North Central Texas Council of Governments

DART Red \& Blue Line Corridors Last Mile Connections Project Final Report

City of Richardson
December 11, 2020

Table of Contents

1. Introduction. 1
1.1 Objectives 1
1.2 Study Area. 1
1.3 Station Numbering \& Report Organization 2
1.4 Station Area Half-Mile Boundaries 2
2. Methodology 2
21 Field Survey (DART Station Properties) 2
2.2 Field Survey (Half-Mile Radii) 2
2.3 Sidewalk Condition Classification 3
2.4 Incorporation of Other Data Sources 3
2.5 Identifying Crosswalks for Improvements 3
2.6 Crosswalk Improvement Selection 3
2.7 Stakeholder Involvement 5
2.8 Half-Mile Area Improvement Prioritization - Initial Trial Method 5
2.9 Half-Mile Area Improvement Prioritization - Final Methodology. 5
2.10 Gaps to Remain. 7
2.11 Improvement Numbering 7
212 Prioritization Scoring 7
3. Improvement Recommendations 7
3.1 DART Station Property Recommendations \& Opinions of Probable Construction Cost (OPCC)7
3.1.1 CityLine Bush Station (on DART Property) 8
3.1.2 Galatyn Park Station (on DART Property). 8
3.1.3 Arapaho Center Station (on DART Property)
3.1.4 Spring Valley Station (on DART Property). .13
3.2 Half-Mile Area Recommendations 21
3.2.1 CityLine Bush Station (Half-Mile Area). 21
3.2.2 Galatyn Park Station (Half-Mile Area)23
3.2.3 Arapaho Center Station (Half-Mile Area) 25
3.2.4 Spring Valley Station (Half-Mile Area) 25
3.3 Half-Mile Area Opinions of Probable Construction.. 28

Appendices

Appendix H: Estimated Quantities \&

Appendix A: Field Work Dates
Appendix B: Data Collection Maps \& Forms
Appendix C: Crosswalk Improvement Evaluation Details
Appendix D: Crosswalk Improvement Selection Tables

Appendix E: Half-Mile Area Improvement Prioritization - Initial Trial Methodology Details

Appendix F: Half-Mile Area Improvement Prioritization - Final Methodology Details
Appendix G: Cost Estimating Details

Opinions of Probable Construction Cost Station Property Improvements

AppendixI: Half-Mile Area

 Recommendation Details \& Detailed Improvement MappingAppendix J: Half-Mile Improvement Matrices

Appendix K: Estimated Quantitiies \& Opinions of Probable Construction Cost -Half-Mile Improvements

List of Figures

Figure 1: Map of Study Area DARTStations .. 1
Figure 2: Project Station Numbering Schematic ... 2
Figure 3: Sidewak Condition Classifiction
Figure 4: Employment and Population "Tributary" to Sidewalk \& Crosswalk Improvements 5

List of Station Area Figures

Figure 1C-1.1 - CityLine Bush Station Recommended Access Improvements.. 9
Figure 1C-1.2 - CityLine Bush Station Existing Conditions at Improvement Locations......................... 10
Figure 1C-1.3 - CityLine Bush Station Existing Conditions at Improvement Locations......................... 11
Figure 2A-1.1-Galatyn Park Station Recommended Access Improvements...................................... 12
Figure 2B-1.1 - Arapaho Center Station Recommended Access Improvements................................ 14
Figure 2B-1.2 - Arapaho Center Station Existing C onditions at Improvement Loc ations 15
Figure 2B-1.3 - Arapaho Center Station Existing Conditions at Improvement Locations.................... 16
Figure 2B-1.4 - Arapaho Center Station Existing C onditions at Improvement Locations 17
Figure 2C-1.1 - Spring Valley Station Recommended Access Improvements
Figure 2C-1.2 - Spring Valley Station Existing Conditions at Improvement Locations................................... 19
Figure 2C-1.3 - Spring Valley Station Existing Conditions at Improvement Loc ations.......................... 20
Figure 1C-2 - CityLine Bush Station Construction Packages.. 22
Figure 2A-2 - Galatyn Park Station Construction Packages.. 24
Figure 2B-2 - Ara pa ho Center Station Construction Packages.. 26
Figure 2C-2 - Spring Valley Station Construction Packages.. 27

List of Tables

Table 1: Weighting Criteria for Scoring Sidewalk and Crosswalk Improvements \qquad 6
Table 2: Summa ry Opinion of Probable Construction Cost for Improvements in Ric hardson 28
Table 3: Opinion of Probable Construction Cost for CityLine Bush Station Ha lf-Mile Area 29
Table 4: Opinion of Probable Construction Cost for Galatyn Park Station Half-Mile Area 29
Table 5: Opinion of Probable Construction Cost for Arapaho Center Station Half-Mile Area 29
Table 6: Opinion of Probable Construction Cost for Spring Valley Station Half-Mile Area 30

ARS
Engineers, Inc

1. Introduction

One of the biggest challenges our nation's transit agencies face is finding a way to increase ridership in light of limited revenues. Asisthe case with many Americ an cities, large portions of Dallas and its adjacent suburban areas have a relatively low population density level, which may make travel by transit a less viable option.

As an indication of these preferences, population density has been growing near transit stations along the Dallas Area Rapid Transit (DART) Blue and Red lines in the cities of Dallas, G arland, Plano, and Richardson. As ridership increases, the effects of existing gaps in infrastructure or bamiers to pedestrian and bicycle accessibility at DART stations becomes more evident. These ba miers have the potential to suppress the demand for rail traffic, increase motorized traffic to and from the rail stations, or increase safety isks for the roadway's most vulnerable users.

Coord ina tion between transit agencies and city transportation offices is necessary in targeting first and last mile improvements that produce the greatest benefits while planning foranticipated costs. In support of these efforts, the North Central TexasCouncil of Govemments (NC TCOG) initiated this study to verify exiting needs and to prionitize identified improvements for twenty-eight stations and theiradjacent developed areas within the cities of Dallas, Garland, Plano, and Richardson.

1.1 Objectives

The project's objective is to provide opportunities for the greatest number of additional people to walk or bike to DART stations by identifying necessary sidewalk, shared use path, crosswalk connections, and related infrastructure within and surrounding the various DART stations. This was accomplished by:

- Conducting field investigation of existing pedestrian and bicycle infrastructure in the study area
- Verifying the need for recommended pedestrian and bicycle improvements in prionty comidors identified by NCTCOG to improve access and connectivity to light rail stations for the greatest number and density of residents and workers, thus inc reasing potential transit nidership.
- Identifying additional improvements based on field review, as necessary.
- Reviewing and updating NCTCOG's prior draft project prionitization of improvements based on information gathered during field review, engineering judgment, and criteria to be coordinated with City and DART staff sta keholders.
- Developing opinions of probable cost, and schematics for key pedestrian and bicycle improvements at rail stations and along prionitized routes to stations.

1.2 Sudy Area

The study area focused on the twenty-eight DARTlight rail stations built prior to 2004, included in the Red and Blue Line Platform Extension Project coridors, as shown in Figure 1.

ngineers, In

These stations are part of the Federal Transit Administration (FTA) C ore Capacity Enhancement Capital Investment Grant, which made them eligible for FTA planning funds. Per FTA guidance, the one-half mile radiusfrom the station is the effective planning a rea fortransit-oriented development (TOD). These DART rail stations and their adjacent development (TOD). These DART rail stations and their adjacent
developed areas are located in the cities of Dallas, Garland, Plano, developed area
and Richardson.

While the intent of the planning work was to create comidor-level planning recommendations, not all areas surrounding all stations were reviewed using the same level of detail as part of this study; rather, strategic streets and sites within a broad selection of stations that were expected to be most cost effective were targeted for more thorough review.

1.3 Station Numbering \& Report Organization

The system developed to organize improvements identified in the deliverables is illustrated in Figure 2. Each red or blue colored box in the figure represents a Red or Blue Line DART station respectively, a rranged geographically from north to south. Purple boxes represent stations where the Red and Blue Lines run concurrently on the same a lignment. Two-digit alpha-numeric codes assigned to each station are shown to the left of each box.

This report is organized for specific use by the City of Richardson. Other volumes of this report have been provided to other project stakeholders (NCTCOG, DART, Dallas, Garland, and Plano) which include similar deta ils relevent to their jurisdictions. Figures common to all volumes of the report are numbered 1, 2, 3, etc. Figures specific to the City of Richardson have figure numbers beginning with the code (1C, 2A, 2B, or $2 C$) a ssigned to each station.

1.4 Station Area Half-Mile Boundaries

The CityLine Bush station is the only station half-mile area in the project that is divided by a City boundary. As such, information about this station is repeated in both the Plano and Richardson versions of the report.

The half-mile radii of some stations overlap. In most cases, the overlapping areas were divided equally between the two (or three) station a reas for ease of reporting.

In the case of the small overlap between the Parker Road and Downtown Plano Stations, the entire overlap area was assigned to Downtown Plano. This was because, with the two stations being near the north end of the Red Line, it was determined that potential riders

Figure 2: Project Station Numbering Schematic

in this area would be highly unlikely to walk north to the Parker Road Station only to then travel south.

2. Methodology

The consultant group conducted field investigations for each of the twenty-eight DART station properties and surrounding one-half mile areas within the study area to examine existing conditions of pedestrian and bicycle infrastructure and to determine potential improvements. Field visits for each station were made between July 2018 and J a nuary 2019. Specific dates a re listed in Appendix A.

2.1 Field Survey (DARTStation Properties)

The consultant group documented the existing pedestrian, bicycle, bus, and motor vehicle circulation and pattems, as well as the wayfinding, signage, and lighting at each station. Potential stationarea improvements were then identified, including sidewalks, curb cuts, crosswalks, shared use paths, lighting and wayfinding, among others.

In many locations, signage for motorized and nonmotorized users needs to be updated in order to conform with the Manual on Uniform Traffic Control Devices (MUTCD).

Many pedestrian facilities were observed to be non-compliant with Americ ans with Disa bilitiesAct (ADA) regulations. While a full inventory of all ADA infrastructure was outside the scope of this study, some example problemshave been identified in the recommendations. It is recommended that DART conduct complete accessibility reviews to identify and correct all such concems within DARTstation properties.
Review of the CityLine Bush Station was conducted while remaining cognizant of future connectivity to the DARTSilver Line Commuter Rail (Cotton Belt) Project, currently in development.

2.2 Field Survey (Half-Mile Radii)

Inventories were developed of all proposed improvements within onequarter mile of each station. Streets within one-quarter mile where existing sidewalks had been preliminarily identified as acceptable condition by NCTCOG were reviewed quickly by a combination of walking, biking, and/or driving. Within one-half mile of each station, the consultant team also reviewed corridors labeled as "Primary Routes" on NCTCOG's prior in-house mapping.

The prima ry foc us of data collection efforts was informa tion a bout majorba miersto wa lking orbiking to the stations. These included:
$\begin{array}{ll}\text { - Missing sidewalk links } & \text { - Multi-lane crossings } \\ \text { - Unprotected crossings } & \text { - Fences \& landscaping } \\ \text { traffic }\end{array}$
Map data from previous projects was reviewed revea ling many locations where existing conditions had changed since NCTCOG's initial a nalysis. For example, recent sidewalk damage resulted in some additional gaps. Othergaps previously inventoried by NCTCOG had since been constructed by adjacent development orCity/TxDOTprojects.

2.3 Sidewalk Condition Classification

Existing sidewalk conditions were classified as acceptable or unaccaptable. As shown by the examples in Figure 3 on page 4, acceptable sidewalk was categorized as either "Excellent/Good" or "Fair." Unacceptable conditions included both "Poor" and "Nonexistent" sidewalk.

2.4 Inc omporation of Other Data Sources

In some cases, additional improvements were constructed after the field work and were identified while conducting further review for prionitization on Google Maps aerial or Street View images. When such improvements were identified, the ArcGIS files were updated accordingly. However, otherchanges may have occurred between this review in Summer 2019 and the date of this report.

Information on several other sid ewalk characteristic swas compiled using Google Maps Street View in the office prior to the field visits and then verified by field personnel. Forsidewalk segments, these characteristic sincluded:

- Actual and effective sidewalk widths (accounting for obstructions such as utility poles)
- Type \& width of buffer between sidewalk \& street
- Presence \& width of on-street parking, bike lanes \& shoulder
- Presence of curb \& gutter
- Posted speed limit
- Presence of lighting
- Number of adjacent travel lanes
- Adjacent land use category

The consultant team identified where sidewalk gaps are planned to be filled with shared use paths by reviewing NCTCOG's 2045 Regional Veloweb alignments adopted by the Regional Transportation Council. These were updated based on input from each city stakeholder about their most recent plans.

2.5 Identifying Crosswalks for Improvements

NCTCOG's prior in-house work identifying sidewalk gaps did not make any special considerations for crosswalks as distinct types of gaps in the pedestrian network. As part of this study, the consultants evaluated crosswalks at key locations, including:

- Existing signed and/or marked crosswalks crossing streets without signal or stop-sign control on the approaches being crossed.
- Unmarked/unsigned crossingsof a rterial or collectorstreets along radial linesto/from the station.
- Unmarked/unsigned crossings of arterial or collector streets not along radial lines to/from the station, but adja cent to signific a nt pedestrian genera tors such asDARTbus stop swith signific ant levels of ridership, estimated by daily boarding and alighting data provided by DART.

Different types of field data were collected for signalized and unsignalized crosswalks during the field visits. At traffic signals, data collection included the numberof lanescrossed in each direction, as well as the presence or absence of:

- Lighting
- Median refuge area
- Pedestrian ramps
- Countdown pedestrian signals
- Accessible pedestrian signals (APS)
- Pushbuttons (and if they were functional)

At unsigna lized crosswalks, additional data collection items included:

- Whether the crosswalk had stop control for vehic ular traffic or was uncontrolled.
- A two-minute count of traffic volumes crossing the crosswalk for locations where other daily traffic data from City or TxDOT sources was not ava ilable.
- Notes on any existing traffic control devices already present (such as signs, markings, or recta ngular rapid flashing beacon (RRFB) assemblies.

Each input for both sidewalk segments and crosswalks were considered later for use in evaluating and prioritizing improvements, though some data were ultimately not utilized in order to simplify the prioritization process. Data collection forms (including handwritten notestaken on maps a nd prefilled tables) are found in Appendix B.

2.6 Crosswalk Improvement Selection

At existing or proposed crosswalks without existing stop sign or signal control, potential improvements were evaluated based on guidance in the Federal Highway Administration's (FHWA) recent public ation, "Guide for Improving Pedestrian Safety at Unc ontrolled Crossing Locations" (J uly 2018). This publication includes enhanced guidance on countermeasures that can or should be considered for uncontrolled crosswalks with various combinations of vehicular speed, traffic flow, and number of lanes to be crossed. A selection table reproduced from this publication and additional details about how the consultant team used it to develop crosswalk improvement recommendations are found in Appendix C.

Improvement options evaluated by this methodology include high visibility crosswalk markings, parking restrictions on the crosswalk approach, upgrading lighting, pedestrian crossing waming signs, "Advance Yield Here for Pedestrian" signs, curb extensions, median pedestrian refuge islands, rectangular rapid-flashing beacons (RRFB's), road diets, and pedestrian hybrid beacons. Road diets were only recommended if roadways would likely still have excess capacity after the lane reductions.

Engineers, Inc.

Figure 3: Sidewalk Condition Classification

Excellent/Good

- Functional for all users
- Meet all City \& ADA standards (based on a superficial visual inspection only)

Fair

- May not be functional for some users, including those needing full ADA accessibility
- Do not constitute gaps in the pedestrian network that would warrant replacement under funding programs designed to foster inc reased travel choices by walking and biking.

- May have moderate cracking \& flaking with minimal uprooting orcracking.
- Minimal uplift by tree roots or other sources (estimated to be <2" based on quick visual inspection)
- May warrant funding for accessibility upgrades under other programs designed specific ally for that purpose or as part of cities' ADA Transition Plans
- Acceptable for the purposes of this project as being useful for a signific ant portion of the public who may be able to use them to travel to/from DART station.

Poor

- Poses potential hazards for all users.
- Severe cracking \& flaking, with major up rooting \& more signific ant trip hazards (vertical elevation differences $>2^{\prime \prime}$)
- Difficult to use by those pushing a wheelc hair, cart, or stroller.
- For vertical incongruities < 2 " assumed that maintenance programscan make sidewalk passable to wheelc hairs \& strollers by providing asphalt wedges and/orgrinding off
- Would require complete removal \& replacement of at least one sidewalk panel
- A few locations where steps had been consciously built into the sidewalk were also considered gaps.

Nonexistent

- Includes longergaps of a City block or more
- Also some locations where ind ividual panels were completely missing
construction rather than maintenance funding, any trip hazards < 2" were assumed to be corrected by maintenance activities \& therefore did not countsasgaps

Engineers, Inc.

A Microsoft Excel spreadsheet was created to automate the methodology and quickly produce a list of potentia lly recommended improvements given the inputs entered for each candidate crosswalk improvement location to be considered for the project. The analyst in each case still used engineering judgment to select which countemeasure options would ultimately be countemeasure options would ultimately be
recommended. recommended. The inputs, options,
recommendations, and notesare tabulated in tables recommendations, and
found in Appendix \mathbf{D}.

2.7 Stakeholder Involvement

Coordination meetings were conducted with all technical stakeholders including staff from the cities of Dallas, Plano, Garland, and Richardson, as well as staff from DART and NCTCOG to review the recommendations, and for information specific to their jurisd iction and background knowledge of study locations, as needed. Meetings with the public were not held as part of this work.

2.8 Half-Mile Area Improvement Prioritization -

Initial Trial Method

To provide opportunities for the greatest number of additional people to walk or bike to DARTstations by constructing sidewalk, shared use path, crosswalk connections, and related infrastructure, the prioritization of identified improvements was priontization of identified improvements was
structured to provide balance between estimating structured to provide balance between estimating this objective accurately and
methodology to a large study area.
Initially, a prioritization approach that attempted to track as closely as possible to potential ridership increases was tested for the Parker Road Station in Plano, with adjustments for safety, key destination access, and equity. Though some of the elements of this initial prioritization methodology were ultimately not included in this study, they are documented in Appendix E as being potentially useful for later studies on a smaller scale. Also, many of the assumptionsa nd methodologies expla ined in AppendixE were reta ined in the ultimate methodology.
2.9 Half-Mile Area Improvement Prionitization - Final Methodology

The prioritization process used to score potential projects placed significant emphasis upon distance to/from the station and the number of (density) of persons on parcels that could be

Table 1: Weighting Criteria for Scoring Sidewalk and Crosswalk Improvements

Category	Tributary Population	Distance	Trip Length Reduction	Access		Safety		Equity
						Crash History	Systemic Safety	
Weight	50\%	25\%	5\%	5\%		5\%	5\%	5\%
Inputs	Parcel population \& jobs, GIS Network Analyst runs	Distance from Station	\% Change in Pedestrian Trip Length	Other Nearby Destinations	Bus Routes	Number of nearby crashes in 5-year period	Posted Speed Limit	Environmental Justice Index
Description	Potential riders "upstream" of specific sidewalk or crosswalk improvements	Distance from individual improvements to station, measured "as the crow flies"	Measured for densest or farthest reference parcel tributary to each specific sidewalk or crosswalk improvement	Number of key destinations (hospitals, clinics, urgent care, schools, government buildings, courthouses, senior living, community centers, gardens, grocery stores, malls, supercenters, hotels, motels, entertainment, fine arts, parks, landmarks, athletic facilities, places of worship, libraries, museums, bus stops with > 25 daily boardings) within 250 feet of each improvement	Number of bus routes within 50 feet of each improvement that are also > $1 / 4$ mile from station (Up to 3 points from bus routes but max. 5 points overall for key destinations and bus routes)	Number of crashes within 250 ft of improvement in 5year period	Posted speed limit of parallel street or street being crossed	Designation of Above/Below Regional Average Percentage for Minority \& Low-Income Populations
High Criteria/ Scoring Range	$\begin{gathered} 9,430-11,787 \\ (20 \text { to } 25 \text { points }) \end{gathered}$	0 to $1 / 8$ mile (25 to 19 points)	40-100\% (5 points)	$5+$ destinations (5 points)	$3+$ routes (3 points)	5+ crashes (5 points)	$\geq 45 \mathrm{mph}$ (5 points)	Above Average for Both Minority and Low-Income (5 points)
Medium High Criteria/ Scoring Range	$\begin{gathered} 7,073-9,429 \\ \text { (15 to } 20 \text { points) } \end{gathered}$	1/8 to $1 / 4$ mile (18 to 13 points)	$\begin{gathered} 20-40 \% \\ \text { (3-4 points) } \end{gathered}$	3-4 destinations (3-4 points)	2 routes (2 points)	3-4 crashes (3-4 points)	$\begin{aligned} & 35-40 \mathrm{mph} \\ & \text { (3-4 points) } \end{aligned}$	Above Average for Minority or
Medium Low Criteria/ Scoring Range	$\begin{gathered} 2,358-7,072 \\ \text { (5 to } 15 \text { points) } \end{gathered}$	$1 / 4$ to $3 / 8$ mile (12 to 6 points)	$\begin{gathered} 1-20 \% \\ (1-2 \text { points) } \end{gathered}$	1-2 destinations (1-2 points)	1 route (1 point)	1-2 crashes (1-2 points)	$\begin{aligned} & 25-30 \mathrm{mph} \\ & \text { (1-2 points) } \end{aligned}$	
Low Criteria/ Scoring Range	$\begin{gathered} 0-2,357 \\ \text { (} 0 \text { to } 5 \text { points) } \end{gathered}$	$3 / 8$ to $1 / 2$ mile (5 to 0 points)	$\begin{gathered} 0 \% \\ \text { (0 points) } \end{gathered}$	No other destinations (0 points)	0 routes (0 points)	0 crashes (0 points)	$\begin{aligned} & \leq 20 \mathrm{mph} \\ & \text { (0 points) } \end{aligned}$	Below Average for Minority and Low-Income (0 points)

Crash History (5\%): A GIS shapefile was used containing the point location of all reported bicycle and pedestrian crash locationsforthe study a rea from 2013 to 2017. While the scope of this project did not include pedestrian volume data collection, the crash data was observed to serve as somewhat of a surrogate for pedestrian demand. Therefore, a cluster of crashes may be more indicative of a place where many people walk than of a place that's more dangerous to walk in terms of the risk to individual pedestrians.

Systemic Safety (5\%): A more recent development in transportation safety that is designed to combat the drawbacks of traditional crash analysis is the concept of "systemic safety" which refers to approaches that are data driven and network-wide. This approach considered improvements at locations with similar characteristics to high crash locations, even if the locations where improvements are to be considered or proposed don't themselves have significant crash history.
As a measure of systemic safety, the project team opted to use the posted speed limit of the roadway adja cent to sidewalk improvements or crossed by crosswalk improvements. Vehic ular speed is regarded as correlating well to safety outcomes in bic ycle and pedestrian crashes.
Equity (5\%): The equity criterion emphasized improving communities with populations that have not historically received equal access to resources. The consultants were provided spatial data for the project area with NCTCOG's Environmental Justice Index (EJI) to comply with federal rules for identifying Environmental Justice populations. The EJI is based on data from the 2013-2017 American Community Survey, aggregated at the census block level. Each census block is categorized if the percentage of its residents is higher than the regional average for minority population, low income, orboth.

2.10 Gaps to Remain

The consulting team categorized some locations where gaps in the pedestrian network had been identified by NCTCOG during preliminary GIS work to be gaps to remain for the final project listing. This dec ision was based on field conditions that would be impractic al or undesireable to implement or would make sidewalk construction extremely cost-prohibitive. Examples are detailed in Appendix F.

