105, Vertiport Design
taff for the d his interim g	ring Brief provides interim guidance to airport owner operators and their support esign of vertiports for vertical takeoff and landing (VTOL) operations. Note that uidance will be subject to updates as data, analysis, and VTOL aircraft and velop in the future.

ACRP Guidance

→ ACRP Report 236

- Electric Aircraft Overview
- Guidance
- Toolkit
- → ACRP Project 11-02/43
 - Community Inclusion
 - State of the Practice Scan
 - AAM Primer
 - Communication Sequencing Plan

Airport Cooperative Research Program Sponsored by the Federal Aviation Administration

Preparing Your Airport for Electric Aircraft and Hydrogen Technologies

Other Guidance

- **EASA**Vertiports
- → Lillium
 - Vertiports
 - Taxiways
 - Charging Requirements

Thank You!

Mitch Hooper | Aviation Services Manager Mitchell.Hooper@MeadHunt.com | 360.771.1764 Mead &