2.11 Improvement Numbering

Each proposed improvement, usua lly consisting of a single crosswalk or segment of sidewalk a long a single city street block, was assigned a unique project-wide identific ation number for reference. The identification number consisted of:

- A two-digit code for the station area, matching the codes shown in Figure 2 earlier (For example, 1C for CityLine Bush, 2A for Galatyn Park, 2B forArapaho Centerand 2C for Spring Valley).
- A two-letter abbreviation for the station name for easier reference (For example, CB for CityLine Bush, GP for Galatyn Park, AC Arapaho Center and SV for Spring Valley).
- A two-letter code for the type of improvement (SW for sidewalk, CW for crosswalk, RP for repair, VW for Regional Veloweb, SP for shared use path, GP for gap to remain).
- A two- or three-digit number unique to identify the improvement location on project mapping. In addition to the VW improvement type code described in the bullet above, Regional Veloweb shared use path links have an improvement location number beginning with the letter V (V01, V02, etc.) to differentiate them from other improvements since they were numbered separately beginning at 1 .

2.12 Prioritization Sc oring

The consulting team evaluated each proposed improvement for the seven criteria described in Section 2.9 and Table 1. The proposed improvements were scored, and then sorted based the combined overall score. Possible total values ranged from 0-100 points. Additional details are included in Appendix F.

For each city (Dallas, Garland, Plano, and Richardson) separate scales were set for dividing improvements of varying scores into high, medium, and low-priority categories, but remained consistent for all stations within that city. The thresholds between high- and medium priority and medium- and low-priority were set such that a pproximately one-third of improvements foreach city were allocated into each category. Forhalf-mile areassurrounding DARTrail stations in Richardson, the scoring ranges were as follows:

- High Priority $=22$ to 100 points
- Medium Prionty = 15 to 21 points
- Low Priority $=0$ to 14 points

The City of Richardson after initial review of the results directed a number of changes in priority designation for individual improvements to depart from the above scoring ranges. The highest scoring improvement evaluated in Richardson was 2B-AC-SW-36, a segment of sidewalk along Central Expy southwest of the station between Collins Blvd and Arapaho Rd. This improvement received a score of 54 points.

3. Improvement Recommendations

The following sections include project mapping and opinions of probable construction costs for existing and proposed conditions, and improvements that have been identified to improve pedestrian and bic yc list access to the stations.

3.1 DARTStation Property Recommendations \& Opinions of Probable Construction Cost (OPCC)

The first figure in each set for individual station properties on pages $9,12,14$ and 18 illustrates the station area including DART property limits, existing sidewalks, Regional Veloweb shared use paths and local shared use paths in a nd around each station.
The figures on pages 10-11, 15-17 and 19-20 show photographs of existing conditions at the same locations, referenced by matching, numbered orange stars. In many cases, the field photographs are enhanced with graphics to illustrate the proposed signing, pavement markings, or other traffic control devices that are recommended.

For each station, opinions of probable construction cost (OPCC's) were developed for each improvement, unless otherwise noted. The following cost components (totaling 25%) were applied to all costs, as directed and approved by both NCTCOG and DART:

- 10% design fee
- 4% mobilization
- 4% for landscaping allowance
- 2% for Erosion \& Sediment Control Allowa nce
- 3% for traffic control
- 2% extra contingency forfederal aid project

For additional details about the OPCC's, see Appendix G a nd Section 3.3 later in this report.

3.1.1 CityLine Bush Station (on DARTProperty)

Figure 1C-1.1 on page 9 identifies ten improvements recommended at CityLine Bush Station on DART property. Note that the station platform itself and all improvements located south of the President George Bush Tpk (PGBT) centerline are located in the City of Richardson, while all other mprovements located north of the President George Bush Tpk (PG BT) centerline are located in the City of in Plano. Figures $\mathbf{1 C - 1 . 2}$ and $\mathbf{1 C - 1 . 3}$ on pages $10-11$ illustrate existing conditions at the ten improvement locations. Several of the improvements discussed are at the boundary of DART's right-of-way and would therefore require coordination between DART, TXDOT, NTTA a nd/or the Cities of Plano and Ric hardson. (TxDOTma inta ins the PGBTfrontage roadsas SH 190). These improvements are also discussed in the figures and tables associated with Section 3.2 of this report (page 21) detailing off-station imp rovements.
The recommended improvements include

- Constructing enhanced crosswalks for crossing the PGBT westbound frontage road at Crawford Rd/Topridge Dr and just east of the DART track crossing. See items 3a and 8 in Figure 1C-1.1. Enhanced conspicuity for crossing pedestrians and bicyclists is needed due to the high speeds permitted on the frontage roads and the large apartment complexes recently constructed on the north side of the PGBT. The crossing east of the DART tracks is being constructed as part of the Cotton Belt Trail construction
- Providing short, more direct sidewalk paths connecting to adjacent private property to follow observed wom paths in the grass indicating existing pedestrian demand. See items 3 and 6 in Figure 1C-1.1. Coordination with adjacent property owners would be required.
- Adding and improving ADA rampsfor better wheelchair access on the station platform.
- Adding pedestrian waming signs at crosswalks to the station platform.

Refer to the figures for additional details.

DART's Silver Line project will provide future commuter rail service beginning in late 2022 between DFW Airport and the new Shiloh Road Station east of the CityLine Bush Station. Many of the sid ewalk connections in and around the existing Cityline Bush Station platform, including the last two items in the bulleted list above, will be reconstructed in the nearfuture as part of the Silver Line project.

The total OPCC for the DART improvements in Richardson is approximately $\$ 83,000$. This excludes costs for improvements 1C-CB-ST-07 and 1C-CB-ST-10, which are located in the City of Plano and/or will be constructed aspart of the Silver Line Project.

Improvements 1C-CB-ST-08 a nd 1C-CB-ST-09 were integral to the ha lf-mile a rea a nalysis undertaken in Section 3.2 and are therfore quantified together with off-site improvements as shared costs between DART, the City of Plano, and the City of Ric hardson. Only the portion of the cost assumed to be DART's responsibility is included here. Tables listing the estimated costs for individual improvements, as well as line item calculations, are included in Appendix H.

3.1.2 Galatyn Park Station (on DARTProperty)

Figure 2A-1.1 on page 12 identifies one improvement recommended at the Galatyn Park Station on DART property, as well as existing conditions at the improvement location.

A new sidewalk connecting the existing Central Trail on the south end of the DARTtra in platform is needed. This connection is already planned and funded under DART's ongoing Red and Blue Line Platform Extension Project. Refer to the figure for additional details. There is no estimated cost for this improvement since it is already included in a funded project.

DECEMBER 2020

CityLine/Bush Station Recommended Access Improvements
Total for All Recommendations at Station: \$152,600 (=\$69,600 in Plano + \$83,000 in Richardson)

Number

 DescriptionThe Dallas tourism "BiG" sign on
Routh West Dr just south of the station should be reversed to face the opposite direction or the sign should be relocated to a safer position. The sign faces the street, a poor orientation since those taking photographs of others posing at the sign will be tempted to stand in the travel lanes.
Widen the ADA ramp to Routh West Dr from the south end of the
2 platform to allow wheelchair users to bypass the large vine sculpture blocking the top of the ramp. Coordinate with adjacent property owner to add a direct sidewalk connection between train platform \& bus loop. A worn path in the grass ("goat trail") exists between the southwest corner of the Alexan Central Apartments dog park on
3 Pipeline Dr and the DART bus stops along the PGBT eastbound frontage road. This is the most direct route between the train station platform and the bus stops, shorter than walking north along Routh West Dr and the frontage road. See and the fronage See

Add pedestrian warning signs on the right-hand side of the roadway at the six crosswalks to the station platform across Routh East Dr and
4 Routh West Dr. Existing signs are mounted on the left-hand side only. Add missing ADA ramps at two of the same locations.
Repair the sidewalk panel where Repair the sidewalk panel where
settlement has created a trip hazard near the pedestrian pushbutton on
5 the north side of the Presiden George Bush Turnpike (PGBT) eastbound frontage road at Routh West Dr.

NOT TO SCALE

Legend

Sidewalk/Crosswalk

- Existing
- - Proposed

Regional Veloweb
_ Existing

- - Proposed

Number
Coordinate with the adia to construct a short segment of sidewalk for more direct travel between the southern crosswalk to the train platform and the south sidewalk along State St A "goat trail" cuts the corner where the existing sidewalk is offset from the crosswalk, indicating existing pedestrian demand

North Central Texas Council of Govemments
完
ART Red \& Blue Line Corridors Last Mile Connections

Number	Description
	Construct a new, short segment of sidewalk on the west side of the Crawford

Add sidewalk on east side of Crawford Rd/Topridge Rd between PGBT frontage roads.
8 See also improvement 1C-CB-CW-056 in the half-mile improvements map \& matrix Add a crosswalk across the east leg of the PGBT Eastbound Frontage Road (EBFR) at
Topridge Dr. Provide pedestrian hybrid beacon with advance "Yield Here to
Pedestrians" signing. See also half-mile area improvement 1C-CB-CW-059,
Construct a crosswalk across the PGBT WBFR just east of the track crossing. Also,
consider adding a traffic signal here similar to the existing signal on the PGBT EBFR, with care taken to coordinate with the adjacent railroad crossing gates. A crosswalk west of the tracks that will be removed with the Silver Line construction currently has only pedestrian warning signs and ramps. These changes will provide safer access to the DART station for residents of apartments on the north side of the westbound frontage road. See half-mile area improvement 1C-CB-CW-045 for more information. Many pedestrian ramps in the station area are missing detectable warning surfaces, which should be added.
Location:

Not for Construction

FIGURE 1C-1.1 JULY 2020

CityLine/Bush Station Existing Conditions at Improvement Locations
 to discourage standing in street to take photos.

Add missing pedestrian warning signs on right side at six locations, including the one shown. Add missing ADA ramps on both sides at two of the same locations. The changes should be made as part of the redesign of the station for the Cotton Belt Line improvements if it is not practical to do so sooner.

Not for Construction
figure 1C-1.2 december 2020

CityLine/Bush Station Existing Conditions at Improvement Locations

Not for Construction

Number
Bescription

1
end of the DART train platform. This connection is already planned and funded under DART's ongoing Red and Blue Platform Extension Project.

DRAFT - Not for Construction

3.1.3 Arapaho Center Station (on DART Property)

Figure 2B-1.1 on page 14 identifies thirteen improvements recommended at Arapaho Center Station on DARTproperty. Figures $\mathbf{2 B}$ - $\mathbf{1 . 2}$ through 2B-1.4 on pages $15-17$ illustrate existing conditions at the thirteen improvement locations

A wom path in the landscaping between the west end of the bus loop and the pedestrian tunnel indicates existing demand for more convenient movement improvement 2B-AC-ST-09). A direct path and new crosswalks are recommended, along with consolidating the existing bus stops to make space

The existing pedestrian ramps to the station platform on the west side of the deep tunnel under Greenville Ave (location 10a) have too long of an unintemupted grade for people using manual wheelchairs. DART should coordinate with the City of Richardson to revise the recent addition of an at-grade crosswalk across Greenville Ave to include an accessible path to the station on the west side to bypass or replace the recently-built stairs (location 10b)

The under-utilized parking lot on the east side of the site should be developed as a Transit-Oriented Development (TOD), consistent with recent City of Ric hardson Innovation Quarter Plan. DARTand the City of Richardson are considering moving the Kiss \& Ride and Bus Loops to the west side of Greenville Ave aspart of the station redevelopment

Other recommended improvements include

- Building new sidewalk connecting the tra in platform to the U.S. 75 northbound frontage road, including new safety fence between the sidewalk and the tracks (improvement 2B-AC-ST13).
- Updating or relocating signs to meet MUTCD standards and adding or refreshing crosswalk striping.
- Installing pedestrian lighting for areas where tree cover makesfor dark nighttime conditions (improvements 2B-AC-ST-04 and 2B-AC-ST-05).
- Relocating existing bike parking located far from the train platform (location 2a) to the locations nearthe station (location 2 c). A few parking spaces may need to be removed.

Refer to the figures for additional details. The total OPCC for the DART improvements is approximately $\$ 170,000$. Tables listing the estimated costs for individual improvements, as well as line item calculations, are included in Appendix H.

3.1.4 Spring Va lley Station (on DART Property)

Figure 2C-1.1 on page 18 identifies nine improvements recommended at Spring Va lley Station on DART property. Figures $\mathbf{2 C} \mathbf{- 1 . 2}$ through $\mathbf{2 C - 1 . 3}$ on pages $19-20$ illustrate existing conditions at the nine improvement locations.

Some pedestrians were observed crossing Spring Valley Rd, a busy six-lane arterial, directly below the rail overpass instead of at the adjacent signalized crosswalks at Lingco Dr to the west or Spring Valley Rd to the east. DARTshould coordinate with the City of Richardson to consider installing anticlimb median fencing (improvement 2C-SV-ST-9) along the median of Spring Valley Rd in front of the DARTstation to ensure pedestria nscross at the crosswalks.

DARTshould also coordinate relocation of the busstop on Lingco Dr to the downstream side of the crosswalk between the station platform and the Park \& Ride lot (improvement 2C-SV-ST-2) curent location of the busstop upstrea m of the crosswalk creates unnecessary potential forvisibility obstructions between bus drivers and crossing pedestrians.

Other recommended improvements include:

- Installing pedestrian lighting for an area where tree cover makes for dark nighttime conditions (improvement 2C-SV-ST-6).
- Updating or relocating signs to meet MUTCD standards
- Fixing pedestrian trip hazards.

Refer to the figures for additional details. The total OPCC for the DART improvements is approximately $\$ 240,000$. Tables listing the estimated costs for individual improvements, as well as line item calculations, are included in Appendix \mathbf{H}

Arapaho Center Station Recommended Access Improvements
North Central Texas Council of Governments

Number

Change the arrow direction of "PEDESTRIANS USE UNDERPASS" sign to

 pointing "through" instead of pointing to the left. Move the existing bike parking that is located far from the train platform (location 2a) to the corner of the lot near the station and the grassy area between the fence for the tracks and the trail south of the platform (location Lc). A few parking spaces may need to be removed. Bikes chained on the fence near the ticket machine (location 2 b) are evidence of demand for more conveniently located bike parking.Redevelop the under-utilized parking lot on the east side of the site as a Transit-Oriented Development (TOD), consistent with recent City of Ruth The City of Richardson and DART are also considering moving the Kiss \& Ride and Bus Loops to the west side of Greenville Ave as part of the station redevelopment.
Add pedestrian lighting for area where tree cover makes for dark nighttime conditions.
Update "DO NOT ENTER" signs to meet MUTCD standards. Increase the size of STOP SIGN to obscure the shape of signs mounted on the other side. Add crosswalk striping parallel to and on either side of the decorative brick
7-8 \quad crosswalks to make them high-visibility crosswalks and to properly define them as legal crosswalks where pedestrians have the right-of-way. Create a more direct path between west end of bus loop and pedestrian tunnel to encourage its use. Worn path in landscaping here shows pedestrian desire line. Build new crosswalk across bus loop and stairs down to pedestrian tunnel path (longer path already exists for ADA compliance). Consolidate existing bus stops along the bus loop if necessary to make space for crosswalk
The existing pedestrian ramp from the tunnel under Greenville Avenue to the station platform (location 10a) has too long of an uninterrupted grade for people using manual wheelchairs. Since level platform breaks for resting locations would require lengthening the ramp and necessitate extensive additional excavation, the city of Richardson and DART are instead planning to revise the recent addition of an at-grade crosswalk across Greenvile Ane to include an accessible path to the station on Replace Replace the existing in
 Update the "PEDESTRIANS USE UNDERPASS" sign to make the arrow "UUpdo" the PEDESMANS UN and
to US. 75 frontage road Pedestrian installed between the new sidewalk and tracks. See half-mile area improvements 2 B -AC-SW-037 for more details.

Arapaho Center Station Existing Conditions at Improvement Locations

Arrow direction of UPEDESTIANS USE
UNDERPASS" sigh should point through
instead of pointing to the left. (Other
signs have since been removed with
addition of at-grade crosswalk).

Move bike parking to the corner
of the lot near the station
(closer to train platform)

Arapaho Center Station Existing Conditions at Improvement Locations

North Central Texas Council of Governments DART Red \& Blue Line Corridors Last Mile Connections

EXCEPT BUSES

R5-1

Replace the existing "Rail Station Access" sign with a fence-mounted sign. Mount the sign parallel to the fence facing the sidewalk instead of perpendicular to the fence. (The existing sign appears to direct pedestrians to jump the fence or go around it).

ADA ramp has too long of an uninterrupted grade for people using manual wheelchairs. Level platform breaks for resting locations would require-lengthening the ramp and necessitate extensive additional excavation.

Create a more direct path between west end of bus loop and pedestrian tunnel to encourage its use. Worn path in landscaping here shows pedestrian desire line. Build new crosswalk across bus loop and stairs down to pedestrian tunnel path (longer path already exists for ADA compliance). Consolidate existing bus stops along the bus loop if necessary to make space for crosswalk.

Not for

Construction
FIGURE 2B-1.3 DECEMBER 2020

\& Picture at upper right taken from this location at left, where damaged fence and box used as stepping stool indicate existing pedestrian demand for this travel route.

Not for Construction

Number	Description
$\mathbf{1}$	Correct pedestrian trip hazard．
$\mathbf{2}$	Relocate bus stop to the far side of the crosswalk to ensure pedestrian safety．
$\mathbf{3 - 5}$	Update pedestrian warning signs to meet MUTCD standards．The existing signs are fading，have the wrong panel shape，and do not have supplemental arrow plaques as required to meet MUTCD standards．
$\mathbf{6}$	Install pedestrian lighting along the Central Trail near the station．
$\mathbf{7}$	Update＂DO NOT ENTER＂signs to meet MUTCD standards．
$\mathbf{8}$	Correct pedestrian trip hazard．
$\mathbf{9}$	Install median fence along Spring Valley Road in front of DART station to ensure pedestrians cross at the crosswalks．

Legend

Sidewalk／Crosswalk
－Existing
Regional Veloweb
－Existing
－－Proposed

Lモニ Enc｜neティinc

Spring Valley Station Existing Conditions at Improvement Locations

Relocate bus stop on southbound Lingco Drive to the far side of the crosswalk so buses do not obstruct visibility of crossing pedestrians.

DRAFT - Not for Construction

Replace non-standard signs with R2-1 signs from MUTCD. Signs should be retro-reflective for retro-reflective for
increased nighttime increased nighttime
visibility. The sign pane visibility. The sign panel shall be diamond-shaped instead of having an image of a diamond-shaped sign on a rectangular panel. Uniform signs reinforce driver respect as legitimate traffic control devices.

Spring Valley Station Existing Conditions at Improvement Locations

"DO NOT
ENTER" signs to MUTCD standard with

$<$ Example of median fencing on arterial. (Note that the picture shown is only an example for reference, and no specific vendors are endorsed).
nage from Seagull Concrete and Fence, ocean City, MD.
https://www.facebook.com/SeagullfenceConcrete LLC/Videos/1749627818436692/

FIGURE 2C-1.3 MAY 2020

3.2 Half-Mile Area Recommendations

Figure 1C-2, Figure 2A-2, Figure 2B-2 and Figure $\mathbf{2 C - 2}$ on pages 22,24 and $26-27$ identify recommended high, medium- and low-prionity improvements as separate construction packages foreach station's half-mile area in Richardson. These figures are collectively referred to as phasing maps. High-prionity improvements should be considered for Phase 1 of construction at each station. As funding is available the medium and low-priority improvements should be implemented either with the Phase 1 improvements or as part of future phases.
The legend for each map includes a brief summary of opinions of probable construction cost for each phase and station, which are described in greater detail in Section 3.3.
For additional context, Appendix I contains detailed maps of the recommendations for each station's half-mile area, including existing, planned, and funded regional and local shared use paths, as well as existing, planned and funded on-street bic ycle networks.
In each phasing map, existing sidewalks are shown in light blue. The density of individual parcels' population plus employment are shown in grayscale, with darkercolors representing higher values.
Proposed sidewalk and crosswalk improvements are shown in multiple colors, according to the assigned prionity: red for high-priority (Phase 1), orange for medium-priority (Phase 2), and light pink for low-prionity (Phase 3). Gaps to remain are shown in dark pink. For more details about these categories, refer to Appendix F.

Each high- medium- and low-prionty improvement, a long with all gaps to remain, are indicated by the boxed number labels neareach improvement location. The lower right comer of each phasing map includes a legend that describesthe abbreviations in the improvement ID codes, which can be used to cross-reference the improvement matrices that a ppear in Appendix J.

For solid red, orange, or light pink lines, the recommended improvement for a sidewalk gap is either a new or repaired 5 -foot wide sidewalk or a new 10 -foot shared use path along the length shown. Repairs are noted in the matrix notes for each improvement in Appendix J, and assume full removal of damaged, existing sidewalk prior to replacement.
For crosswalk gaps, the type of improvement recommended is shown with numbered circles located near each crosswalk. The numbers in the circles comespond to the legend of possible pedestrian safety countermeasures appearing at the upper right of the figure. More details about these improvements can be found in Section 2.6 , as well as in Appendix C, Appendix \mathbf{D}, and Appendix J. Treatments recommended somewhere on the phasing maps have a red boxaround them in the legend foreasier reference

The "Half Mile Area Improvements Matrices" appearing in Appendix J for each station list for each improvement the owner, improvement type, location, length, notes, prionity score, and (in the case of high priority improvements not built by others) the opinion of probable construction cost. Additional information useful for interpreting the tables in AppendixJ may be found in Appendix I.

3.2.1 CityLine Bush Station (Half-Mile Area)

Figure 1C-2 on page 22 shows the recommended improvements in the half-mile area around the Cityline Bush Station. Central Expy (U.S. 75), the President George Bush Tpk (SH 190) and K Ave/N Plano Rd all pose boundaries to multi-modal access to the station. While the station is located just south of the Ric hardson City line formed by the PGBT, new transit-oriented residential development has occurred north of the PGBT in Plano, with other undeveloped parcels expected to bring more such development. The curent configuration of the Park \& Ride lotslocated below the PGBTbridge structures is oriented primarily to serve DART riders driving to the station, with fewer accomodations for pedestrian and bicycle trips through the large parking lots.

Several sidewalks and connecting crosswalks should be built through and around the Park \& Ride lots below the PGBT bridges. The high posted speed limits along the PGBT frontage roads create the need for high-visibility crosswalks. Therefore, pedestrian hybrid beacons are recommended at the Crawford Rd/Topridge Dr crossings of the PGBT frontage roads (1C-CB-CW-42, 1C-CB-CW-43, and 1C-CB-CW-59). Also, a pedestrian traffic signal is recommended for the crossing of the PGBT westbound frontage road just east of the DARTtracks(1C-CB-CW-45). The existing crosswalk ac ross the WBFR west of the tracks will be removed aspart of the Silver Line Construction, which isstill under design but will reconfigure other existing sid ewalks a nd crosswalks in a nd a round the station.

Three existing signalized intersections should receive pedestrian access improvements. Marked crosswalks and countdown, a c cessible pedestrian signals should be added at the intersections of Plano Pkwy with F Ave/Executive Dr and with K Ave. Though pedestrian indications are already present at the K Ave/N Pla no Rd intersection with the PGBT frontage roads, sidewalks (1C-CB-SW046, 1C-CB-SW-047, and 1C-CB-SW-061) need to be added so that pedestrian travel through these intersections can occur during all weather a nd for DART riders of different abilities.

Most of the recommended improvements south of the station in Richardson are anticipated for construction by others, eitheraspart of the SilverLine project, the ongoing development of CityLine, or other projects by the City of Ric hardson.

Additional details about other improvements recommended in Figure 1C-2, as well as challenges associated with the recommended gaps to remain, are included in the expanded narrative and matrix notes for Cityline Bush Station that can be found in Appendix I and Appendix J.

FTA DART Stations Last Mile Connections City Line Bush Station November 2020

Legend

DART Rail Station

- Railroad Track

Sidewalk

- Existing Sidewalk/Crosswalk Proposed Sidewalk/ 1 Richardson Crosswalk by Priority ${ }^{11} \begin{gathered}\text { Construction } \\ \text { Cost Estimate }\end{gathered}$ Crosswak by prioriy - Medium Low \$338,650 \$1,153,800 \$306,900 \$1,799,350
- Built by Others
- Gap to Remain Buffers
$\square 0.5$ Mile Buffer
F-T. 0.25 Mile Buffer

*Note: Sidewalk to be removed to mak way for DART Silver Line tracks.

Figure 1C-2 Construction Packages

Possible Pedestrian

 Safety CountermeasuresUnsignalized Crosswalk Improvements Hi Md Lo Oth

(2) (2) (2) (2) Raised Crosswak
(3) (3) (3) Advance "Yield Here" Sign
(4) (4) (4) (4) In-Street Pedestrian Crossing (5) (5) (5) (5) Curb Extension
(6) (6) (6) (6) Pedestrian Refige Island
(7) (7) (7) (7) $\begin{aligned} & \text { Rectangular Rapid Flasting } \\ & \text { Beacon }\end{aligned}$
(8) 8 (8) 8 Road Diet
(9) (9) (9) (9) Pedestrian Hybrid Beacon

Signalized Crosswalk Improvements
(10) (10) (10) 10 Add Marked Crosswalks \&

(11) (11) (11) (11) Trafic Signal

[^0]
3.2.2 Galatyn Park Station (Half-Mile Area)

Figure 2A-2 on page 24 identifies the recommended improvements in the half-mile area around the Galatyn Park Station. Central Expy (U.S. 75) curently blocks all bic ycle and pedestrian travel to and from the west since the only bridge that crosses it within the half-mile area, on Galatyn Pkwy, does not include sidewalk. A DARTshuttle (Route 824) connects the station to areas west of U.S. 75 at 15 - to 20 -minute intervals during weekday peak hours.

The City of Richardson should consider improved bicycle and pedestrian access across U.S. 75. Many pedestrians and cyclists would likely prefer the increased convenience of a sidewalk connection over the 15 - to 20 -minute intervals provided by DART Bus Route 824 . A sidewalk connection would also be available at mid-day, night or on weekends.

The Galatyn Pkwy bridge would either need to be widened to provide sidewalk, or a road diet would need to be implemented. Narrowing lanesfrom 11 feet wide to 10 feet wide could provide space fora minimal 4 -ft wide sidewalk on one side of the bridge only.

A better altemative for a road diet may be to reconsider the lane geometry of the tight-diamond interchange. Northbound and southbound vehicular through movements from the ramps are unnecessary and can be eliminated. The interchange could then potentially be converted to a diverging diamond interchange (DDI) configuration with a single lane in each of the eastbound and westbound directions.

This configuration would require a median, but sidewalk could then be provided either along one side of the bridge or (as is relatively common in the DDI configuration) in the median between opposing lanes, each traveling in a counterflow direction. Drainage, lane striping, and signal phasing changes would also be neeed on the bridge approaches and ramp intersections.
Geometric and capacity studies would be needed to validate the concept, incorporating projected future conditions with build-out of adjacent developments. However, the concept holds potential since DDI's frequently outperform traditional tight diamond interchanges by a large margin and/orwith fewerlanes.
In addition to the bridge improvement and new sidewalk in some locations to fill network gaps, other recommended improvements include:

- New crosswalks with rectangular rapid-flashing beacons (RRFB's) for crossing Glenville Dr at two locations (improvement 2A-GP-CW-67 and 68) across a long stretch where the street has no other controlled crossings. The northem location would connect existing sidewalk from the station to the Infosys comorate campus, but would require coordination with the private property owner to extend sidewalk to the build ing front doors.
- Marked crosswalks, pedestrian ramps, pedestrian waming signs, yield lines, advanced yield signing and/or crosswalk lighting for several locations along N Collins Blvd, E Lookout Drand Lakeside Blvd (improvements 2A-GP-CW-08-09, 12-13, 58, 80 and 83). In several of these locations, white crosswalk lines are required parallel to existing brick crosswalks to establish a visible and legally enforc eable crosswalk.
- Marked, signed, and lit crosswa lks a cross Pa lisades Blvd at South Gate Dr (improvements 2A-GP-CW-26 and 27). Consider curb extensions or a median refuge island in the wide $34-\mathrm{ft}$

Station

November 2020

Legend	
这 DART Rail Station	
- Railroad Track	
Sidewalk	
- Existing Sidewalk/Crosswalk	
Proposed Sidewalk/ 1 Crosswalk by Priority	Construction Cost Estimate
- High	\$3,550,700
- Medium	\$532,400
Low	\$2,529,500
	\$6,612,600
- Built by Others	
- Gap to Remain	
Buffers	
0.5 Mile Buffer	
0-30.25 Mile Buffer	

Existing Residential and Employment Population (Number of
 People)
 Ppl
 $\begin{array}{ll} & 0-234 \\ \\ & 235-1049\end{array}$
 $1050-2586$ $2587-5364$
 2587-5364 $\quad 5365-10339$

Note: Existing path is a well-graded but soft-surface walking trail. If adjacent development does not upgrade it to a concrete sidewalk, consider upgrading and/or building new sidewalk closer to the Glenville Dr curbline.

Figure 2A-2 Construction Packages

Possible Pedestrian

 Safety CountermeasuresUnsignalized Crosswalk Improvements Hi Md Lo Oth
(1) (1) (1) 1) Crosswalk Signs, Markings \&

(2) (2) (2) (2) Raised Crosswalk

(3) (3) 3) Advance "Yield Here" Sign
(4) (4) (4) In-Street Pedestrian Crossing

(6) 6 6 Pedestrian Refuge Island
(7) (7) 7) Rectangular Rapid Flashing
(8) 8) 8 Road Diet
(9) (9) 9 Pedestrian Hybrid Beacon

Signalized Crosswalk Improvements
Add Marked Crosswalks \&
Provide Countdown, Accessible Pedestrian Signals
(1) (11) (11) (11) Traffic Signa

[^1]Figure 2B-2 on page 26 identifies the recommended improvements in the half-mile area around the Arapaho Center Station. Central Expy (U.S. 75), Collins Blvd, and Arapaho Rd are all arterials that provide bariers to multi-modal travel to and from the station.

Coord ination between the City, DART, and adjacent private property owners would be required to construct a sidewalk connection southwest of the train platform to connect more directly to the U.S. 75 northbound frontage road and the businesses located there (improvement 2B-AC-SW-37). Also highly recommended is the construction of sid ewalk fronting several of those businessesfarther south (improvement 2B-AC-SW-37).

A shared use pathway as part of the Regional Veloweb network is planned along the Kansas City Southem rail line entering the north part of the study area and connecting to Collins Blvd west of U.S. 75 (improvement 2B-AC-VW-V01). A sidewalk connecting this improvement and the existing sidewalk along the west side of Collins Blvd to the sidewalk along the U.S. 75 southbound frontage road should be constructed aswell (improvement 2B-AC-SW-03).

The City of Richardson plans to implement a road diet on the Collins Blvd bridge that will allow for wider sidewalks and protected bike lanes. The project should include signed and marked crosswalks with pedestrian-actuated rectangularrapid-flashing beacons (RRFB's) for crossing each of the four ramps between Collins Blvd and the U.S. 75 frontage roads, since the geometry of these ramps is conducive to high vehic ular speeds.
Two new crosswalks are recommended for crossing Richardson Dr. One is recommended south of Monte Blaine Ln (improvement 2B-AC-CW-55), where the existing sidewalk on the west side ends, so the crosswalk will provide an altemate route via new and proposed sidewalk on the west side. The other crosswalk location (improvement 2B-AC-CW-53) aligns with an existing break in the hedges that a ligns with the east end of Jolee St.
Both crosswalks must be designed carefully to maximize sight distance around the hedges and the tree-lined horizontal curves in the roadway geometry. Both should include yield lines and "Yield Here to Pedestrians" signing in each direction to mitigate risk of dual threat situation for pedestrians. Give strong consideration to installing pedestrian-actuated rectangular rapid flashing beacons (RRFB's), particularly due to the sight distance limitations. A road diet to introduce curb extensions and/or a median refuge island for pedestrians might also be considered to increase available pedestrian sight distance

Additional details about other improvements recommended in Figure 2B-2, as well as challenges associated with the recommended gapsto remain, are included in the expanded narrative and matrix notes for Arapaho Center Station that can be found in Appendix I and Appendix J

3.2.4 Spring Valley Station (Half-Mile Area)

Figure 2C-2 on page 27 identifies the recommended improvements in the half-mile area around the Spring Valley Station. U.S. 75, Spring Valley Rd, and Centennial Blvd are majorarteria ls that pose bamiers to bicycle and pedestrian travel, though signalized crossings generally provide good access opportunities. Access to the transit-oriented development east of the station is good with new sidewalk, though somewhat indirect. Several gaps in the sidewalk are present along the U.S. 75 frontage roadsand along the neighborhood streets east of Greenville Ave.

In addition to building sidewalk to fill gaps in the network, the recommended improvements include:

- At the west end of McKamy Springs Ct, consider providing short break in the existing fence to provide a sidewalk connection to the Central Trail. This would provide a shorter walking distance to the station for many apartment and townhome residents to the east. The City of Ric hardson indic a tes they will need to work with the property owner on whetherthey have a desire for this improvement.
- New or improved crosswalks a cross Lingco Dr between the station platform a nd park \& ride lot, across Sheman St at Lingco Dr, and across Greenville Ave at Pittman St (improvements $2 \mathrm{C}-\mathrm{SV}-\mathrm{CW}-16,17$ and 38). Yield lines and signing, and a pedestrian refuge island are recommended at the Lingco Dr and Greenville Ave crossings, while pedestrian-actuauted RRFB's are recommended at Lingco Dr. The Lingco Dr crossing should be coordinated with DART, as disc ussed in Section 3.1.4.
- New yield lines and signing for the two lanes in each direction approaching the existing signed and marked crosswalk across Greenville Ave at E Phillips St, near the northeast halfmile area boundary (improvements 2C-SV-CW-30 and 31). Consider adding a pedestrian hybrid beacon if warmanted by a study of pedestrian volumes during a rival and dismissal times for the First Baptist Church of Hamilton Park and the Richardson ISD Math Science Technology magnet school, both located nearby to the east.
- White crosswalk lines parallel to the existing pattemed concrete crosswalk across Buckngham Rd at the Central Trail crossing (improvement 2C-SV-CW-27). Add pedestrian waming signs and yield lines and signing. Considera traffic signal, partic ularly in conjunction with the future extension of the Central Trail south of Buckingham Rd. A full traffic signal should be considered instead of a RRFB or pedestrian hybrid beacon due to the adjacency to the existing DART railroad crossing gates and potential driver confusion with altemative mea nings of fla shing red lights.

As discussed in Section 3.1.4, some pedestrians were observed crossing Spring Valley Rd directly below the rail overpass instead of at the adjacent signa lized crosswalks 200 feet in either direction. A crosswalk improvement for more direct pedestrian travel along the trail would pose an undue constraint on vehicular signal coordination given the short distance to the signalized crosswalks. The City of Richardson should coordinate with DART to consider adjusting the location of bus stops and installing aesthetic anti-climb median fencing (improvement 2C-SV-GR-25) along the median of Spring Valley Rd in front of the DARTstation to ensure pedestrians cross at the crosswalks.
Additional details about other improvements recommended in Figure 2C-2, as well as challenges associated with the recommended gaps to remain, are included in the expanded narrative and matrix notes for Spring Valley Station that can be found in Appendix I and Appendix J.

FTA DART Stations Last Mile Connections Arapaho Center

Station

November 2020

Legend

国 DART Rail Station

- Railroad Track

Sidewalk

—Existing Sidewalk/Crosswalk

Proposed Sidewalk/ Crosswalk by Priority	Construction Cost Estimate
- High	$\$ 481,600$
- Medium	$\$ 513,800$
\quad Low	$\underline{\$ 1,501,100}$
	$\$ 2,496,500$

- Built by Others
-Gap to Remain
Buffers
0.5 Mile Buffer
0.25 Mile Buffer

Figure 2B-2 Construction Packages

Possible Pedestrian

Safety Countermeasures
Unsignalized Crosswalk Improvements Hi Md Lo Oth
(1) (1) (1) 1) Crosswalk Signs, Markings \&

(2) (2) (2) 2) Raised Crosswalk

(3) (3) (3) Advance "Yield Here" Sign
(4) (4) (4) (4) in-Street Pedestrian Crossing

(6) (6) (6) Pedestrian Refuge Isand

(9) (9) (9) (9) Pedestrian Hybrid Beacon

Signalized Crosswalk Improvements

$$
\begin{aligned}
& \text { (10) (10) } 10 \begin{array}{l}
\text { Add Marked Crosswalks \& } \\
\text { Provide Countdown, Accessible } \\
\text { Pedestrian Signals }
\end{array} \\
& \text { (11) (11) (11) } 11 \text { Traffic Signal }
\end{aligned}
$$

[^2]FTA DART Stations Last Mile Connections Spring Valley Station November 2020

Legend

国 DART Rail Station

- Railroad Track

Sidewalk

— Existing Sidewalk/Crosswalk

Figure 2C-2 Construction Packages

Signalized Crosswalk Improvements

(11) (11) (11) 11 Traffic Signal

Improvement Code Legend (See Matrix)
$2 \mathrm{C}-$ SV-SW-01
$2 \mathrm{C} \longleftarrow$ Station Number
$\mathrm{SV} \longleftarrow$ Station Abbreviation
$\mathrm{SW} \longleftarrow$ Sidewalk (or CW for Crosswalk)
$01 \longleftarrow$ Improvement Number (Matches1 on Map)

Prop Side Proposed Sidewalk/ - High Low

- Built by Others -Gap to Remain Buffers
0.5 Mile Buffer
0.25 Mile Buffer

```
Existing Residential and
    Employment Population (Number of
    Peop
Ppl
    \square 0-234
        235-1049
        1050-2586
    \square 2587-5364
```

\qquad

3.3 Half-Mile Area Opinions of Probable Construction Cost

In addition to the Opinions of Probable Construction Cost (OPCC's) developed for the on-site mprovements at DART Stations in Section 3.1, OPCC's were developed for nearly 1,100 separate high-priority improvements totalling nearly 58 linear miles in the half-mile areas surround ing each of the 28 DARTstations within the study area.

OPCC's were developed in the half-mile areas for each high-pronty improvement that was not assumed by City staff to be built by others (as part of a nother project by a developer, the City, TxDOT, etc.) in the near future. Aggregate OPCC's were developed for low- and medium-priority improvements by extra polating a verage costs from the high-priority improvements.

Appendix G detailsthe a ssumptionsthat were made in orderto provide high-quality, yet prelimina ry OPCC's. Detailed unit price and quantity estimates for the individual high-priority Phase 1 half-mile area improvements are listed in Appendix K which supplement the OPCC's for the proposed DART property improvements in Plano provided in Appendix H. A summary of how overall cost estimates for low- and medium-priority Phase 2 and Phase 3 improvements were derived is also included in Appendix K

The estimated cost of all projects in Richardson is summarized in Table 2. For convenience, grand total costs are provided in both 2020 dollars and 2025 dollars, assuming for 2025 a 4% annual escalation rate for all three phases. Costspresented in all other figures, tables, and appendices of this report reflect 2020 dolla rs only.

Table 2: Summary Opinion of Probable Construction Cost for Improvements in Richardson

Station No.	Station Area	DART Station Property	Half-Mile Area				
			High Priority (Phase 1)	Medium Prority (Phase 2)	Low Pronity (Phase 3)	Grand Totals (2020)	$\begin{gathered} \text { Grand } \\ \text { Totals (2025) } \end{gathered}$
1 C	CityLine Bush	\$83,000	\$338,650	\$1,153,800	\$306,900	\$1,882,350	\$2,290,200
2A	Galatyn Park	\$0	\$3,550,700	\$532,400	\$2,529,500	\$6,612,600	\$8,045,300
2B	Arapaho Center	\$169,800	\$481,600	\$513,800	\$1,501,100	\$2,666,300	\$3,244,000
2C	Spring Valley	\$239,900	\$225,500	\$215,500	\$1,265,600	\$1,946,500	\$2,368,300
City of Ric hardson Totals		\$492,700	\$4,596,450	\$2,415,500	\$5,603,100	\$13,107,750	\$15,947,800

As shown in Table 2, the 2020 total estimate for all improvements in Richa rd son is a bout $\$ 13.1$ million. High-prionity Phase 1 multi-modal access improvements within the half-mile station areas inside Richardson City limits are estimated to cost about $\$ 4.6$ million. Of this total, about $\$ 493,000$ would be the responsibility of DART on its station properties.

Medium- and low- prionty costs forPhases 2 and 3 were estimated by developing more genera lized unit costs for five types of improvements, ba sed on all high-prio rity improvements City-wide. Tables 3-6 on pages 29-30 illustrate this procedure

The first row in each table lists the total linear feet of high-priority sidewalk, sidewalk repair, and Veloweb/shared use path construction City-wide, along with the respective cost totals. It also lists the overall count and cost of crosswalks, classified as simple crosswalks (implemented with signs and markingsony) orothercrosswalks (which include beacons, islands, orsignals). The bottom two rows of each table show how the same unit rates per linearfoot or per each crosswalk were used to extrapolate overall cost estimates for the medium- and low-prionty improvements without estima ting costs for individual locations in those categories.
For reference, the unit price of 5 ft -wide sidewalk a lone was assumed at $\$ 35$ perlinearfoot. The allinclusive price per linear foot of sidewalk improvements (including items such as pedestrian ramps, utility relocation, retaining walls, driveway reconstruction, contingencies, etc.) was calculated for each of the high-prionty improvements, ranging between a low of about \$44/ LF to a high of about $\$ 609 / L F$. Lower unit costs were associated with simple sidewalk improvements without obstacles, while higher unit costs were associated with higher densities of challenging conditions, especially along short segments.

Table 3: Opinion of Probable Construction Cost forCityLine Bush Station Half-Mile Area (Richardson Only/Excludes Plano)

* High priority cost opinions are based on field visits and bid item breakdowns, but without the benefit of survey, subsurface utility investigation, or other engineering information typically available for semi-final design.
**Medium-and low-prionity cost opinions are not based on individual improvements, but instead extrapolated from cost/linear foot calculations for high-prionity improvements; actual costs may vary significantly, especially for crosswalk improvements.
*** Costs for All Richardson include costs attributed to DART and others in calculating average costs per unit length or crosswalk, while excluding costs for improvements on the Galatyn Pkwy bridge over U.S. 75 , and therefore do not match other totals shown in Table 2 .
Table 4: Opinion of Probable Construction Cost for Galatyn Park Station Half-Mile Area

* High priority cost opinions are based on field visits and bid item breakdowns, but without the benefit of survey, subsurface utility investigation, or other engineering information typically available for semi-final design.
**Medium- and low-prionty cost opinions are not based on individual improvements, but instead extrapolated from cost/linear foot calculations for high-prionty improvements; actual costs may vary significantly, especially for crosswalk improvements. ${ }^{* * *}$ Costs for All Richardson include costs attributed to DART and others in calculating average costs per unit length or crosswalk, while excluding costs for improvements on the Galatyn Pkwy bridge over U.S. 75, and therefore do not match other totals shown in Table 2 .

* High priority cost opinions are based on field visits and bid item breakdowns, but without the benefit of survey, subsurface utility investigation, or other engineering information typic ally available for semi-final design.
** Medium-and low-prionity cost opinions are not based on individual improvements, but instead extrapolated from cost/linear foot calculations for high-prionity improvements; actual costs may vary significantly, especially for crosswalk improvements ** Costs for All Richardson include costs attributed to DART and others in calculating average costs per unit length or crosswalk, while excluding costs for improvements on the Galatyn Pkwy bridge over U.S. 75 , and therefore do not match other totals shown in Table 2

Phase/ Priority	Table 6: Opinion of Probable Construction Cost for Spring Valley Station Half-Mile Area												Other Crosswalks (with Beacon, Island or Signal)			Total Cost
	Sidewalks			Sidewalk Repairs			Veloweb/ Shared Use Paths			Simple Crosswalks						
	Lin. Ft	Cost	~/LF	Lin. Ft	Cost	~\$/LF	Lin. Ft	Cost	\sim - LF	\#	Cost	~\$/EA	\#	Cost	~/EA	
High Priority (All Pichardson)	5,175	\$ 905,600	\$ 175	1,125	\$89,100	\$80	120	\$39,500	\$330	4	\$ 55,100	\$ 13,775	10	\$ 633,400	\$63,340	***
Phase 1/ High*	1,530	\$ 357,200	-	150	\$ 23,600	-	-	-	-	1	\$ 40,000	-	2	\$ 107,800	-	***
Phase 2/ Medium**	325	\$56,900	\$175	1,190	\$ 95,200	\$80	-	-	\$330	-	-	\$ 13,775	1	\$63,400	\$63,340	\$ 215,500
Phase 3/ Low**	6,824	\$ 1,194,200	\$ 175	100	\$8,000	\$80	-	-	\$ 330	-	-	\$ 13,775	1	\$ 63,400	\$ 63,340	\$ 1,265,600
	8,679	\$ 1,608,300		1,440	\$126,800		-			1	\$ 40,000		4	\$ 234,600		**

* High prionity cost opinions are based on field visits and bid item breakdowns, but without the benefit of survey, subsurface utility investigation, or otherengineering information typically a vailable for semi-final design.
Medium-and low-prionity cost opinions are not based on individual improvements, but instead extrapolated from cost/linear foot calculations for high-prionity improvements; actual costs may vary signific antly, especially for crosswalk improvements. * Costs for All Ric hardson include costs a ttributed to DARTand others in calculating average costs per unit length or crosswalk, while excluding costs for improvements on the Galatyn Pkwy bridge over U.S. 75 , and therefore do not match other totals shown in Table 2 .

APPENDICES

APPENDIX A: Field Work Dates
 APPENDIX B: Data Collection Maps \& Forms

CityLine Bush Station
Galatyn Park Station
Arapaho CenterStation
Spring Valley
APPENDIX C: Crosswalk Improvement Evaluation Details
APPENDIX D: Crosswalk Improvement Selection Tables
CityLine Bush Station
Galatyn Park Station
Arapaho Center Station
Spring Valley
APPENDIX E: Half-Mile Area Improvement Prioritization Initial Tial Methodology Details

APPENDIX F: Half-Mile Area Improvement Prioritization Final Methodology Details

APPENDIX G: Cost Estimating Details

APPENDIX H: Estimated Quantities \& Opinions of Probable Construction CostStation Property Improvements

CityLine Bush Station
Galatyn Park Station
Arapaho Center Station
Spring Valley
APPENDIX I: Half-Mile Area Recommendation Details \&
Detailed Improvement Mapping
CityLine Bush Station
Galatyn Park Station
Arapaho Center Station
Spring Valley

APPENDIX J : Half-Mile Improvement Matrices

CityLine Bush Station
Galatyn Park Station
Arapaho Center Station
Spring Valley
APPENDIX K: Estimated Quantitiies \& Opinions of Probable Construction Cost-Half-Mile Improvements

CityLine Bush Station
Galatyn Park Station
Arapaho Center Station
Spring Valley
ngineers, Inc.

APPENDIX A: Field Work Dates

Cimes 0
ARS
DART Red \& Blue Line Corridors Last Mile Connections
Engineers, Inc.

DART Red \& Blue Line Last Mile Connections Project

Project Schematic / Field Work Schedule

APPENDIX B: Data Collection Maps \& Forms

ARS
DART Red \& Blue Line Corridors Last Mile Connections
Engineers, Inc.

DART Red \& Blue Line Last Mile Connections Project

Field Data Checklist - Stations

One PB on corner for (Zoom out $1 / 2$ block beyond station perimeter)

> Bike Bike \quad or inserted below Parking ($\begin{aligned} & \text { Triphatard } \\ & \text { reachPB }\end{aligned}$
\qquad
lave sep. 6 y wide SB Routh W. Dr now exists (w/apt-parallel parking)

ADA ramp
Bad place for Dallas "BiG" sign...tan street to take photos
 - Parkinglunder Bridge Ped

 \square Both k-walks acioss
EBFR on ped recall (PB's nitworkins f) - PB doesnt work

Are any desire lines missing a marked crossing location on a perimeter street, especially if mid-block? (If Yes, note on sketch and add line with "New" link ID on Crossings Checklist) Note bike parking locations (covered vs. rack vs. bikeshare) No bi ke parking seen Do any travel routes differ significantly from linear desire lines? (but dockless bike Note car \& bus circulation patterns \& conflict points
Bike and ped desire lines continuously lit? (Note where if not)
Trip hazards? Yes, see notes
Landscaping barriers? One, see note (ADA barrier only) Fences? N
Absent ramps? N, but very few ramps have det. warn. Surf Bike/Pedestrian sight distance problems? N
Review questions (Post Construction Column) from p. 6-7 of Ped RSA Checklist Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps
nstructions : When coding/confirming sidewalk condition of "Nonexistant" on JPI to
sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybe
Trees? Yes
Slopes? 0%
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:
northside of street

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? may be
Trees? No
Slopes? 0.1 .
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

nstructions : When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybl
Trees? maybe/yes
Slopes? 2%
Other structures? No
Rail crossings? No
Business parking/access management issues? N_{0}
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist,
sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? May be
Trees? No
Slopes? No
Other structures? N_{0}
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps
 Renner to S. bound. Instructions: When coding/confirming sidewalk condition of "Nonexistant" on wB (west) sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybl
Trees? yes
Slopes? No
Other structures? No
Rail crossings? No
Business parking/access management issues? N_{0}
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:
construction

08107118
Cityline
LL. \& SS

Hes
plano Rd / K Ake
unite Tools du

DART Red \& Blue Line Last Mile Connections Project	Date	$817 / 18$
Field Data Checklist - Sidewalk Gaps	Station	city Line/Bush
	Staff Name	HB/CF
	Location	Plamo Priod: R.R. to

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? No
Underground utilities? Fibes/watcs
Trees? No cout side $a-5^{1}$)
Slopes? a
Other structures? Fime Hydrent
Rail crossings? N
Business parking/access management issues? \sim
Insufficient bridge width? \mathcal{N}
Take photos and notes to document

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles?
Underground utilities? +elephone cable
Trees?
Slopes?
Other structures?
Rail crossings?
Business parking/access management issues? Dwy across fron Fry's
Insufficient bridge width?
Take photos and notes to document.

Other Notes

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

QT/are to drainage
nstructions: When coding/confirming sidewalk condition of "Nonexistant" on Southride sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? Maybl
Trees? NO
Slopes? 0%
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width?
Take photos and notes to document.

Other Notes:
soutside

DART Red \& Blue Line Last Mile Connections Projec Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No

Underground utilities? maybe
Trees? No
Slopes? NO
Other structures? No
Rail crossings?
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

- uncovered utility
- open drainage pipe

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Betrem Rouich West D_{r} to instructions: When coding/confirming sidewalk condition of "Nonexistant" on JPJ sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles?
Underground utilities? May be
Trees? No.
Slopes? 2%
Other structures? No
Rail crossings? No
Business parking/access management issues? N_{0}
Insufficient bridge width? No
Take photos and notes to document

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on US 75 to RedMoon
sidewalk checklist, review the following and make notes here and/or on the (south)
(sith) sidewalk checklist,
sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? May be
Trees? $\quad N_{0}$
Slopes? No
Other structures? W_{0}
Rail crossings? NO
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

- brand new sw from ked Moon to

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
E, bound. sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.
(south: north)

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? N_{0}
Trees? N_{0}
Slopes? No
Other structures? $\quad N_{0}$
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? N_{0}
Take photos and notes to document. \downarrow

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? Maybe
Trees? No
Slopes? 0%
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps instructions: When coding/confirming sidewalk condition of "Nonexistant" on lastsidl q street sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles?
No
Underground utilities? maybe
Trees? No
Slopes? 0%
Other structures? No
Rail crossings? No
Business parking/access management issues? N_{0}
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? may be
Trees? N_{O}
Slopes? $0 /$.
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? NO
Take photos and notes to document.

Other Notes:

- construetion
- No Parking feny Time

DART Red \& Blue Line Last Mile Connections Projec Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on PBC to Heis Instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.
Utility poles?

$$
N_{0}
$$

Underground utilities?

Trees? No
Slopes? No
Other structures? N_{0}
Rail crossings? No
Business parking/access management issues? N_{0}
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:
east: west sides

Le Encाnexainc

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on ganage dew sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? Woy may be
Trees? Wo
Slopes? N_{0}
Other structures? N_{0}
Rail crossings? N_{0}
Business parking/access management issues? N_{0}
Insufficient bridge width? N_{0}
Take photos and notes to document. \square

Other Notes:

- const.

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps
 EPlano to Prime Time Ins Instructions: When coding/confirming sidewalk condition of "Nonexistant" on 1.6 B (ω lst) sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? Wo
Underground utilities? maybe
Trees? No
Slopes? No
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? N_{0}
Take photos and notes to document.

Other Notes:

- fire hyd

DART Red \& Blue Line Last Mile Connections Projec Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybe
Tress? No
Slopes? No
Other structures? N_{0}
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width?
Take photos and notes to document

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps
 vield (west)
nstructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybe
Trees? No
Slopes? No
Other structures? N_{0}
Rail crossings? No
Business parking/access management issues? N_{0}
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on Renner to S. bound sidewalk checklist, review the following and make notes here and/or on the
(east) sidewalk checklist,
sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? Mayfle
Trees? No
Slopes? No
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? 0

Take photos and notes to document.

Other Notes

```
08107118
    cityline
    L.L&S.S.
Renner Rd
Routh Creek to standard City Line
```

08107118
cityline
LLeSS
lity Line
Keffler to Routh creek
chand morth : south

 yes
 maybe

 No

 No
 No
 No
NO

- Const. on south side
- brand new sw from Keffler to city Apt. entrance

Peleton

Marathon to Routh cnuk (north)
yes (lighting)
keffler
Hicel to City Place (west)

yes (lighting) maybe	No
	maybe
No	No
No	No
No	No
w_{0}	No
No	No
No	No
	2
	- dog park

$$
\begin{aligned}
& 08107118 \\
& \text { Cityline } \\
& \text { LC\&SS }
\end{aligned}
$$

Hers, wilshire to Plamo Rd
maybe

No

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps \qquad

nstructions: When coding/confirming sidewalk condition of "Nonexistant " sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? may be (Fibor)
Trees? No (back 6-8')
Slopes? N_{0}
Other structures? N_{0}
Rail crossings? N_{0}
Business parking/access management issues? $\mathbb{N} \circ$
Insufficient bridge width? $\quad N / A$
Take photos and notes to document.

Other Notes:
may need to relocate signs and ups mail lox.
Eside: High slope bet? rybh and N. Drive of bwiding 801.
ESide: Trees and slope bet n Tybr and s. drive of buriding
720 .

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on Tolor
fow sidexistant sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? \sim
Underground utilities? Yes Fiber.
Trees? Yeb.
Slopes? Yeb.
Otherstructures? signs. Fine Hydrents.
Rail crossings? No
Business parking/access management issues?
Insufficient bridge width? N / A
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

nstructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? $N 6$
Underground utilities? muy be
Trees?
Slopes? $\quad N_{0}$
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? N/A
Take photos and notes to document

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps \qquad

Location S. Side Plamo prewy

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles?
Underground utilities? Yes. Fibar sprink lors
Trees? Some
Slopes? N
Other structures? signs
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? N / A
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

$$
\begin{aligned}
& \text { Date } 8 / 7 / 18 \\
& \text { Station C. } \angle 1 \beta \\
& \text { Staff Name } \frac{H B / C F}{\text { Location Central NBFR/多BFR }} \\
& \text { BPGBT to pano Puw }
\end{aligned}
$$

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Date
Station taff Name Location central Expy
nstructions : When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles?	NBFR
Underground utilities?	may be
Trees?	No
Slopes?	sighl
Other structures?	$N o$
Rail crossings?	

Business parking/access management issues? N o
Insufficient bridge width? at areck

Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.

Utility poles?	Nide
Underground utilities?	Nay he
Trees?	No
Slopes?	No
Other structures?	No
Rail crossings?	NO
Business parking/access management issues?	NO

Take photos and notes to document.

Other Notes

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

$$
\begin{aligned}
& \text { Date } \frac{8 / 7 / 18}{\text { Station } \frac{C L / B}{1+B / C F}} \\
& \text { Staff Name } \begin{array}{l}
\text { Location } \frac{190 \text { ELBFR NBFR }}{190} \text { to Red }
\end{array}
\end{aligned}
$$

Instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles?
Underground utilities?
Trees?
Slopes?
Other structures?
Rail crossings?
Business parking/access management issues? No

Insufficient bridge width?
Take photos and notes to document.
ther Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Stations \qquad
Sketch bike \& pedestrian observed travel \& desire lines on aerial photo inserted below (Zoom out $1 / 2$ block beyond station perimeter)

Are any desire lines missing a marked crossing location on a perimeter street, especially if mid-block? (If Yes, note on sketch and add line with "New" link ID on Crossings Checklist) Note bike parking locations (covered vs. rack vs. bikeshare) One lowerion, sonth e. Do any travel routes differ significantly from linear desire lines? So the en B...C Note car \& bus circulation patterns \& conflict points Buses on
Bike and ped desire lines continuously lit? (Note where if not). Bike and ped desire lines continuously lit? (Note where if not).
Trip hazards?
Landscaping barriers?
Fences?
Absent ramps? Central p/urform
Bike/Pedestrian sight distance problems?
Review questions (Post Construction Column) from p. 6-7 of Ped RSA Checklist Other Notes:

DART Red \& Blue Line Last Mile Connections Project
Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk
checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?

Circle items below and add notes/sketches as applicable.
Utility poles? N
Underground utilities? Time Worner Telecom UG
Trees? N

Slopes? N
Other structures? N
Rail crossings? On short segment of (ookout Dr
Business parking/access management issues? one dwy to cross (southern Econolodge)
Insufficient bridge width? N
Take photos and notes to document.
4

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.

Utility poles? Y

Underground utilities? Y
Trees? Landscaping bushes for trail
Slopes? Y ... stone near trail
Other structures? N
Rail crossings? Y-DART
Business parking/access management issues? New office/comn. bldg. west of
Insufficient bridge width? N tracks lacks access to station

Take photos and notes to document. Y

Other Notes:

DART Red \& Blue Line Last Mile Connections Project field Data Checklist - Sidewalk Gaps

nstructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?

Circle items below and add notes/sketches as applicable
Utility poles? N
Worldcom, Level 3
Underground utilities? Y. Telecomm., water. fire hydrants
Trees? N - minor brush clearing on $N E$ side
Slopes? mild slopes on Sw side - meandering unpaved trailhigher up
Other structures? N
Rail crossings? N
Business parking/access management issues? SW side has ex. x-walk acruss BCBS

Insufficient bridge width? N
Take photos and notes to document. -
dwy. Unpaves trail also. Dwy has rev center lane w/ white lines (not MUTCD appr.)
ther Notes

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? N
Underground utilities? Y water, Helecom
Trees? N
Slopes? Nexcept near Reqiden a Iun sign
Other structures? N
Rail crossings? N
Business parking/access management issues?
Insufficient bridge width? N
Take photos and notes to document.

Other Notes

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? m ay $b c$
Trees? No
Slopes? No
Other structures? No
Rail crossings? to
Business parking/access management issues? NO
Insufficient bridge width? $N 0$
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk
checklist, review the following and make notes here and/or on the sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? Yes
Underground utilities? Maybe
Trees? No
Slopes? No
Other structures? Yes (Signs)
Rail crossings? No
Business parking/access management issues?
Insufficient bridge width? No
Take photos and notes to document. \checkmark

Other Notes: Sidewalk with mix-use devologent?

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk
checklist, review the following and make notes here and/or on the sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? No
Underground utilities? Maybe.
Trees? Some. close to Central. (Screening bushes).
Slopes? No
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document. \checkmark

Other Notes:

Other Notes:
sidewalk with proposed mix-use developemt?
nstructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk
checklist, review the following and make notes here and/or on the sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? Yes (10' foomn Curb)
Underground utilities? Yes (S.B.C.)
Trees? No
Slopes? NO
Other structures? Yes (Signs)
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document. \checkmark.

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? May be
Trees? YeS
Slopes? No
other structures? No
Rail crossings? No
Business parking/access management issues? NO_{O}
insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project ield Data Checklist - Sidewalk Gaps
nstructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Gircle items below and add notes/sketches as applicable.

Utility poles? Yes
Underground utilities? May be
Trees? No
Slopes? No
other structures? No_{0}
Rail crossings? $\quad N$
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes: Sidewalk with new development?

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

nstructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? No
Underground utilities? Maybe.
Trees? No
Slopes? No
Other structures? N
Rail crossings? Wo
Business parking/access management issues? No
nsufficient bridge width? \quad o
Take photos and notes to document. \checkmark

Other Notes:

DART Red \& Blue Line Last Mile Connections Project
Field Data Checklist - Sidewalk Gaps

Location Eupie between Soueh Gate 2 G tre
nstructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk Privenay of . checklist, review the following and make notes here and/or on the sidewalk checklist. Palisade Central I

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.

Circle items below and add notes/sketches as applicable.	S
Utility poles?	
Underground utilities?	N
Trees? Maybe	Maybe
Slopes?	some
Other structures? $/ \mathrm{N}$	N
Rail crossings? /V	N
Business parking/access management issues? N/	
Insufficient bridge width? N	N
Take photos and notes to document. \checkmark	\checkmark
Other Notes:	

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps
nstructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewak checklist, review the following and make notes here and/or on the sidewalk checklist

What challenges are there to the feasibility/practicability of sidewalk?

Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? No
Trees? No
Slopes? No
other structures? No
Rail crossings?
Business parking/access management issues? No
Insufficient bridge width? Yes

Take photos and notes to document

Other Notes

FTA DART Stations Last Mile Connections Arapaho Station

FTA DART Stations
Last Mile Connections
Arapaho Station
February, 2018

[^3]-All lanes tor 2
ways steet

DART Red \& Blue Line Last Mile Connections Project
Field Data Checklist - Sidewalk Gaps
nstructions : When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?

Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybal - san. Sewer manhole th
Trees? No
Slopes? 0
Other structures? No
Rail crossings? No
Business parking/access management issues? No - 2 dwiy to cross
Insufficient bridge width? No
Take photos and notes to document

Other Notes:
DAFK sigh

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

sidewalk checklist.

Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybe-sprinkles, solo power irrigation, water
Trees? les
Slopes? No
Other structures? No
Rail crossings?
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document

Other Notes:

45 mph

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

$$
\begin{aligned}
& \begin{array}{r}
\text { Date } \\
\text { Station } \frac{o 8 / 16 / 18}{\text { Arapaho }} \\
\text { Staff Name } \\
\text { Location } \frac{\text { Josh/selena }}{\frac{N B F R}{\text { Arapaho to } 10}} \\
\text { so BBQ } \\
\text { "Nonexistant" on } \\
\text { eand/or on the side }
\end{array}
\end{aligned}
$$

nstructions : When coding/confirming sidewalk condition of "Nonexistant" sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? mange - fibre optic
Trees? Yes -roots
Slopes? No
Other structures? NO
Rail crossings? NO
Business parking/access management issues? No
Insufficient bridge width? NO
Take photos and notes to document.
other Notes:

$$
45 \mathrm{mph}
$$

: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the

What challenges are there to the feasibility/practicability of sidewalk?

Utility poles? No
Underground utilities? No
Trees?

Other structures? NO
Rail crossings? N
Business parking/access management issues? No
Insufficient bridge width? NO
ther Notes:
parking pobler~

```
DART Red \& Blue Line Last Mile Connections Project
field Data Checklist - Sidewalk Gaps
Date \(\frac{8116118}{\text { Station Arapaho }}\)
Staff Name \(\frac{\text { Josh / Selene. }}{\text { Location tillerest }}\)
Instructions: When coding/confirming sidewalk condition of "Nonexistant" on Dorothy to Crreenuill
sdewalk checklist, review the following and make notes here and/or on the
north \(c\) sowth
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybe - drainage problem
Trees? NO
slopes? reed filter
Other structures? \(N_{0}\)
Rail crossings?
Business parking/access management issues?
Insufficient bridge width? No
Take photos and notes to document.
ther Notes:
```

Letincineminc

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on Dorothy to Greenville sidewalk checklist, review the following and make notes here and/or on the jouth 87 dl sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? NO
Underground utilities? maybl
Trees? ye S
Slopes? No
Other structures? No
Rail crossings? No
Business parking/access management issues? \sim_{0}
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:
Wall

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Date 8/16/18
Station Arapaho Rd
Staff Name HB/LL
Location Greervill Ave w side bet n porking to + as collins.
nstructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? may be
Trees? Some
Slopes? some
Other structures? signs
Rail crossings?
Business parking/access management issues? no
Insufficient bridge width? N / A
Take photos and notes to document.

Other Notes:

$$
\begin{aligned}
& \text { Next to the rail line. No trip Gen / Atruct }=\text { to } \\
& \text { serve. Low priority. }
\end{aligned}
$$

DART Red \& Blue Line Last Mile Connections Project

Field Data Checklist - Sidewalk Gaps

Date $8 / 16 / 18$
 Station Arupah
 Staff Name $H B / L L$
 Location $\frac{H B / L L}{\text { Scurity Row }}$ Sor side

nstructions: When coding/confirming sidewalk condition of "Nonexistant" on Halfo or to Browser Re sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? N_{0}
Underground utilities? many be
Trees? Mo
Slopes? n o
Other structures? no
Rail crossings? no
Business parking/access management issues? no
Insufficient bridge width? N / a
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

$$
\begin{array}{r}
\text { Date } \frac{8 / 16 / 18}{\text { Station }} \begin{array}{l}
\text { HB/LL Arupaho } \\
\text { Staff Name } \\
\text { Location Primary Route } B \quad \text { Alma to to }
\end{array}
\end{array}
$$

nstructions : When coding/confirming sidewalk condition of "Nonexistant" on Arap aho
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

$\begin{array}{ll} \text { Utility poles? } & \text { Eust side } \\ & \text { Yes } \end{array}$	west side No
Underground utilities? yes	No
Trees? yes	No
Slopes? $\quad N \sigma$	yes
Other structures? Fire Hydrent	open drwinage
Rail crossings? NO	No
Business parking/access management issues? No	他乐 N/A
Insufficient bridge width? . N/A	N/A

Take photos and notes to document.

Other Notes:

$$
\begin{aligned}
& \text { sidewalk bensible. } \\
& \text { Road closed unst } N \text { of Arapatro }
\end{aligned}
$$

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps \qquad ane Frocility

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk
Circle items below and add notes/sketches as applicable.
Utility poles? Yes, inside starage facility fernce
Underground utilities?
Yes, wack, fberoptic

Trees?
slopes? siope down o driveviay) is predty steep (up to 23.7% running slepe
Other structures?
mly fences

Rail crossings?

15 σ
Business parking/access management issues?
des if side walk is recomuluaed find 50 ution to avoid DAP
Insufficient bridge width? riders paking in Calypso or $B B Q$ parkng id's

$$
N / A
$$

Take photos and notes to document.

Other Notes:
 sidewak recommented aly is sidewalk apps fuo ang 7simaniageVd NE

Sketeh bike \& pedestrian observed travel \& desire lines on aerial photo inserted below: (Zoom out $1 / 2$ block beyond station perimeter)

Non-std

"do not enter
not std. jigne

arkung cot
covered bike
parking
watrip latis goat tral to station from
haz drd
lines missing a marked crossing location on perimeter street, especially
Are any desire lines missing a marked crossing location on a perimeter street, especially if mid-block? (If Yes, note on sketch and add line with "N
Do any travel routes differ significantly from linear desire lines?
Note car \& bus circulation patterns \& conflict points
Bike and ped desire lines continuously lit? (Note where if not)
Trip hazards?
Landscaping barriers?
Fences?

Absent ramps?

Bike/Pedestrian sight distance problems?
Review questions (Post Construction Column) from p. 6-7 of Ped RSA Checklist Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk (SS) checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? Maybe
Trees? Yes
slopes? Ho
Other structures? No
Rail crossings? No
Business parking/access management issues?
Insufficient bridge width? $\quad V_{0}$
Take photos and notes to document. \quad.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project
Field Data Checklist - Sidewalk Gaps

instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? Maybe
Trees? Yes
Slopes? No
Other structures? Yes (sighs)
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

Lee Encinerainc

DART Red \& Blue Line Last Mile Connections Projec Field Data Checklist - Sidewalk Gaps

Instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? Ma< bc
Trees? $N 10$
slopes? No
Other structures? Signs
Rail crossings? 1 o
Business parking/access management issues? No_{0}
Insufficient bridge width? No
Take photos and notes to document. \int '

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps
nstructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk
checklist, review the following and make notes here and/or on the sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? Some
Underground utilities? May be.
Trees? Yes.
slopes? Gome
other structures? ラighS,
Rail crossings? No
Business parking/access management issuesł 0
Insufficient bridge width? Y_{0}
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project	Date $0,28 / 18$
Field Data Checklist - Sidewalk Gaps	Station Sorihg vallu
	Staff Name Texas t
	Location Phillips to NBoundary

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybe
Trees? Yes
Slopes? numor
Other structures? No
Rail crossings? No
Business parking/access management issues?
Insufficient bridge width? 0
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project	Date	08128118
Field Data Checklist - Sidewalk Gaps	Station	Civy Valley
	Staff Name Location	Texas st. philliss to

nstructions: When coding/confirming sidewalk condition of "Nonexistant" on (cast sicle)
Instructions. When coding/conirming sidewalk condion of Nonexistant on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
circle items below and add notes/sketches as applicable.
Utility poles? No drainage culvert
Underground utilities? Yes - athawhynhipe exposed
Trees? Yes - leaning
Slopes? Yes
Other structures? N_{0}
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? N_{0}
Take photos and notes to document. L

Other Notes

```
DART Red \& Blue Line Last Mile Connections Project
Field Data Checklist - Sidewalk Gaps
```



```
Instructions : When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? maybe
Trees? YeS
Slopes? minor
Other structures? NO
Rail crossings? No
Business parking/access management issues?
Insufficient bridge width? No
Take photos and notes to document.
Other Notes:
```

DART Red \& Blue Line Last Mile Connections Project

Field Data Checklist - Sidewalk Gaps

nstructions: When coding/confirming sidewalk condition of "Nonexistant" on Phelep to Boundany sidewalk checklist, review the following and make notes here and/or on the (easts west hole) sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? NO
Underground utilities? Nalay be
Trees? No-east, Kel-Nest
Slopes? No
Other structures? No
Rail crossings? No
Business parking/access management issues? No - $2 d w y$
Insufficient bridge width? N_{0}
Take photos and notes to document.

$$
\begin{aligned}
& \text { Other Notes: } \\
& \text { th, fibre optic, irrigation sprinkler }
\end{aligned}
$$

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps \square
Hhalapro
nstructions: When coding/confirming sidewalk condition of "Nonexistant" sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? ha buricd cable, utility box, yu Horm
Trees? No
drainage
Slopes? MIMOR
Other structures? No
Rail crossings? No
Business parking/access management issues? 3 dwy, 5 ped ramp
nsufficient bridge width?
Take photos and notes to document.

Other Notes:

- Th
- 3' avail. b/w face of curb to tree

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

nstructions: When coding/confirming sidewalk condition of "Nonexistant" on to spring Valley sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? NO
Underground utilities? water meter
Trees? No
Slopes? 6.'1
Other structures? NO
Rail crossings? No
Business parking/access management issues? 10 drwy, Oramp
Insufficient bridge width? 0
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps
nstructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?

Underground utilities? drainage
trees? Ves
Slopes? numor
other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No

Other Notes:

constrution (jouth)

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Abrams to
Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the (north s. yo woth)
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? drainage
Trees? No
Slopes? Minor
Other structures? N_{0}
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

- Sewage gutter
- dlad end, no culde Jac

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on Abrams to Greenvilell

DART Red \& Blue Line Last Mile Connections Project

Field Data Checklist - Sidewalk Gaps
sidewalk checklist, review the following and make notes here and/or on the (morth : south) sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? drainage
Trees? No
slopes? Minor
Other structures? No
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? NO
Take photos and notes to document.

Other Notes:

- construction (south)
- parking isues
nstructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Abrams and E boundry Instructions: When coding/confirming sidewalk condition of "Nonexistant" on N side sidewalk checklist review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? No
Underground utilities? No
$\begin{array}{ll}\text { Trees? } & \text { No } \\ \text { Slopes? } & \text { No }\end{array}$
Other structures? Nu
Rail crossings? No
Business parking/access management issues? W_{0}
Insufficient bridge width? yes
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps and DART bus stop Esiac
Instructions: When coding/confirming sidewalk condition of "Nonexistant" on
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? No
Underground utilities? may be
Trees? $\quad N_{0}$
Slopes? NO
Other structures? signs
Rail crossings? No
Business parking/access management issues? $N \mathcal{O}$
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

and centennial biaseway Instructions: When coding/confirming sidewalk condition of "Nonexistant" on side sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? toti may be
Trees? Yes
Slopes? No
Other structures? Signs
Rail crossings? No
Business parking/access management issues? $\quad N o$
Insufficient bridge width? No
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps \qquad

Instructions: When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? No
Underground utilities? may be
Trees? Yes
Slopes? No
Other structures? signs
Rail crossings? No
Business parking/access management issues? No
Insufficient bridge width? No
Take photos and notes to document

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Instructions : When coding/confirming sidewalk condition of "Nonexistant" on sidewalk checklist, review the following and make notes here and/or on the sidewalk checklist.

What challenges are there to the feasibility/practicability of sidewalk? Circle items below and add notes/sketches as applicable.

Utility poles? No

Underground utilities? may be
Trees? No
Slopes? No
Other structures? No
Rail crossings? No
Business parking/access management issues? So me
Insufficient bridge width? $\quad{ }^{\circ}$
Take photos and notes to document.

Other Notes:

DART Red \& Blue Line Last Mile Connections Project Field Data Checklist - Sidewalk Gaps

Abrams
Instructions: When coding/confirming sidewalk condition of "Nonexistant"
sidewalk checklist, review the following and make notes here and/or on the
sidewalk checklist.
What challenges are there to the feasibility/practicability of sidewalk?
Circle items below and add notes/sketches as applicable.
Utility poles? No
Underground utilities? may be
Trees? No
Slopes? No
Other structures? No
Rail crossings? Wo
Business parking/access management issues? No
Insufficient bridge width? $\quad \infty$
Take photos and notes to document.

Other Notes:

At existing or proposed crosswalks without existing stop sign or signal control, potential improvements were evaluated based on guidance in the Federal Highway Administration's (FHWA) recent publication, "Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations", dated July 2018. Table 1 of this public ation, reproduced herein also as Table C1, includesenhanced guidance on countemeasures that can or should be considered for uncontrolled crosswalks with various combinations of vehicular speed, traffic flow, a nd number of lanes to be crossed. This appendix describes how the consultant team used Table C1 to produce consistent recommendations for crosswalk improvements, as well as how roadway speed and daily traffic volume data required as inputs to the process were estimated where otherwise unavailable.

In the reproduction of Table 1, red boxes have been added to highlight an example crosswalk to illustrate how the table was used for each evaluation. In the example, four-lane undivided roadways with average annual daily traffic (AADT) over 15,000 vehicles/day and speeds greater than 40 miles per hour have up to six potential countermeasures recommended for possible consideration, as indicated by the six one-digit numbers in the lower right cell of the table. The strongest recommendations are indicated by white numbers in solid black circles. The number " 1 " inside an outlined circle denotes that marked and signed crosswalks should always occur in conjunction with other listed countermeasures. Numbers without circles around them indicate other improvements which may optiona lly be considered.

In the example, the number " 1 " in the lower right cell of the table indicates that high visibility crosswalk markings, parking restrictions on the crosswalk approach, adequate lighting levels, and crossing waming signs should all be employed to create a high visibility crosswalk wherever signific ant pedestrians demand exists or may be anticipated. But the outlined circle a round the number " 1 " in the table indicates that implementation of these countermea sures a lone is insuffic ent due to the high traffic volumes, high speeds, and large number of lanes to be crossed. One or more of the other options should always therefore be implemented.
The other options to be given strong consideration (based on the white number in the dark circle legend) include "Advance Yield Here for Pedestrian" signs (\#3), a median pedestrian refuge island (\#6), or a pedestrian hybrid beacon (\#9). Other candidate countermeasures that may also be considered include curb extensions (\#5) and a road diet (\#8).
Note that the unavailable optionsfor these circumstances include a raised crosswalk (\#2), in-street pedestrian crossing signs (\#4), and rectangular rapid-flashing beacons (RRFB's/\#7). Where options such as the RRFB are listed as incompatible with context, research had demonstrated that the combination of speed, volume, or crossing distance would render the treatments less than acceptably effective. The footnotes indic ate that some options are mutually exclusive of others.

A Microsoft Excel spreadsheet was created to automate Table 1 as a lookup table and quickly produce the list potentially recommended improvements given the inputs entered for each candidate crosswalk improvement location to be considered for the project. The analyst in each case still used engineering judgment to select which countermeasure options would ultimately be recommended, as indicated by the red boxes around items \#1, \#3 and \#9 (but not \#6) in the

Table C1: Application of Pedestrian Crash Countermeasures by Roadway Feature

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Roadway Configuration} \& \multicolumn{9}{|c|}{Posted Speed Limit and AADT} \\
\hline \& \multicolumn{3}{|c|}{Vehicle AADT <9,000} \& \multicolumn{3}{|l|}{Vehicle AADT 9,000-15,000} \& \multicolumn{3}{|l|}{Vehicle AADT > 15,000} \\
\hline \& \(\leq 30 \mathrm{mp}\) \& 35 mph \& \(\geq 40 \mathrm{mph}\) \& \(\leq 30 \mathrm{mph}\) \& 35 mp \& \(\geq 40 \mathrm{mph}\) \& \(\leq 30 \mathrm{mph}\) \& 35 mp \& 240 mph \\
\hline \begin{tabular}{l}
2 lanes \\
(1 lane in each direction)
\end{tabular} \& \[
\begin{array}{lll}
1 \& 2 \& \\
4 \& 5 \& 6
\end{array}
\] \& \[
\begin{array}{|lll}
\hline 11 \& \& \\
\& 5 \& 6 \\
7 \& \& 9
\end{array}
\] \& (1) \(\begin{aligned} \& \\ \& 5 \\ \& 0\end{aligned}\) \& (1) \& (1) 5 \& (1) \(\begin{array}{ll} \\ \& 5 \\ 0 \& 6 \\ 0 \& 9\end{array}\) \& \begin{tabular}{|l|l|}
\hline 1 \& \\
4 \& 5
\end{tabular} \& (1) \(\begin{array}{ll} \\ \& 5 \\ 7 \& 6 \\ 7 \& 9\end{array}\) \& 56

9

\hline 3 lanes with raised median (1 lane in each direction) \& $$
\begin{array}{llll}
1 & 2 & 3 \\
4 & 5 &
\end{array}
$$ \& \[

$$
\begin{array}{lll}
1 & & 3 \\
& 5 & \\
7 & & 9
\end{array}
$$

\] \& (1) ${ }^{5}$ \& | (1) | | 3 |
| :--- | :--- | :--- |
| 4 | 5 | |
| 7 | | | \& (1) 3 \& (1) ${ }^{2} 5$ \& $\begin{array}{lll}1 & 3 \\ 4 & 5 & \\ 7 & & 9\end{array}$ \& | 1 | 3 |
| :--- | :--- |
| | 5 |
| | | \& (1) $\begin{array}{rr} & 3 \\ & 5 \\ & 9\end{array}$

\hline 3 lanes w/o raised median (1 lane in each direction with a two-way left-turn lane) \& $$
\begin{array}{rrr}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & & 9
\end{array}
$$ \& \& (1) $\begin{array}{r} \\ 5 \\ \\ 5 \\ \\ \\ \\ \hline\end{array}$ \& $\begin{array}{rrr}1 & & 3 \\ 4 & 5 & 6 \\ 7 & 9\end{array}$ \& \[

$$
\begin{array}{lr}
1 & 3 \\
& 5 \\
0 & 6 \\
0 & 9
\end{array}
$$
\] \& (1) $\begin{array}{r}3 \\ 56 \\ \\ \\ \hline\end{array}$ \& $\begin{array}{rrr}17 & 3 \\ 4 & 5 & 6 \\ 7 & 9\end{array}$ \& (1) $\begin{array}{r} \\ \\ 5 \\ \\ \\ \\ \\ \\ \hline\end{array}$ \& $\begin{array}{ccc}1 & & 3 \\ 5 & 6 & \\ & & \\ & & 9\end{array}$

\hline $4+$ lanes with raised median (2 or more lanes in each direction) \& (1) $\begin{array}{lll} & 3 \\ & 5 \\ 7 & 8 & 9\end{array}$ \& (1) $\begin{array}{lll} & 3 \\ & 5 & \\ 7 & 8 & 9\end{array}$ \& (1) $\begin{aligned} & 3 \\ & 5 \\ & 80\end{aligned}$ \& $\begin{array}{lll}\text { (1) } & 3 \\ & 5 \\ 7 & 8 \\ 7 & 8 & 9\end{array}$ \& (1) ${ }^{5} 3$ \& (1) $\begin{aligned} & 3 \\ & 5 \\ & 80\end{aligned}$ \& | (1) | 3 | |
| :--- | :--- | :--- |
| | 5 | |
| 0 | 8 | |
| 1 | | | \& (1) $\begin{aligned} & 3 \\ & 5 \\ & 809\end{aligned}$ \& $\begin{array}{ll}\text { (1) } & 3 \\ 5 & \\ 8 & 9\end{array}$

\hline 4+ lanes w/o roised median (2 or more lanes in each direction) \& $$
\begin{array}{lr}
11 & 3 \\
& 5 \\
\hline 7 & 8 \\
7
\end{array}
$$ \& \[

$$
\begin{array}{rr}
1 & 3 \\
& 56 \\
7 & 89 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
1(1) \\
56 \\
80 \\
8
\end{array}
$$

\] \& | 1 | 3 | |
| ---: | ---: | ---: |
| 5 | 6 | |
| 7 | 8 | 9 | \& (1) | 5 |
| :--- |
| | \& 11

5
5
8

8 \& | 1 | |
| ---: | ---: |
| | 3 |
| 5 | 6 |
| 8 | 8 | \& (1) $\begin{array}{r}3 \\ 50 \\ 809\end{array}$ \& $\begin{array}{r}1 \\ \hline\end{array}$

\hline \multicolumn{10}{|l|}{| Given the set of conditions in a cell, |
| :--- |
| \# Signifies that the countermeasure is a candidate treatment at a marked uncontrolled crossing location. |
| High-visibility crosswalk markings, parking restrictions on crosswalk approach, adequate nighttime lighting levels, and crossing warnina sians |}

\hline \multicolumn{4}{|l|}{Signifies that the countermeasure should always be considered, but not mandated or required, based upon engineering judgment at a marked uncontrolled crossing location.} \& \multicolumn{6}{|l|}{| 2 Raised crosswalk |
| :--- |
| 3 Advance Yield Here To (Stop Here For) Pedestrians sign and vield (stop) line |}

\hline \multicolumn{4}{|l|}{O Signifies that crosswalk visibility enhancements should alwcys occur in conjunction with other identified countermeasures.*} \& \multicolumn{6}{|l|}{| 5 Curb extension |
| :--- |
| 6 Pedestrian refuge island |
| 7 Rectangular Rapid-Flashing Beacon (RRFB)** |}

\hline \multicolumn{4}{|l|}{The absence of a number signifies that the countermeasure is generally not an appropriate treatment, but exceptions may} \& \multicolumn{6}{|l|}{| 8 Road Diet |
| :--- |
| 9 Pedestrian Hybrid Beacon (PHB)** |}

\hline
\end{tabular}

bottom right comer of the table. Notes as to the rationale for each improvement were made. The inputs, options, recommendations, and notes are tabulated in tables found in Appendix D

The inputs to the spreadsheet analysis of crosswalk improvements were straightforward for the number of lanes in each case. Posted speed limit was also generally straightforward, though in a few cases with low posted speed limits and high number of lanes (for example, six-lane divided
oadways with posted speed limits of 35 mph) a higher prevailing speed was assumed based on engineering judgment and substituted for the posted speed limit.

In many cases, recent AADT volumes for the subject roadways for the crosswalks being evaluated were available from City or TxDOT data. Historic AADT volumes were grown at 2\% a nnually to 2019 a nd used directly as inputs for the crosswalk countemeasure selection a nalysis.

In other cases where AADT data was not already available, particularly on collector streets, a "shortcut" method for estimating AADT without collecting new 24 -hour traffic counts was developed to balance accuracy with the large amount of data to be collected and the lack of precision necessary to select the a ppropriate sets of columns in Table C1.

Short two-minute traffic counts were collected by consultant staff in the field at crosswalks that had been pre-selected as candidates for improvements. A two-minute time period was selected to account for the cycle length of most signa lized intersections that might be nearby and therefore affect the distribution of traffic volumes. The count could be taken anytime during daylight hours to maximize field work effic iency for multiple locations.

These two-minute volumes were factored by the Excel spreadsheet program to represent approximate AADTs. The two-minute volumes are expanded to hourly volumes by multiplying by 30. The hourly volumes are then expanded to daily volumes using a lookup table based on the 15minute period during the day that the two-minute count was taken, the adjacent land use category noted by data collection staff, and factorsthat were derived from data in the Institute of Transportation Engineers' (ITE) Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition for the percentage of traffic generated by different land uses at different times of day.
For each crosswalk, the analysis characterized the land use contributing to traffic at a partic ular crosswalk as residential, office, shopping center, or mix of the three. Figure C1 identifies the hourly-to-daily converstion factors denived for each land use by time of day. The "mix" category was computed by a veraging the values from the other three land uses.
Note that office traffic has the most distinct "peaks" with the largest percentage of its traffic occuring nearmoming arival, lunch hour, a nd aftemoon departure times. Residential traffic peaks in the moming and aftemoon without the distinct lunch peak, while generally increasing in the aftemoon. Shopping center traffic is very low in the moming, with higher levels in the aftemoon and evening.

Figure C1: Hourly to Daily Traffic Conversion Factors, by Land Use \& Time of Day

reductions
Table C2: NCTCOG Roadway Capacity for Divided or One-way Roads

Area Type	Functional Class							
	FreewayPrincipal Arterial Mourly Service Volume Per Lane Arterial	Collector	Ramp	Frontage Road	HOV			
	CBD	2,050	725	725	475	1,250	725	2,050
Fringe	2,125	775	775	500	1,375	775	2,125	
Urban Residential	2,150	850	825	525	1,425	850	2,150	
Suburban Residential	2,225	925	900	575	1,600	900	2,225	
Rural	2,300	1,025	975	600	1,725	975	2,300	

ngineers, Inc.

APPENDIX D: Crosswalk Improvement Selection Tables

ARS
DART Red \& Blue Line Corridors Last Mile Connections

DART Last Mile Connections Project - Unsignalized Crosswalk Evaluations - City of Richardson - July 2020

${ }^{1}$ with sufficient 6 ' width for ped. refuge?
if AADT Estimate is not available.

Land Use Code Legend Land Use Code Legend

R	Residential	S	Shopping
O	Office	M	Mix

Based on FHWA's "Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations", July 2018, Table 1:
Application of pedestrian crash Application of pedestrian crash countermeasures by roadway feature

DART Last Mile Connections Project - Unsignalized Crosswalk Evaluations - City of Richardson - July 2020

Unsignalized Crosswalk Improvement Legend				5	Curb Exten	nsion	Signalized Crosswalk Improvement Legend						Legend: Strength of Consideration to be Given to Improvement										
1	Crosswalk Signs, Markings \& Lighting			6	Ped. Refug	ge Island		10	Add Marked Crosswalk \& Provide Countdown, Accessible Pedestrian Signals				S	Signifies that the countermeasure is a candidate treatment at a marked uncontrolled crossing location.									
2	Raised Crosswa			7	RRFB									Signifies that the countermeasure should always be considered, but not mandated or required, based upon engineering judgment at a marked uncontrolled crossing location.									
3	Advance "Yield Here" Sign			8	Road Diet			11	Traffic Signal														
4	In-Street Pedes	an Crossing		9	Ped. Hybri	id Beacon							\#	Signifies th	hat crosswal	visibilit	ity enh	hance	ents sh	uld always occur in	conjunction with other identified countermeasures.		
				Posted/ Prevailing Speed of Street Crossed	Number of Lanes Crossed	Median Present? ${ }^{1}$	AADT from Count Map	AADT Street Name	Source	$\begin{array}{\|c} \text { Land } \\ \text { (Use } \\ \text { (legend } \\ \text { below) } \end{array}$	2-Min. TrafficCount 2		$\left\lvert\, \begin{gathered} \text { Hourly } \\ \text { Traffic } \\ \text { Estimate } \end{gathered}\right.$	$\begin{array}{\|c\|} \text { AADT } \\ \text { Estimate } \end{array}$	Assumed AADT	Improvements (See Legends Above)					Notes		
													Options				men						
ID	Station Name	Street Crossed	At/Between								Time	Volume											
2A	Galaty Park	Lookout Dr	Central Trail	30	3	Y	5,000		Rough estimate	-		-	-			-	5,000	123	34	5		1	Install bicycle/pedestrian warning signs and white crosswalk lines parallel to existing crosswalk with faded, non-conforming brick pattern and dark outline. White edge lines as traffic control devices are required to make crosswalks legally enforceable.
2A	Galaty Park	Lookout Dr	Performance Dr	30	4	Y	5,000		Rough estimate	-	-	-	-	-	5,000					1,3	Install pedestrian warning signs and white crosswalk lines parallel to existing crosswalk with faded, brick pattern. White edge lines as traffic control devices are required to make crosswalks legally enforceable. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.		
2A	Galaty Park	Lookout Dr	BCBS Garage Entrance	30	4	Y	5,000		Rough estimate	-	-	-	-	-	5,000					1,3	Add marked crosswalks at existing signed pedestrian crossing. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.		
2A	Galaty Park	Lakeside Blvd	Central Trail	30	3	Y	3,900	Lakeside Dr	https://www.cor.net/ho me/showdocument? ?id= 25378	M	-	-	-	-	3,900					1	Install bicycle/pedestrian warning signs and white crosswalk lines parallel to existing crosswalk with faded, non-conforming brick pattern and dark outline. White edge lines as traffic control devices are required to make crosswalks legally enforceable.		
2A	Galaty Park	Lakeside Blva	Central Trail \& Waterwood Rd	30	4	N	3,900	Lakeside Dr	https://www.cor.net/ho me/showdocument?id= 25378	M	-	-	-	-	3,900					1,3	$\begin{aligned} & \text { Add marked crosswalks at existing signed pedestrian } \\ & \text { crossing. Add yield line and "Yield Here to Pedestrians" } \\ & \text { signing in each direction approaching crosswalk to mitigate } \\ & \text { risk of dual threat situation for pedestrians. } \\ & \hline \end{aligned}$		
2A	Galaty Park	Lakeside Blva	Lawnview Dr \& Southwest Study Boundary	30	4	N	3,900	Lakeside Dr	https://www.cor.net/ho me/showdocument?id= 25378	M	-	-	-	-	3,900					1,3	Add marked crosswalks at existing signed pedestrian crossing. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.		

${ }^{1}$ with sufficient 6 ' width for ped. refuge?
If AADT Estimate is not available

Land Use Code Legend | R | Residential | S | Shopping |
| :---: | :---: | :---: | :---: |
| O | Office | M | Mix |

Based on FHWA's "Guide for I mproving Pedestrian Safety Uncontrolled Crossing Locations", July 2018, Table 1: Application of pedestrian crash countermeasures by roadway feature

DART Last Mile Connections Project - Unsignalized Crosswalk Evaluations - City of Richardson - July 2020

DART Last Mile Connections Project - Unsignalized Crosswalk Evaluations - City of Richardson - July 2020

APPENDIX E: Half-Mile Area Improvement Prioritization - Initial Trial Methodology Details

o provide opportunities for the greatest number of additional people to walk or bike to DART stations by building sidewalk, shared use path, and crosswalk connections, the prioritization of identified improvements was structured to provide balance between estimating this objective accurately and applying the methodology to a large study a rea.

Initially, a prionitization scheme that attempted to track as closely as possible to potential ridership increases was tested for the Parker Road Station in Plano, with adjustments for safety, key destination access, and equity. Though some of the elements of this initial prioritization methodology were ultimately discarded for this study, they are documented here as being potentially useful for later studies on a smaller scale. Also, many of the assumptions and methodologies explained below were retained in the ultimate methodology.

For the ridership component of the initial methodology, the likelihood of land parcels around each station to contribute potential transit customers wallking or biking to the station was assumed to be related to three primary factors:

1. The distance of the parcel from the station,
2. The number of people living oremployed at the parcel, and
3. People's tolerance for different levels of stress experienced along the route between the parcel and the station.

For the first input to ridership, distance, NCTCOG had previously collected appraisal district parcel data from Collin and Dallas Counties and provided a GIS shapefile containing the data. Consultants used ArcGIS Network Analyst tools to calculate the distance of each parcel to the station along the nearest available walking route, which wascreated by editing sidewalk shapefiles provided by NCTCOG to ensure end-to-end connectivity. The NCTCOG sidewalk files were found to require signific ant numbers of edits in this regard.

For the second component of ridership, population density, NCTCOG had included in the parcellevel data assumed population and employment valuesforindividual parcels in the study a rea that had been calculated aspart of a previousproject. These valueshad been calculated by land use based on building square footage and assumed densities (for example 300 square feet/person for office land use)

Consultants used GIS tools to tabulate the total number of people who might use each sidewalk and crosswalk segment for first and last mile trips based on the parcel population totals and the shortest distance routes along available sidewalks and crosswalks between each parcel and the station. This collection of routes was designated as the "pedestrian tree" for the station. Figure E1 shows an example pedestrian tree for Parker Road Station, with one "branch" of the tree to a 662resident apartment complex highlighted in purple that could be shortened by constructing new sidewalk along a path wom in the grass by pedestrians who already take the shortcut.
This technique allowed modeling of how individual travelers would collectively contribute greater ridership inc reasesalong pedestrian routes with the highest density of population and employment.

[^4]Figure El: Concept of Pedestrian Trees Illustrated

For the third assumed input to ridership, pedestrian stress could be due to uncomfortable circ umstances such as high traffic speeds along the route, na rrow sidewalks in close proximity to traffic, or multi-lane crossings of busy streets. This concept of "Pedestrian Level of Traffic Stress" (PLIS), was adapted for pedestrians by the Oregon Department of Transportation ${ }^{1}$ from a similar method developed for bicyclists in 2012 by researchers from San Jose State University and the Northeastem University College of Engineering².

The PLTS method assigns scores to sidewalk and crosswalk segments for their levels of pedestrian stress, with scores ranging from 1 for low stress to 4 for high stress conditions. Details on the PLTS model methodology are available at the sources indicated in the footnotes.

Consultants used inputs from the field data collection in the half-mile a rea around Parker Road Station to create a spreadsheet program for calculating PLTS sc ores based on a series of look-up tables defined in ODOT's methodology, with some adaptations for local Dallas-area conditions. They then joined these scores to sidewalk shapefiles in an ArcGIS model. An example map produced from this model is shown in Figure ED, highlighting in red the higherstress PLTS 4 conditions present along higher speed a rerials near Parker Road Station. Potential riders unwilling to walk a long higher stress PLTS 3 or PLTS 4 sidewalks in orange and red would only have access between the ParkerRoad Station, its adjacent parking lots, and some commercial properties to the west, but not to a ny residential areas in the vic inity.
The PLTS resultswere then used to refine the earlierestimates of how many residents and employees might use each sidewalk and crosswalk segment for their first and last mile trips. Generalized assumptions were developed for the percentage of transit riders with trip ends within a half-mile of
${ }^{2}$ See Mekuria, Furth \& Nixon, "Low-Stress Bicycling and Network Connectivity," May 2012. Accessed at:
https://transweb.sjsu.edu/research/low-stress-bicycling-and-network-connectivity

Engineers, Inc

Figure E2: Existing PLTS Ratings for Portion of Parker Rd Station Area

the station who would be willing orable to travel via sidewalks a nd crosswalks of varying PLTS stress levels. Absent more specific data, these percentages were aligned loosely (and admittedly speculatively) with survey data about the four types of cyc lists as found in a recent NCTCOG survey speculatively) with survey data about the fourtypes of cyclists as found in a recent
illustrated in Figure E3. The a ssumed split for different groups of transit rid ers follows:

- 45% of transit riders were assumed to not walk or bike to transit rega rdless of the stress level, either based on ability or preference forcartravel (similar to 48\%No Way No How forbikes).
- Up to 35% of transit riders were assumed to walk or bike to transit if they could travel exclusively on PLTS 1 or PLTS 2 sidewalk and crosswalk facilities (similar to 36% Interested But Concemed forbikes).
- Up to 15% of transit riders were assumed willing to travel on PLTS 3 facilities (similar to 14% Enthused \& Confident for bikes).
- Up to 5% of transit riders were assumed willing to travel on PLTS 4 facilities (similarto 2\%Stong \& Fea rless for bikes).
More research would be ideal to investigate actual values for these assumptions
Note that some of the in the PLTS 3 or 4 categories might be termed transit-dependent riders who don't have access to a car and for whom bus transfers to the station are not sufficiently convenient.
Each of the above assumed percentages was reduced based on a sliding scale for the distance of the parcel in question from the station. The sliding scale wasbased on data from a 2015 University

of Denver study illustrated in Figure E4 that explored the proximity relationship of the non-car commute share of Denver workers based on transit proximity. The study found that the average percentage of people living or working within 1 mile of the station who used a non-car commute mode wasabout 18.5\%. Within a half-mile of the station, the percentage inc reased to about 24.5%.
As shown in Figure E5, plotting these two points from Figure E4 in a linear relationship allows for an extrapolated assumption that no more than 30% of people living or working immedia tely adjacent to a transit station (at a theoretical 0 mile walking distance) would use a non-carcommute mode.
It was surmised that the Denver data (as with all real-world cases) would represent non-ideal conditions constra ined by imperfect sidewalks and pedestrian stress levels similar to those present in the Dallasmetroplexand othercities. Therefore, since the object of the above-desc ribed a nalysis was to account for pedestrian stress more directly, it was sumised that a nominal value of 20% be added to the equation shown in Figure E5 to nomalize the relationship for ideal conditions and adjustment using the PLTS methods instead. This adjusted relationship for a proximity factor to

Figure E4: Findings of 2015 University of Denver Study

Source: https://www.citylab.com/transportation/2015/09/whats-more-important-to-non-car-commuters-living-or-working-near-transit/405592/
provide the percentage of transit riders using non-car modes to reach the station under ideal sidewalk and crosswalk conditions based on distance from the station is shown in Figure E6.

Separate ArcGIS models were created around the Parker Road Station for two different partial pedestrian networks in addition to the full existing pedestrian network described earlier. These represented pedestrian networks that would be accepted by the segments of the transit riding population "Interested but Concerned" and "Enthused and Confident" about walking or riding to the station.

One network included only PLTS 1 and PLTS 2 links as route options (the blue lines in Figure 9) and therefore served the most limited number of parcels. Another network allowed for travel on PLTS 3 segments (the orange lines in Figure 9) in addition to PLTS 1 and PLTS 2. This network would serve a larger number of parcels. An overall estimate of existing ridership for Parker Road Station was calculated using the above-described inputs. For each parcel, a separate calculation for each PLTS group of transit riders was made as follows:

PLTS 1+2: Parcel population x Proximity Factor $x 35 \%$ of transit riders in PLTS G roup PLTS 3: Parcel population x Proximity Factor $x 15 \%$ of transit riders in PLTS Group PLTS 4: Parcel population x Proximity Factor $\times 5 \%$ of transit riders in PLTS Group

Figure E5: Extrapolated Relationship from 2015 University of Denver Study

Figure E6: Adjusted Relationship Assumed for Proximity Factor

Criteria	Weight
Employment and Population Density (Number of potential riders connected by the improvement's catchment area)	50
Distance / Proximity of Improvements to the Station	25
Walkshed Trip Length Reduction (Catchment area benefitting from a reduced walk distance to the station)	5
Land Use Types and Key Destinations (e.g. schools, government buildings, social services, hospitals, large shopping centers, parks)	5
Crash History (Number of crashes in the general area of the project improvement)	5
Safety Benefit (Speed limit as a surrogate for systemic safety of the project improvement)	5
Equity / Transit Dependent Populations (Minority households, \% below poverty line)	5

IE Encinerinc

Note that the proximity factor was potentially different for each PLTS group indic ating that more selective travelerscould only reach the station by following a longer path consistent with their intolerance for more stressful conditions. Fo arcels not connected to the station at all at a given PITS (including PLTS 4) no (dis 4) no Prente the act that many travelers, including those dependent on the station without the benefit of sidewalk or crosswalk facilities)

The resulting estimate of existing non-car commuting trips to and from Parker Road Station was 631 people for existing conditions. This compared very favorably with 2015 survey data that had been provided by DART, ind ic ating tha 619 of the daily average riders either walked or biked to Parker Road Station.

Proposed sidewalk and crosswalk improvements were then added to the ArcGis models forParkerRoad Station so that an increase in ridership could be forecast These a re illustrated in Figure E7, which is an annotated screen capture from the GIS model where sidewalks and crosswalks are shown in pumple or blue and parcel centroids are shown as brown circles.

With the originally proposed improvements, including a shared use path and pedestrian hybrid beacon (PHB) extending east of the station across K Ave forecast ridership by non-car commute to the station was forecast to increase from 631 people to 1,018 people, a 61% inc rease.

Figure E7: Excemt of Sidewalk Network, Inc luding Originally Proposed Improvements near Parker Road Station

ARS

APPENDIX F: Half-Mile Area Improvement Prioritization - Final Methodology Details

After review of the process described in Appendix E, NCTCOG and the consultant team determined that the extensive editing required to the GIS shapefiles for existing sidewalks would not allow forthe same level of effort at each of the 27 additional stations without compromising in other areas of the analysis. Data entry from field work could be reduced by bypassing the PLTS calculations. Finally, it wasfelt that some of the inputswere too speculative, despite the reasonable agreement between the existing condition model forecast and the recent DARTridership surveys.

Consequently, the prioritization process was simplified by providing eparate scores for employment and population density without attempting to correlate these to ridership levels. The methods described previously were used to identify the parcel employmen and population tributary to each sidewalk and crosswalk segment, without using a proximity factor or PLTS scores. Distance of each improvement from the station measured linearly in a straight line or greater simplicity) wa sparated into a distinct scoring eparated into a distinct scoring riten, for walkshed trip scoring riteria for walkshed tength eduction, land use types, key destinations, crash history, safety benefits, and equity. The weighting given to each criterion is shown in Table 1, in Section 2.9 of the report.

Employment \& Population Density

Figure $\mathbf{F 1}$ illustrates the process used to score improvements on the firs

Figure F1: Employment and Population "Tributary" to Sidewalk \& Crosswalk Improvements
 riterion in Table 1, employment and population density. It shows the parcels in the Parker Road Station area, with darker shades of gray representing higher population/ employment totals. Note that, while some of the mprovements shown in Figure F1 and other figures that follow, such as the sidewalk, pedestrian hybrid beacon, and shared use path to the east of the station, were later revised based on input from the City of Plano, the principles illustrated still apply

In the figure, each sidewalk and crosswalk improvement link is shown in red, orange, yellow, or green colors depending on the total employment plus population that would be "tributary" to the station via the improvement once all proposed improvements are constructed. The tributary employment plus population values are shown next to each link, with the red links closest to the station having the highest values.

As a simplifying assumption, parcels straddling the half-mile boundary from the station were included in their entirety without any reductions, but parcels beyond the half-mile boundary were not considered to contribute to the a nalysis even though some travelers (particula rly bic yc lists) may be willing to travel without a carfor longerdistances.

Note that some improvements would have zero expected employment and population because the links connect to parcels that are currently vacant or to parcels that were assumed to have redundant, shorter routes to the station via a notherstreet orvia the opposite side of the sa me street

Figure F2: Proximity of Improvements to Station

Walkshed Tip Length Reduction

Figure F3 illustrates the process used to score improvements on the third criterion in Table 1, walkshed trip length reduction. Each improvement isshown color-coded based on the percentage reduction in walking distance to the station that would occur for the population of a reference parcel selected as representative of most parcels tributary to the improvement in question. In general, the highest population parcel waschosen. When most parcelswere of similar population such as in single-family home neighborhoods, the farthest parcel was usually selected.

For each improvement, the walking distances from the reference parcel to the station along the existing and proposed pedestrian networks were measured using Network Analyst in Arc GIS. The difference between the two values wascalculated as the walkshed trip length reduction.

Consideration had been given to creating a weighted average trip length reduction verage trip length reduction for all parcels, but this would have require
tedious measurements and/or ustom macros in ArcGIS. Therefore, this idea was abandoned for the final a nalysis.
In Figure F3, improvements that would reduce trip length by a high percentage are shown in red ororange. These include improvements that would connect parcels with no existing sidewalk access to the station which was considered for scoring purposesa 100% reduction (to avoid divide by zero errors). ower percentages of trip length reduction are shown in yellow and shades of green. Scores for this category were assigned ranging from 0 points for no reduction in walking distance to 5 points for either a newly connected reference parcel or a reduction in walking distance greater than 40\%

Access to Land Use Types \& Key Destinations

The fourth criterion for scoring improvements was access to other land use types and key destinations. Proximity to residential and employment uses had a lready been accounted for in the first criterion. However, other land uses with a high number of visitors also needed to be accounted for. Land uses and destinations deserving of special access consideration were as follows:

- Hospitals, clinic s, urgent care
- Places of worship
- Schools
- Govemment buildings ${ }^{3}$
- Grocery stores, malls, supercenters, hotels, motels
- Senior living, community centers, gardens
- Bus stops with >25 daily boardings

A shapefile wascreated for locations in the above categories. Bus stop boarding information in GIS format was obtained from DART for a nalysis. Bus stops immediately adjacent to the DART rail
stations were excluded as being redundant to the distance prioritization criteria, which already prionitizes proximity of the improvement to the station

For each improvement, the number of key destinations within 250 feet were tabulated. Also tabulated for improvements greater than $1 / 4$ mile from the station were the number of bus routes within 50 feet of the improvement. The intent of this last criterion was to add emphasis on routes that would more often save time for those walking or biking to the station. Routes closer than $1 / 4$ mile were generally considered less useful for this purose, since a walk to the station would more frequently take less time than waiting for the next bus.

For the access criterion, points were assigned ranging from 0 points for no nearby destinations or qualifying bus routes to 5 points for 5 ormore nearby destinations or bus routes. Since some arterial streets may have several bus
routes without necessarily having many stops or destinations nearby, the number of points contributed by bus routes was limited to no more than 3 points.

Crash History

The fifth criterion for scoring improvements in Table 1 is crash history. A GIS shapefile was used containing the point location of all reported bicycle and pedestrian crash locations for the study a rea from 2013 to 2017

Figure F4 shows that in many places, such as the Parker Road Station half-mile area, bicycle and pedestrian crashesshown by green circles are relatively rare and random occurences In areas of lower density development and pedensian development and pedestrian scattered throughout the study scattered throughout the study
a rea, mostly along majora rterials.

Figure F4: Relative Scarcity of Bic ycle \& Pedestrian Crashes
 Other station areas with higher
density development and greater multi-modal activity expenenced higher numbers of pedestrian and bicycle crashes. Since it was not possible within the scope of this project to collect pedestrian volume data, the crash data was observed to serve as somewhat of a surrogate for pedestrian demand. Therefore, a cluster of crashes may be more indicative of a place where many people walk than of a place that's more dangerous to walk in terms of the risk to individual pedestrians.

Unfortunately, the available crash database had little detail on the nature of the crashes. For the crash shown along U.S. 75 in Figure F4, for example, the database indic ated it involved a pedestrian with an incapacitating injury. However, the database did not detail what either the pedestrian or the driver involved were doing priorto the crash.

There is a sidewalk gap at this location, so perhaps the pedestrian was walking in the travel lanes of the southbound frontage road to avoid the gap. But the pedestrian could also just as well have been changing a flat tire orjaywalking acrossthe freeway mainlanes. So, the crash data may offer some insights, but is still limited in its value for a ssigning relative benefitsto different improvements.

The project team considered requesting police crash reports for the individual crashes and classifying them using the Federal Highway Administration's Pedestrian and Bic ycle Crash Analysis Tool (PBCAT). This tool would allow formore signific ant insights to be drawn from a greaterwealth of crash data, leading to better screening of which crash locations might be more or less susceptible to correction by certain countemeasures versus others. However, the extra effort required to code crashes wasoutside the scope of the project.
For the crash history criterion, improvements were scored from 0 to 5 points based on the number of bicyle- and pedestrian-related crashes within 250 feet of the improvement during the 5 -year period analyzed. Figure F4 shows that only two improvements scored points near Parker Road Station. The two links in red each received 1 point for being neara single crash.
No differentiation wasmade in the scoring forbicycle versuspedestrian crashesorbetween crashes of different severity. While this data was available in the database, most bic ycle and pedestrian crashes have a high potential for being serious or fatal, so it was determined any differentiation in the sparse data could be the result of statistical noise and was therefore less significant in differentiating which improvements would be of greatest benefit for positive safety outcomes.

Safety Benefit

A more recent development in transportation safety research that is designed to combat the drawbacks of traditional crash analysis mentioned in the previous section is the concept of "systemic safety." Systemic safety is a term that refers to safety approaches that are data driven, network-wide, and which consider improvements at locations with similar characteristics to high crash locations, even if the locations where improvements are to be considered or proposed don't themselves have signific ant crash history. The process is somewhat akin to extra polating where it is believed crashes are more likely to occur overa longerperiod of perhaps 20 or 30 years, based on risk factors identified at the locations of recent crashes.

The scope for this project is in itself somewhat systemic in that areas within a half mile of light rail stations were generally observed to show higherbicycle-and pedestrian-related crash frequency than were other areas of the Dallas-Fort Worth region in general. Again, this result is not surpising due to the expected higher prevalence of multi-modal travel demand neartransit stations.

As a second measure of systemic safety, the project team opted to use the posted speed limit of the roadway adjacent to sidewalk improvementsorc rossed by crosswalk improvements. Vehic ular speed is widely regarded as having a high corelation to safety outcomes in bicycle and pedestrian crashes, as illustrated by a popular graphic in Figure \boldsymbol{F} from the Seattle Department of Transportation.

North Central Texas Council of Govemments
DART Red \& Blue Line Corridors Last Mile Connections \qquad s (1)

Figure 厄: Generalized Relationships between Impact Speed \& Pedestrian Survival Rates

The project team felt that posted speed limit was the single most important safety variable that could be easily measured and isolated, since data on posted speed was readily available in a GIS shapefile. While othervariablessuch as $85^{\text {th }}$ percentile speed and traffic volumesmay be important to consider in a more detailed systemic safety study, they were detemined to be outside the data collection scope of this project.

The associated scores for the safety benefit criterion ranged from 0 points at or below 20 mph to 5 points at or above 45 mph .
Shared use paths or sidewalks not adjacent to roadway alignments received 0 points for this category. Some consideration was given to assigning points for these types of off-street facilities or sidewalks along low-speed streets to prontize safer altematives to walking a long high-speed roads. However, ultiima tely it was decided that inverting the scoring system in this way would de-prionitize existing gaps along higher speed streets, which are typic ally the "weakest links" in the multi-modal network that lead to the greatest number of decisionsto avoid pedestrian and bicycle trips.

Figure F6 shows the Parker Road Station area with the speed limit of the adjacent or crossed street identified next to each improvement, which is color-coded based on the speed limit. Red and orange improvements are near roadways with speed limits of 45 mph or greater, yellow improvements are along or crossing 40 mph roadways, and improvements are shown in green for 30 mph streets.

Equity

The final criterion for prioritizing projects was equity, which seeks to emphasize improving communities with populations that have not historic ally received equal access to resources. The consultants were provided spatial data covering the project area for an equity metric, the Environmental Justice Index. This index is compiled by NCTCOG to comply with federal rules for identifying Environmental Justice populations. It is based on data from the 2013-2017 American

Community Survey, aggregated at the census block level. Each census block is categorized if the percentage of its residents is higher than the regional average for minority population, low income, or both. Figure F7 shows a map of EnvironmentalJustice Index areas for the areas including the 28 half-mile station a reasforthe Red \& Blue LinesLast Mile Connections project.

The map shows yellow areas with an above average percentage of low income residents, blue areas with an above average percentage of minority residents, and green areas with an above average percentage of both low income and minority residents. For areas where the map background is visible without any yellow, blue, or green color, no points were scored for the equity criterion. For low income and minority areas (yellow and blue), 3 points were scored foreach improvement. For areas with both a higher than average percentage of low income and minonty residents (green), 5 points were scored foreach improvement.

Gaps to Remain

The consulting team categorized some segments where gaps in the pedestrian network had been identified by NCTCOG during preliminary GIS work to be gapsto rema in forthe final project listing. This decision was based on field conditions that would be impractical to a nalyze or would make sidewalk construction extremely cost-prohibitive. Examples include

- Segments not connecting to the station without exiting the half-mile area
- Right-of-way would be needed from a cemetery.
- Widening of existing bridge structures would be required withou signific ant likely pedestrian demand.
- A building structure would need to be removed ormodified
- Parallel pedestrian access is provided a short distance away by a trail or another sidewalk such that new sidewalk adjacent to the street would be redundant.
- Street function is as a fire lane, service drive, or alleyway exclusively for vehic ular use and pedestrian access is provided by sidewalk on the opposite side of the building.
- Inadequate space exists for sidewalk between roadway edge and DART tracks, without suffic ient right-of-way or spare capacity to recommend a road diet.
- Environmental obstacles such as slopes down to creekbeds
- Excessive impacts to residential properties (particularly those in older single-family home neighborhoods with very small yards, very short setbacks between the street and home and/or no garages or on-street parking width).
- Locked code-controlled pedestrian gates providing sidewalk access through private property (typically apartment complexes). These were modeled as gaps for the general public while still providing access to a partment residents.
- Sidewalk not needed due to lack of developable adjacent land use and existence of parallel sidewalk on opposite side of street.

Figure F6: Improvement Scoring by Adjacentor Crossing Posted Speed Limit

- Off-street parking for small businesses blocking the way of sidewalk where parking removal would likely cause significant harm to the business.

In most cases where sidewalk obstacles exist, the likely challenges were documented for each improvement in notes designed to guide future planning and selection of improvements for actual projects. In some cases, the obstacles might be overcome by narrowing the roadway pavement or lane widths. If this was deemed potentially feasible, the Gap to Remain category was not used. Only where obstacles were deemed exceedingly challenging orsidewalk wasjudged highly unlikely to be used by anyone wasthe Gap to Remain category used.

Prioritization Scoring

Improvements were scored using a Microsoft Excel spreadsheet program and sorted based the overall score. The spreadsheet also summa rized information on multiple consecutive GIS sidewalk

Figure F8: Screen Capture (Excerpt) from Improvement Prioritization Spreadsheet

Improvement Number	Distance		Tributary Population		Trip Length Reduction		Access					Crash History		Systemic Safety		Equity		Total Points	Priority
	Distance	$\begin{gathered} \text { Point } \\ 5 \\ \hline \end{gathered}$	Tributary Emplymt + Population	Points	Trip Length Reduction	$\begin{array}{\|c\|} \hline \text { Trip Length } \\ \text { Reduction } \\ \text { Points } \\ \hline \end{array}$	Key Destinations (incl. high rider bus stops)	Key Destination Points	Bus Routes	$\begin{array}{\|c\|} \hline \text { Bus } \\ \text { Routes } \\ \text { Points } \\ \hline \end{array}$	Access Points	Crashes	$\begin{gathered} \text { Point } \\ 5 \end{gathered}$	$\begin{array}{\|l} \text { Speed } \\ \text { Limit } \end{array}$	$\begin{gathered} \text { Point } \\ 5 \end{gathered}$	Ell	$\begin{gathered} \text { Point } \\ 5 \\ \hline \end{gathered}$		
18-DP-5W-127	0.30	10	2	0	100\%	5	2	2	0	0	2	0	0	30	2	Low Income and Minority	5	24	High
18-DP-SW-128	0.34	8	10	0	100\%	5	4	4	0	0	4	0	0	30	$\frac{2}{2}$	Low Income and Minority	$\frac{5}{5}$	24	High
18-DP-5W-13	0.29	11	15	0	100\%	$\frac{5}{5}$	0	0	0	0	0	1	1	30	$\frac{2}{2}$	Low Income and Minority	$\frac{5}{5}$	24	High
18-DP-5W-131	0.28	11	39	0	100\%	$\frac{5}{5}$	1	1	0	0	1	0	0	30	2	Low Income and Minority	5	24	High
18-DP-5W-35	0.34	3	1,023	4	100\%	5	0	0	0	0	0	0	0	30	2	Low Income and Minority	5	24	High
18-DP-5W-40	0.24	13	40	0	15\%	2	1	1	1	1	2	0	0	30	2	Low Income and Minority	5	24	High
18-DP-SW-66	0.26	12	543	2	100\%	5	0	0	0	0	0	0	0	30	2	Low Income	3	24	High
18-DP-CW-93	0.21	15	0	0	0\%	0	1	1	0	0	1	0	0	30	$\frac{2}{2}$	Low Income and Minority	$\frac{5}{5}$	23	High
18-DP-CW-94	0.21	15	0	0	0\%	0	1	1	0	0	1	0	0	30	2	Low Income and Minority	5	23	High
18-DP-5W-129	0.32	9	2	0	100\%	$\frac{5}{5}$	2	$\frac{1}{2}$	0	0	2	0	0	30	2	Low Income and Minority	$\frac{5}{5}$	23	High
18-DP-5W-143	0.32	9	33	0	100\%	$\frac{5}{5}$	0	0	0	0	0	0	0	40	4	Low Income and Minority	$\frac{5}{5}$	23	High
18-DP-SW-145	0.34	8	124	1	100\%	5	0	0	0	0	0	0	0	40	4	Low Income and Minority	5	23	High
18-Dp-5W-48	0.47	2	37	0	100\%	5	0	0	1	1	1	5	5	45	5	Low Income and Minority	5	23	High
18-DP-SW-108	0.33	3	5	0	100\%	5	1	1	0	0	1	B	0	30	2	Low income and Minority	5	22	Medium
18-DP-SW-114	0.37	$\frac{7}{7}$	910	2	10 m	$\frac{5}{5}$	1	1	0	\square	$\frac{1}{2}$	0	0	30	$\frac{2}{2}$	Low Incomeand Minority	5	$\frac{22}{22}$	Mealum
18-DP-SW-120	039	$\frac{8}{8}$	372	$\frac{1}{0}$	100\%	$\frac{5}{5}$	$\frac{1}{2}$	$\frac{1}{2}$	I	0	$\frac{1}{2}$	0	0	30	$\frac{2}{2}$	Law Income and Minority	5	$\frac{22}{2}$	Merium
18-DP-5W-133	0.35	8	\%	0	100 h	5	$\frac{2}{2}$	$\frac{2}{2}$	0	0	$\frac{2}{2}$	0	0	30	$\frac{2}{2}$	Low Inceme and Minority	$\frac{5}{5}$	$\frac{22}{2}$	Medium
18-019-5W 33	0,31	1	724	3	1006	5	0	0	0	0	0	0	0	30	$\frac{2}{2}$	tow income and Mimority	5	$\frac{2}{2}$	Medium
18-0.0. $5 \mathrm{~W} \cdot 57$	0123	14	0	0	$0 \cdot 8$	0	0	0	1	1	1	0	0	30	2	Love income and Minority	5	22	Medium
13-0p-5W-98	012n	11	7	0	1006	5	0	0	1	II	D	1	1	30	$\frac{2}{2}$	Law theame	3	22	Mealum
18-ap-VW-Vas	0.26	12	124	0	10006	5	0	0	0	I	0	0	0	0	$\frac{1}{2}$	Luav Incerme and Minority	$\frac{5}{5}$	22	Meatum
18-8P-5W-107	0.35	3	65	0	100\%	$\frac{5}{5}$	1	1	\square	0	1	0	0	30	$\frac{1}{2}$	Low Income anum Minority	5	31	Mertium

segments on each street block to simplify the resulting improvement tables. Figure F8 shows a screen capture from the Excel spreadsheet for Downtown Plano Station. The figure does not represent a complete listing of all improvements for this station, but is shown for illustrative purposes only. The left-hand column in Figure F8 lists the identifcation number for each improvement

Consultants evaluated each improvement for the seven c riteria described above, a shown by the column headers in the top row of Figure F8. Points were assigned for each improvement based on the values of the reference inputs.

In Figure F8, the partial list of imp rovements is shown sorted by total points, with possible total values ranging from 0-100 points. The rows of the spreadsheet were colorcoded based on the prionty of the improvement, with dark red forhigh-prionity improvements, orange formedium prionity, and light pink for low prionty

APPENDIX G: Cost Estimating Details

DARTStation Properties

At NCTCOG and DART's direction, no additional contingencies were provided to account for the pre-design nature of the estimates, made without benefit of survey, subsurface utility investigation, orengineering design practices.

Most engineering projects at early design submittals such as 30% include additional contingenc ies to account for unknown design details to be addressed later in design. These contingencies are typic ally lowered with each successive design submission and then minimized by final 100% design submission once all design procedures have been completed.

Without additional contingencies to supplement the preliminary nature of the OPCC's, the uncerta inty inherent in this decision was mitigated by a general attempt to be consenvative in quantity and unit price estimation. Unit prices and other elements of the OPCC's were developed consistent with the assumptions used for the half-mile a reas surrounding each station

Half-Mile Areas

Opinions of Probable Construction Cost (OPCC) were developed for each high-priority improvement that was not a ssumed by City staff to be built as part of a nother project (developer, City, TxDOT, etc.) in the nearfuture.
OPCC's were not developed for individual low- or medium-prionity improvements, but could be developed by the City in the future based on similar assumptions as outlined below. Rather, estimates for the overall cost of low- and medium-priority improvements were developed on a unit length basis for each station area. The low- and medium priority OPCC estimates are therefore of a lower fidelity and thus the City may consider verifiying them with more detailed individual improvement estimates prior to making further design orconstruction funding decisions.

The following is a discussion of simplifying assumptions that were made in order to provide quality, yet preliminary OPCC's for the DART Station on-site improvements and nearly 1,100 separate highpriority improvements totalling nearly 58 linear miles over the 28 station areas project-wide

Table G1 lists the project-wide number and length of improvements not assumed to be built by others. The listing is organized by station a rea, priority a nd type of improvement (sidewalk/shared use path vs. crosswalk).

Unit Costs

Consultants compared TxDOTand City of Dallas unit prices from recent bid tabulations for vario us tems related to construction of the proposed improvements.
Adjustments were made in the comparisons due to differences in how the specifications, measurement, and payment for the City of Dallas and TxDOT are written. For example, the compansons were made more balanced by averaging the Dallas values for different spellings of the same item number, or by adding remove and replace items together for comparison with an item that included both in the other agency's specific ations.

TxDOT unit prices were in most cases much less expensive for sidewalk related items. This may be because TxDOTis the benefic iary of ec onomies of scale from their contractors on projects of larger size where the items being constructed are contiguous, even though the City on their projects probably builds more sidewalk-related itemsoverall. While this theory is impossible to confirm, since the Dallas prices don't have meta-data like TxDOT does on the quantities and number of times each item wasused, the projecttea m felt thiseffect wasmost likely present in the data nonetheless.

The City of Dallas bid tabulations also featured a wider array of bid items that would be used in these type of projects compared to the TXDOTstandard bid items. Nonetheless, there were some bid items identified from TxDOTthat were not available in the City list of bid items. In these cases, or when TxDOT listed a higher, more conservative unit price, the TxDOT items were used for OPCC's for this project.

In all other cases, including for the unit price for sidewalk, City of Dallas unit prices were used. The project team believes that City of Dallas prices would more likely reflect what local contractors would be bidding for sidewalk projects based on size of the proposed construction packages and our experience completing these type of projects in the DFW Metroplex

Standard Assumptions

The following standard assumptions were used for most OPCC's developed for this project, though exceptions were sometimes made on a case-by-case basis as per engineering judgment.

Facility Width \& Alignment

- All new and reconstructed sidewalks were assumed to be 5 feet wide.
- All shared use pathswere assumed to be 10 feet wide
- Sidewalks and shared use paths were assumed to have alignments that could meander slightly around obstacles if necessary and if permitted by the apparent night-of-way width.

Buffer Space \& Setbacks

- Reconstructed sidewalk was assumed to be set back from the street where remnants of existing sidewalk had also been set back.
- Fornew sidewalk, a buffer between the sidewalk and roadway edge was assumed where the apparent available right-of-way seemed to be generally at least 8 feet wide.

Curb \& Gutter

- Where suffic ient space for buffers did not appear to exist, or where existing, da ma ged sidewalk that needs to be replaced is attached to the roadway curb, removaland replacement of any existing curb and gutter was assumed to also be necessary, so these costs were also included.
- New curb, gutter, and drainage systems were assumed to be necessary where not existing adjacent to sidewalk gaps.

Table G1: Summary Improvement Statistics by Station Area, Priority \& Improvement Type

- Retaining walls were estimated to be needed for certain lengths and heights based on engineering judgement where slopes were deemed steep enough to require them.

Unit costs for retaining walls were estimated based on City of Dallas standard details for short retaining walls and the unit prices for their component features as follows:

- 1' wall height $=\$ 20 /$ linear foot
- 2' wall height $=\$ 40 /$ /inear foot
- 3^{\prime} wall height $=\$ 75 /$ linear foo \dagger
- 4^{\prime} wall height $=\$ 100 /$ linear foo
- 5^{\prime} wall height $=\$ 125 /$ linear foo

Landscaping

A two-foot strip of sod was assumed to be needed on each side of the work area in addition to the landscaping allowance noted below.

- Removal and replacement of trees were developed as a blended cost estimate between TxDOT costs for the item "Remove Tree and Install Plant Material" and City of Dallas costs for installing trees.

Driveways

- Standard sizes were developed for assumed reconstruction of residential and commercial driveways where needed to construct level sidewalk crossings. The standard sizes (250 sq. ft . for residential and 500 sq . ft for commercial) helped simplify the task of making variable estimates for
hundreds or thousa nds of driveways project-wide. Instead, estimators needed only to count the number of each type of driveway likely to be affected.
- Greater variability than indicated in the estimates may be expected in the actual construction cost in areas with steeper slopes near drivewa y c rossings.

Station Area		High Priority Improvements				Medium Priority Improvements				Low Priority Improvements				Gaps to Remain	
		Sidewalks \& Shared-Use Paths		Crosswalks		Sidewalks \& Shared-Use Paths		Crosswalks		Sidewalks \& Shared-Use Paths		Crosswalks			
		\#	Miles												
1A	Parker Rd	15	1.57	8	0.15	12	0.71	3	0.12	12	0.31	1	0.08	4	0.28
1B	Downtown Plano	26	1.17	8	0.08	59	3.09	2	0.02	48	2.32	1	0.01	8	0.71
1C	CityLine Bush	25	2.14	9	0.13	17	1.85	3	0.04	13	0.90	0	-	6	0.20
2A	Galatyn Park	8	0.60	6	0.11	12	0.46	5	0.10	21	1.64	7	0.11	11	1.09
2B	Arapaho Center	13	0.51	3	0.02	11	0.46	2	0.02	16	1.50	1	0.00	11	1.40
2 C	Spring Valley	7	0.32	3	0.04	9	0.29	1	0.01	18	1.32	2	0.03	12	0.61
3 A	Downtown Garland	54	3.65	3	0.03	69	2.93	4	0.05	65	1.94	5	0.04	9	0.25
3B	Forest Jupiter	26	3.28	4	0.07	16	1.38	0	-	25	1.72	1	0.02	0	-
3 C	LBJ Central	29	2.31	3	0.04	19	1.80	0	-	6	0.33	0	-	2	0.02
3D	Forest Ln	15	0.83	5	0.10	18	1.08	0	-	33	1.13	1	0.01	0	-
4A	Walnut Hill	11	0.66	3	0.06	22	1.77	0	-	4	0.35	0	-	3	0.10
4B	Park Lane	35	3.03	3	0.07	23	1.35	0	-	15	0.82	0	-	3	0.11
4 C	Lovers Lane	11	0.45	0	-	5	0.20	2	0.02	5	0.08	4	0.04	20	0.24
4 D	Mockingbird	5	0.19	1	0.02	6	0.25	2	0.03	35	1.61	0	-	11	0.77
4 E	LBJ Skillman	32	3.89	1	0.02	16	1.00	1	0.02	35	1.61	3	0.04	3	0.32
4 F	White Rock	21	2.13	3	0.05	29	2.73	2	0.02	45	3.30	1	0.02	1	0.06
5A	Eight and Corinth	39	2.15	5	0.08	47	2.57	0	-	42	1.36	0	-	6	0.25
5B	Dallas Zoo	57	3.09	1	0.01	54	2.45	0	-	45	1.25	0	-	1	0.07
5C	Morrell	58	2.30	5	0.06	34	2.01	1	0.02	48	1.53	2	0.03	3	0.40
6A	Tyler Vernon	63	4.24	4	0.06	78	4.76	10	0.12	97	3.59	5	0.06	1	0.03
6B	Hampton	60	2.05	8	0.13	65	2.22	2	0.02	71	2.33	3	0.05	0	-
6C	Westmoreland	44	2.46	15	0.23	39	1.46	3	0.13	45	1.63	1	0.02	0	-
7A	Illinois	126	4.74	19	0.23	135	5.18	4	0.04	78	2.98	1	0.01	0	-
7 B	Kiest	41	2.20	0	-	83	3.95	4	0.05	67	2.70	3	0.04	0	-
7 C	VA Medical	55	2.65	9	0.07	69	3.43	9	0.11	75	2.93	2	0.02	6	0.49
8A	City Place	3	0.03	11	0.16	4	0.40	1	0.01	21	0.67	6	0.08	1	0.21
	Convention Center	8	0.34	2	0.04	4	0.69	2	0.04	3	0.06	1	0.01	6	0.27
	Cedars	43	1.25	10	0.12	32	1.39	3	0.03	20	0.97	0	-	9	0.62
	Totals	930	54.23	152	2.16	987	51.86	66	1.00	1008	42.90	51	0.73	137	8.48
Total High-Priority Improvements (Sidewalks + Shared Use Paths + Crosswalks) =							1,082								
Total High-Priority Improvements (Sidewalks + Shared Use Paths + Crosswalks) $=$							56.39								

Streetlighting

- Where new streetlighting was recommended in conjunction with proposed crosswalk improvements, standard unit prices for the entire installation were developed for different roadway cross sections as follows:
ngineers, Inc.
- Two-lane undivided street $=\$ 26,500$
- Three-la ne undivided street $=\$ 27,200$
- Four-lane undivided street $=\$ 40,500$
- Four-lane undivided street = \$40,500
- Four-lane divided street $=\quad \$ 41,200$
- Six-la ne undivided street $=\quad \$ 41,900$
- For purposes of the OPCC's, streets with medians less than 6' wide were considered undivided with luminaire poles only on intersection comers rather than mounted in the median.
- For segments of new streetlighting along sidewalk segments on DART property, site-spec ific streetlighting estimates were developed

Signals \& Beacons at Crosswalks

Forcrosswalks where proposed traffic signal, Pedestrian Hybrid Beacon (PHB), orRectangular Rapid Flashing Beacon (RRFB) installations are recommended, the following standard unit prices per installation were developed based on improvement type and roadway cross-section, based on typic al recent experience with previous projects:

- RRFB - Three-la ne c rossing without median island - $\$ 24,000$
- RRFB - with one solar unit sign with fla shers/pushbutton in median refuge island - $\$ 36,000$
- RRFB - with two solar unit signs with flashers/pushbutton in median refuge island - $\$ 48,000$
- PHB or Pedestrian Traffic Signal - Three-la ne undivided - $\$ 150,000$

PHB or Pedestrian Traffic Signal - Four-lane divided - $\$ 175,000$

- PHB - Six-la ne divided - $\$ 200,000$
- Pedestrian Traffic Signal - Six-la ne divided - $\$ 210,000$
- Add APS pushbuttons, countdown pedestrian heads at existing signal - \$3,500 per intersection + \$6,000 percrosswalk

Road Diets

- Where road diets are recommended to provide shorter pedestrian crossings and/or provide space for pedestrian amenities such as median refuge islands and posts for signs, beacons and/or pushbuttons, the recommendations are made forconsideration with the understanding that further, comidor-wide a nalysis outside the scope of this project will be required.
- The costs estimated are for making changes within a block in either direction of the pedestrian crossing, which would likely be the minimum viable improvement. In many cases, cities may consider a longer comd or for road diet implementation if spare capacity for auto traffic along the route is confirmed. However, costs associated with a dditional project length, or other costs associated with reconstructing curbs and islands beyond the one-block transition area or changes to signalized intersections, have not been included since they would difficult to estimate without additional study.

Median Anti-Climb Fencing

At a few locations where eliminating bamiers to more direct pedestrian travel was detemined to be impractical, aesthetic, anti-climb fencing is recommended to channelize pedestrians to the safest street crossings a reasonable distance away. City of Dallas and TxDOT standard bid items
were found to be insufficient to account for this type of fencing. Consultants identified two aesthetic, anti-climb fencing system products and requested pricing information on each from vendors and contractors. Photographs of the types of fencing available have been included in the figures shown previously for the relevant locations.

Criteria in identifying a suitable type of fencing for these applications were that it be tall enough and without hand or finger holds to allow it to be climbed. Also, since several systems would be installed in close proximity to moving traffic, it should either be crashworthy as a stand-alone installation or capable of being mounted on crash-tested standard median concrete traffic ba mier.

One type of custom fencing identified had been built in recent years along the relatively na rrow median of a high-speed state highway near touristed beach areas in Ocean City, Maryland Consultants spoke with the vendor who provided the fencing and the contractor who built it. It was built to resemble a white picket fence, with pointed bars at the top to discourage climbing. The fencing was mounted on breakaway supports and a specially designed concrete foundation forwind loading in an area prone to huricanes.
The contractorindic ated the bid cost forthisfencing wasabout $\$ 440$ per linearfoot, which included all misc ella neous related items such as mobilization and temporary traffic control. The same wind load and foundation design would not likely be required for fencing in North Texas, but it isn't clear how much cost savings might be achieved with this change.

The contractordid not have examples of thistype of fencing being built on top of concrete traffic ba merthat would reduce the ma intenance requirementsforthe fencing. If struck by errant vehic les traversing the curbed median, a significant amount of labor would be involved in replacing damaged sections.

The other type of fencing system identified was the ClearVu Invisible Wall system from Cochrane USA. This system was used as median pedestrian fencing in a recent project by TxDOTin the City of Fort Worth on Lancaster Ave. Quotes for fencing systems were obtained from Cochrane USA for the specific locations recommended for this proejct. Pricing varied from $\$ 52$ to $\$ 73$ per linear foot for the entire system, depending mostly whether the fencing was to be installed on ground mounted posts in wide medians or away from roadways or on top of concrete traffic bamiers in narrow medians.

Forthe LancasterAve project, where a wide median wasavailable, TxDOTindicated that bid prices including contractorlaborforthe projectwere about $\$ 90$ perlinearfoot. However, a representative from the contractorwas also contacted and indic ated that he would bid a higher price of $\$ 130$ to $\$ 140$ per linear foot for future contracts. Their experience after installing the fenc ing for the first time wasthat it wasa labor-intensive process that would not go more quickly with additional experience. Another local contrac tor who has installed this type of fencing on other projects indicated a typical bid price of $\$ 110$ to $\$ 120$ per linear foot.

After reviewing the above information, consultants decided on a unit cost of $\$ 130$ / linear foot for anti-climb pedestrian fencing. This was based on 6 ' high fencing for stand-a lone applications, or 3.5^{\prime} fencing on top of 2.5^{\prime} tall concrete traffic barrier for a total barrier height of 6^{\prime} in narrow median applications. The $\$ 130$ perlinearfoot value provides fora rela tively generousextra laborallowance for the Clearview Invisible Wall system and/or for vendors of other similar products to be identfied.

Where median anti-climb fencing is recommended on top of concrete traffic bamer, standard xDOT bid items for constructing concrete traffic bamier and end treatments were assumed independent of the cost of the remainder of the fence.

Right-of-Way

- No right-of-way acquisition is assumed for any improvements. Right-of-way data was unavailable for the high-level planning purposes of this study. Some assumptions about the apparent right-of-way location were made based on factors such asthe location of utility poles in order to make other assumptions necessary for cost estimation.
- Some improvements on private property (such as that of hospitals or other large employers) assume that cooperation of the property owners and negotiation of easements would be necessary. However, no additional cost has been assumed for these activities.

Contingencies

The following contingencies (totaling 25%) were applied to all costs, asdirected and approved by both NCTCOG and DART:

- 10% design fee
- 4% mobilization
- 4\%for landscaping allowance

2\% for Erosion \& Sediment Control Allowance

- 3% for traffic control
- 2% extra contingency forfederal a id project

At NCTCOG and DART's direction, no additional contingencies were provided to account for the pre-design nature of the estimates, made without benefit of survey, subsurface utility investigation, rengineering design practices.

Most engineering projects at early design submittals such as 30% include additional contingencies to account for unknown design details to be addressed later in design. These contingencies are typic ally lowered with each successive design submission and then eliminated at final 100% design submission once all design procedures have been completed.

Without additional contingencies to supplement the preliminary nature of the OPCC's, the uncertainty inherent in this decision was mitigated by a general attempt to be consenvative in quantity and unit price estimation, as alrea dy disc ussed.

CityLine/Bush Station

Opinion of Probable Constr. Cost $=\$ 152,600$
$1 \mathrm{~A} \leftarrow$ Station Number ST \leftarrow Station Improvement $\mathrm{PR} \leftarrow$ Station Abbreviation $01 \leftarrow$ Improvement Number (matches 1 on Map)

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections
Description

Opinion of Probable Cost

General	---	Pedestrian Ramps	Many pedestrian ramps in the station area are missing detectable warning surfaces, which should be added.

Opinion of Probable Cost - Total for All Recommendations at Station... \$

DART Last Mile Connections Project - CityLine/Bush Station Station Preliminary Opinion of Probable Construction Cost

Improvement No./ Description	City of Dallas Bid Item No.	Item Description	Unit		nit Price	Quantity	Rounded Quantity	Bid Estimate	Assumptions	
1C-CB-ST-01	728	REMOVE AND RESET SIGN	Each	\$	223.00	3	3	\$ 669.00	"BIG" was assumed to be 3 signs	
Tourist Sign Relocation		Contingency					25\%	\$ 167.25		
	Subtotal							\$ 900.00		
1C-CB-ST-02	618	BARRIER FREE RAMP	Each	\$	2,182.75	1	1	\$ 2,182.75	Assumed widening ramp to double its current width would be same cost as standard ramp.	
ADA Ramp Adjustment		Contingency					25\%	\$ 545.69		
	Subtotal							\$ 2,800.00		
1C-CB-ST-03	Project straddling DART \& adjacent private property - quantified under half-mile area off-site improvements. Cost assumed attributable to City of Richardson if coordination with private property owner is successful. See off-site improvement 1C-CB-SW-071.									
Add Sidewalk										
1C-CB-ST-04	729 A	INSTALL GR. MOUNTED REG/GUIDE SI	Each	\$	650.00	6	6	\$ 3,900.00	6 signs for 6 crosswalks (right-side only) and 2 ramps	
Add Warning Signs and ramps	618	BARRIER FREE RAMP	Each	\$	2,182.75	2	2	\$ $4,365.50$		
		Contingency					25\%	\$ 2,066.38		
	Subtotal							\$ 10,400.00		
1C-CB-ST-05	203	REMOVE CONCRETE SIDEWALK	SF	\$	4.00	240	240	\$ 960.00	Replace 12 ' $\times 20$ ' area of sidewalk; may be less if lower panel adjacent to pole is replaced instead.	
Sidewalk repair	7580	REINFORCED CONCRETE SIDEWALK	Sq. Yd.	\$	63.00	26.7	27	\$ 1,701.00		
		Contingency					25\%	\$ 665.25		
	Subtotal							\$ 3,400.00		
1C-CB-ST-06	Project straddling DART \& adjacent private property - quantified under half-mile area off-site improvements. Cost assumed attributable to City of Richardson if coordination with private property owner is successful. See off-site improvement 1C-CB-SW-044.									
Add Sidewalk										
1C-CB-ST-07	Project straddling DART \& adjacent City of Plano \& TxDOT ROW - costs quantified under half-mile area off-site improvements. See off-site improvements 1C-CB-SW-042, 1C-CB-CW-042 and 1C-CB-CW-043 for detailed cost information.								Of total \$188,900 estimated cost for crosswalks and west-side sidewalk, $1 / 3$ is assumed for DART \& $2 / 3$ for TxDOT/City of Plano.	
Add Sidewalk, Crosswalk Signs \& Markings, PHB										
	Subtotal							\$ 63,000.00		
1C-CB-ST-08	Project straddling DART \& adjacent City of Plano \& City of Richardson ROW - costs quantified under half-mile area off-site improvements. See off-site improvement 1C-CB-SW-056 for detailed cost information.								Of total $\$ 39,400$ estimated cost for east-side sidewalk, $1 / 3$ is assumed for DART \& 2/3 for City of Plano/City of Richardson.	
Add Sidewalk										
	Subtotal							\$ 13,100.00		
1C-CB-ST-09	Project straddling DART \& adjacent City of Plano \& City of Richardson ROW - costs quantified under half-mile area off-site improvements. See off-site improvement 1C-CB-CW-059 for detailed cost information.								Of total \$176,900 estimated cost for the crosswalk \& PHB, $1 / 3$ is assumed for DART \& $2 / 3$ for TXDOT/City of Richardson.	
 Markings, PHB										
	Subtotal							\$ 59,000.00		
1C-CB-ST-10	Separate Project straddling DART \& adjacent TxDOT/City of Plano ROW - See off-site improvement 1C-CB-CW-045.								Currently under construction as part of Silver Line Project, so no additional funding is required.	
Pedestrian Traffic Signal										
Grand Total ${ }^{\text {a }}$ (152,600.00										
		Contingency Items:	Contingency	Con	ingency lt	ms:		Contingency		
		Design Fee	10\%	Eros	on \& Sedi	ent Control	Allowance	2\%	25\%	
		Mobilization	4\%	Traf	ic Control	Allowance		3\%	Total Contingency	
		Landscaping Allowance	4\%	Extr	Continge	cy for Fede	Aid Projec	2\%		

Opinion of Probable Constr. Cost = \$0

Opinion of Probable Constr. Cost $=\mathbf{\$ 0}$	
Location ID	Ownership

$2 \mathrm{~A} \leftarrow$ Station Number
GP \leftarrow Station Abbreviation ST \Leftarrow Station Improvemen $01 \leftarrow$ Improvement Number (matches ≈ 1 on Map)

North Central Texas Council of Govemments
DART Red \& Blue Line Corridors Last Mile Connections
\gg

[^5]Opinion of Probable Cost - Total for All Recommendations at Station

0

DART Last Mile Connections Project - Parker Road Station Preliminary Opinion of Probable Construction Cost

Spring Valley Station

Noth Central Texas Council of Govemments

DART Red \& Blue Line Corridors Last Mile Connection
$2 \mathrm{C} \leftarrow$ Station Number ST \leftarrow Station Improvement SV \leftarrow Station Abbreviation $\begin{array}{ll}\text { SV } & \leftarrow \text { Station Abbreviation } \\ 01 \leftarrow \text { Improvement Number (matches } & \underset{1}{ } \text { on Map) }\end{array}$

Opinion of Probable Cost	Opinion of Probabie Constr. Cost $=\$ 239,900$		
Location ID Ownership	Project Type	Description	

, Correct pedestrian trip hazard

2C-SV-ST-01	DART	Sidewalk repair	Correct pedestrian trip hazard.
2C-SV-ST-02	DART	Bus stop sign relocation	Relocate bus station sign to the far side of the crosswalk to ensure pedestrian safety.

2C-SV-ST-02	DART	relocation	Relocate bus station sign to the far side of the crosswalk to ensure pedestrian safety.
$\begin{aligned} & \hline \text { 2C-SV-ST-03 } \\ & \text { 2C-SV-ST-04 } \end{aligned}$	DART	Update pedestrian signs	Update pedestrian warning signs to meet MUTCD standards. The existing signs are fading, have the wrong panel shape, and do not have supplemental arrow plaques as required to meet MUTCD standards.

2C-SV-ST-04	DART	Update pedestrian signs	Update ped standards.
2C-SV-ST-05			

2C-SV-ST-07	DART	Update Do Not Enter Sign	Update "DO NOT ENTER" signs to meet MUTCD standards.
2C-SV-ST-08	DART	Sidewalk repair	Correct pedestrian trip hazard.

2C-SV-ST-09	City of Richardson	Add fencing	Install median fence along Spring Valley Road in front of DART station to ensure pedestrians cross at the crosswalks.

 $\$ \quad 239,900$

DART Last Mile Connections Project - Spring Valley Station Preliminary Opinion of Probable Construction Cost

Improvement No./ Description	City of Dallas Bid Item No.	Item Description	Unit	Unit Price		Quantity	Rounded Quantity		Estimate	Assumptions
2C-SV-ST-01	203	REMOVE CONCRETE SIDEWALK	SF	\$	4.00	49	50	\$	200.00	Assume 7*7=49 sf
Sidewalk repair	7580	REINFORCED CONCRETE SIDEWALK	Sq. Yd.	\$	63.00	5.44	6	\$	378.00	
		Contingency					25\%	\$	144.50	
	Subtotal							\$	800.00	
2C-SV-ST-02	728	REMOVE AND RESET SIGN	Each	\$	223.00	1	1	\$	223.00	1 sign
Bus stop sign relocation		Contingency					25\%	\$	55.75	
	Subtotal							\$	300.00	
$\begin{aligned} & \text { 2C-SV-ST-03 } \\ & \text { 2C-SV-ST-04 } \\ & \text { 2C-SV-ST-05 } \end{aligned}$	729 A	INSTALL GR. MOUNTED REG/GUIDE SIGN	Each	\$	650.00	6	6	\$	3,900.00	6 signs
Update pedestrian signs		Contingency					25\%	\$	975.00	
	Subtotal							\$	4,900.00	
2C-SV-ST-06	680 A	2"PVC STREET LIGHT CONDUIT - BORE	Lin. Ft.	\$	18.00	1400	1400	\$	25,200.00	Lighting needed for approx. 1400'; assumed 60 ' spacing, or 23 poles
Add Pedestrian Lighting	687	PEDESTRIAN LIGHT FOUNDATION	Each	\$	1,208.00	23	23	\$	27,784.00	
	688	STREET LIGHT PULL BOXES	Each	\$	860.00	7	7	\$	6,020.00	
	691	PROCURE AND INSTALL PEDESTRIAN LIGHT POLE	Each	\$	2,158.00	23	23	\$	49,634.00	
	692	PROCURE AND INSTALL PEDESTRIAN LIGHT FIXTURES	Each	\$	1,382.00	23	23	\$	31,786.00	
	841	\#6 STREET LIGHT WIRE	Lin. Ft.	\$	3.00	3080	3100	\$	9,300.00	
	842	ELECTRICAL METER AND BASE	Lump Sum	\$	12,797.00	1	1	\$	12,797.00	
		Contingency					25\%	\$	6,300.00	
	Subtotal							\$	168,900.00	
2C-SV-ST-07	729 A	INSTALL GR. MOUNTED REG/GUIDE SIGN	Each	\$	650.00	1	1	\$	650.00	1 signs
Update Do Not Enter Sign		Contingency					25\%	\$	162.50	
	Subtotal							\$	900.00	
2C-SV-ST-08	203	REMOVE CONCRETE SIDEWALK	SF	\$	4.00	120	120	\$	480.00	Assuming remove 3 panels, $6 * 20=120 \mathrm{sf}$
Sidewalk repair	7580	REINFORCED CONCRETE SIDEWALK	Sq. Yd.	\$	63.00	13.33	14	\$	882.00	
		Contingency					25\%	\$	120.00	
	Subtotal							\$	1,500.00	
2C-SV-ST-09	XXXX	Architectural quality 6' metal fence	Lin. Ft.	\$	130.00	385	385	\$	50,050.00	385' fence
		Contingency					25\%	\$	12,512.50	
Add fencing	Subtotal								62,600.00	
Grand Total								\$	239,900.00	
Contingency Items:			Contingency	Contingency Items:				Contingency		
			10\%	Erosion \& Sediment Control Allowance					2\%	
		Mobilization	4\%	Traffic Control Allowance					3\%	25\% Total Contingency
		Landscaping Allowance	4\%	Extra Contingency for Federal Aid Project				2\%		Total Contingency

APPENDIX I: Half-Mile Area Rec ommendation Details \& Detailed Improvement Mapping

Figures $\mathbf{1 C}-\mathbf{3}$ through $\mathbf{2 C - 4}$ on the following pages of this a ppendix identify existing conditions and recommended improvements for the half-mile areas around each station in Richardson. The first figure in each set indicates existing conditions and the second figure indicates the recommended improvements.

In each figure, existing sidewalks are shown in light blue, as well as Regional Veloweb shared use paths (bright green) and local shared use paths (dark green). Existing shared use pathsare shown with solid lines, while proposed shared use paths are shown in dashed lines.
The density of individual parcels' population plus employment totals are shown in a multi-c olorscale on the existing conditions figure. The population and employment density is shown in grayscale on the recommended improvements figure to allow the improvements to stand out more clearly.
Sidewalk and crosswalk gaps are shown in red on the existing conditions figures, and in multiple colors on the recommended improvements figures, according to the prionity assigned to the gap: red for high-prionty, orange for medium-priority, and light pink for low-prionity. Gaps to rema in are shown in dark pink. For more details on these gap categories, refer to Appendix F.

Each high- medium- and low-priority improvement, along with all gaps to remain, are indicated by the boxed number labels near each improvement location. The lower night comer of each recommended improvements figure includes a legend that describes the abbreviations in the improvement ID codes, which can be used to cross-reference the improvement matrices that a ppear in Appendix J.
For solid red, orange, or light pink lines, the recommended improvement fora sidewalk gap is either a new or repaired 5 -foot wide sidewalk along the length shown. Repairs are noted in the matrix notesforeach improvement in Appendix J, a nd assume full removal of da maged, existing sid ewalk priorto replacement.
Note that in some places dashed green lines for planned shared use paths a ppear on top of other colored lines. Where dashed green lines appear on top of light blue lines, this indicates that a sidewalk of adequate width exists for basic pedestrian connectivity, and that a wider shared use path is also planned in the future. Such "sidewalk widening" improvements were not considered essential to provide multi-modal connectivity to transit for the purposes of this project, and as such were not listed as numbered improvements or included in any cost estimation of high-priority improvements. They are shown on the map figures for informational purposes only.
Other dashed green lines in the existing conditions and recommended improvements figures appear on top of red, orange, or light pink lines. On the existing condtions figures, dashed green over red indicates a gap where no current sidewalk or shared use path exists but a future local or regional shared use path is planned. On the recommended improvements figures, dashed green overred, orange, orlight pink also indicatesa gap (of the priority indic ated by the non-green color) where no current sidewalk or shared use path exists but a future local or regional shared use path is planned. In these cases, 10 '-wide shared use paths were considered essential as high-priority improvements (dashed green over red) to provide multi-modal connectivity to transit, and as such were listed as numbered improvements and included in the cost estimates that follow.

For crosswalk gaps, the type of improvement recommended is shown with numbered dark blue circles located near each crosswalk. The numbers in the blue circles correspond to the legend of possible pedestrian safety countermea suresappearing at the upper right of the figure. The first nine items in this legend correspond to the standard nine items in Table 1 of FHWA's publication, "Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations," referenced earlier in Section 2.6, Appendix C, and Appendix D. Treatments recommended somewhere on a partic ular figure have a red boxaround them in the legend for easier reference.

The right-hand side of each existing and recommended improvements figure includesa legend for "Primary Routes." These are street segments identified by NCTCOG as candidates for further evaluation during preliminary a nalysesthat preceeded the subject project by the consultant team. Primary Routes are denoted with a darkened black street centerline and a letter designation matching a street name indicated in the legned. Comparing the primary routes with high priority gaps on the recommended improvements figures illustrates differences between the results of this preliminary methodology with the final methodology
The "Half Mile Area Improvements Matrices" appearing in Appendix J for each station list for each improvement the owner, improvement type, location, length, notes, prionity score, and (in the case of high p rionity improvements not built by others) the opinion of probable construction cost. A matrix for sidewalks and shared use paths appears first, followed by a second matrix for crosswalks sorted separately. Each of the matrices is sorted by ownership and then by ID number.

The notes discuss any observations from the field visits deemed relevant, as well as challenging conditions the City and other agencies may want to consider when advancing recommended projectsto design and/orconstruction. Thistype of information captured in the noteswasa primary component of developing the quantities that form the basis for the opinions of probable construction cost. Also included in the notes (where provided) is feedback received from the City about upcoming projects or development that may construct the improvement. The absence of a note indicates that the sidewalk improvement appears to be relatively straightforward without obvious challenges.

In some cases, ownership of or responsibility for improvements was assumed to be shared among agencies, such as for a sidewalk crossing the Plano/Richardson City boundary or for a crosswalk from DART property across an adjacent City street. Such mixed ownership cases appear at the end of each listing with separate OPCC subtotals. In these cases, the OPCC for individual improvements or groups of improvements was split equally among each agency in the summary tablesthat follow in the main body of the report.

CityLine Bush Station

Figure 1C-3 illustrates the existing conditions in the half-mile area a round the CityLine Bush Station. Central Expy (U.S. 75), the President George Bush Tpk (SH 190) and K Ave/N Plano Rd all pose boundaries to multi-modal access to the station. While the station is located just south of the Richardson City line formed by the PGBT, new transit-oriented residential development has occurred north of the PGBTin Plano, with other undeveloped parcels expected to bring more such development. The current configuration of the Park \& Ride lots located below the PGBT bridge
structures is onented pnmanly to serve DART niders driving to the station, with feweraccomodations for pedestrian and bicycle trips through the large parking lots.

Figure 1C-4 shows the recommended improvements in the half-mile area around the CityLine Bush Station. Several sidewalks and connecting crosswalks should be built through a nd around the Park \& Ride lots below the PG BT bridges. The high posted speed limits along the PG BT frontage roads create the need for high-visibility crosswalks. Therefore, pedestrian hybrid beacons are recommended at the Crawford Rd/Topridge Drcrossings of the PGBTfrontage roads (1C-CB-CW$42,1 C-C B-C W-43$, and $1 C-C B-C W-59)$. Also, a pedestrian traffic signal is recommended for the crossing of the PGBT westbound frontage road just east of the DART tracks (1C-CB-CW-45). The existing crosswalk across the WBFR west of the tracks will be removed as part of the Silver Line Construction, which is still under design but will reconfigure other existing sidewalks and crosswalks in and a round the station.
Three existing signalized intersections should receive pedestrian access improvements. Marked crosswalks and countdown, accessible pedestrian signals should be added at the intersections of Plano Pkwy with FAve/Executive Dr and with K Ave. Though pedestrian indications are already present at the K Ave/N Plano Rd intersection with the PGBT frontage roads, sidewalks (1C-CB-SW046, 1C-CB-SW-047, a nd 1C-CB-SW-061) need to be added so that pedestrian tra vel through these intersections can occur during all weather and for DART riders of different abilities.

Most of the recommended improvements south of the station in Richardson are anticipated for construction by others, either as part of the Silver Line project or the ongoing construction of the Cityline mixed-use development.

A shared use path aspart of the RegionalVeloweb isfunded aspart of the construction of the Silver ine Project. The shared use path will parallel the track alignment, on the east side of the tracks north of the station and curving to the west south of the station to cross under Central Expy (U.S. 75). Connecting trailswill need to be provided to link the shared use path to other shared use paths planned by the City of Richardson and TxDOTalong the U.S. 75 frontage roads. From CityLine Dr to Renner Rd, the local shared use path on the east side of U.S. 75 is funded

Other shared use paths are planned by the City of Richardson along the south side of the PG BT eastbound frontage road and along the west side of N Plano Rd. In some places the shared use path would widen existing sidewalk, while in other places it would fill a gap where no existing sidewalk is present

Additional details about other improvements recommended in Figure 1C-4, as well as challenges associated with the recommended gaps to remain, are included in the matrix notes for CityLine Bush Station that can be found in Appendix J.

Galatyn Park Station
Figure 2A-3 illustrates the existing conditions in the half-mile area around the Galatyn Park Station. Central Expy (U.S. 75) currently blocks all bicycle and pedestrian travel to and from the west since the only bridge that c rosses it within the half-mile a rea, on Galatyn Pkwy, does not include sidewalk. A DARTshuttle (Route 824) connects the station to areas west of U.S. 75 at 15 - to 20 -minute intervals during weekday peak hours. This route previously included more expanded hours of operation, but service has been scaled back due to COVID-19 travel demand changes.

The Central Trail, part of the Regional Veloweb shared use path network, runs along the east side of the DART right-of-way along its entire length within the half-mile area. On-street bike lanes are present along N Collins Blvd throughout the half-mile area. Local shared use paths exist or are planned farther west on either side of Praine Creek. To the northeast of the station, a local shared use path that is partially complete along the north side of Glenville Dr is planned by the City of Richardson to extend to the intersec tion with Lookout Dr, where it will continue along the north side of Lookout Dr to points eastward.

Figure 2A-4 shows the recommended improvements in the half-mile area around the Galatyn Park Station. The City of Richardson should consider improved bicycle and pedestrian access across U.S. 75. Many pedestrians and cyc lists would likely preferthe inc reased convenience of a sidewalk connection over the 15 - to 20-minute intervals provided by DART Bus Route 824, even after the retum of mid-day bus service. A sidewalk connection would also be available at night or on weekends.
The Galatyn Pkwy bridge over U.S. 75 is currently posted with a "No Pedestrians" prohibition. The bridge would either need to be widened to provide sidewalk, or a road diet would need to be implemented. Between the ramp signals, about 44 feet is allocated to fourtravellanes. Narrowing lanes from 11 feet wide to 10 feet wide could provide space for a minimal 4-ft wide sidewalk on one side of the bridge only

A better altemative for a road diet may be to reconsider the lane geometry of the tight-diamond interchange. Northbound and southbound vehicular through movements from the ramps are unnecessary and can be eliminated because the frontage roads provide through movements undemeath the Galatyn Pkwy Bridge that does not require crossing Galatyn Pkwy at-grade via the ramps. With elimination of the through movements, the interchange could potentially be converted to a diverging diamond interchange (DDI) configuration with a single lane in each of the eastbound and westbound directions.

This configuration would require a median, but sidewalk could then be provided either along one side of the bridge or (as is relatively common in the DDI configuration) in the median between opposing lanes, each traveling in a counterflow direction. Geometric studies would be needed to see if such a configuration, including required signal displays, could fit on the existing bridge structure, while capacity analysis would be needed to evaluate the strategy's operational effectiveness relative to existing and projected future conditions with build -out of adjacent developments. However, despite the expectation of increased development and auto traffic in the area, the concept holds potential, since DDI's frequently outperform traditional tight diamond interchanges like the existing configuration by a large margin and/or with fewer la nes.
Drainage would need to be modified on the west bridge approach to add sidewalk, since grate inlets are present along the curb. On the east bridge approach, na rowing lanesfrom 11 feet wide to 10 feet wide (along with na rrowing and realigning of the roadway median) could provide some of the space needed for new sidewalk, with additional space coming from the potential changes to lane configurations and phasing at the signalized interchange of Galatyn Pkwy with the U.S. 75 ramps.

In addition to new sidewalk in some locations to fill network gaps, other recommended improvements include:

Figure 1C-3 Existing Conditions

Primary Routes

Route	Street
A	Topridge Drive
B	Plano Pkwy / K Ave
C	Plano Pkwy
D	N President George Bush Turnpike

FTA DART Stations Last Mile Connections City Line Bush
Station November 2020

*Note: Sidewalk to be removed to make way for DART Silver Line tracks.

Figure 1C-4 Recommended Improvements

Primary Routes

Route	Street
A	Topridge Drive
B	Plano Pkwy / K Ave
C	Plano Pkwy
D	N President George Bush Turnpike

[^6]FTA DART Stations Last Mile Connections Galatyn Park
Station
November 2020
Lex encineranc

Legend

DART Rail Station

- Railroad Track

Segment Category

- Existing Sidewalk/Crosswalk
- Sidewalk/Crosswalk Gap

Regional Veloweb (Mobility 2045)

- Regional Existing
- Regional Funded
- = Regional Planned

Local Shared Use Paths

- Local Existing
- Local Funded
- - Local Planned

Local On-Street Bikeways

- Local Existing Bicycle Facilities
- Local Funded Bicycle Facilities - = Local Planned Bicycle Facilities DISPLAY
0.5 Mile Buffer
0.25 Mile Buffer
- Primary Routes

Figure 2A-3 Existing Conditions

Primary Routes

Route	Street
A	Plaza Blvd/Galatyn Pkwy

Legend	
成 DART Rail Station	
- Railroad Track	
Sidewalk _— Existing Sidewalk/Crosswalk	
Proposed Sidewalk/ Crosswalk by Priority 1\square	
- High	
- Medium	
- Low	
Regional Veloweb (Mobility 2045)	
- Regional Existing	
- Regional Funded	
Local Shared Use Paths	
- Local Existing	
$\begin{aligned} & \text { - Local Funded } \\ & =\text { Local Planned } \end{aligned}$	
Local On-Street Bikeways	
- Local Existing Bicycle Facilities - Local Funded Bicycle Facilities - = Local Planned Bicycle Facilities	
Buffers	
0.5 Mile Buffer	
Hand 0.25 Mile Buffer	
- Primary Routes	
Existing Residential and Employment Population (Number People)	
Ppl	
0-234	
235-1049	
$\square 1050-2586$	
2587-5364	
	5365-10339

Figure 2A-4 Recommended Improvements

Primary Routes

Route	Street
A	Plaza Blvd/Galatyn Pkwy

[^7]- New crosswalks with rectangular rapid-flashing beacons (RRFB's) for crossing Glenville Dr at two locations (improvement 2A-GP-CW-67 and 68) across a long stretch where the street has no other controlled crossings. The northem location would connect existing sidewalk from the station to the Infosys comorate campus, but would require coordination with the private property owner to extend sidewalk to the building front doors.
- Marked crosswa lks and pedestrian rampsto cross N Collins Blvd at Palisa desCreek Dr, a wide crossing of an all-way stop-controlled intersection (improvements 2A-GP-CW-08 and 09).
- New signed, marked and lit crosswalks at the intersection of N Collins Blvd and Fall Creek Dr (improvements 2A-GP-CW-12 and 13). Add yield lines and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians. Consider additional improvements if a study of pedestrian volumes warrants them, given the long distance to stop-controlled crossing locations in eitherdirection
- Marked, signed, and lit c rosswalks a cross Pa lisa des Blvd at South Gate Dr (improvements 2A-GP-CW-26 and 27). Consider curb extensions or a median refuge island in the wide $34-\mathrm{ft}$ roadway. Care should be taken to provide advance waming signs in the eastbound direction due to the crest vertical curve in the roadway to the west. Or, the potential also exists for revising traffic signage to make the north-south route primary. In addition, the Palisades master plan does include the possibility of Palisa des Blvd abandonment east of Empire Dr.
- Pedestrian or bicycle/pedestrian waming signs and white crosswalk lines parallel to the existing crosswalks for the Central Trail crossings of N Glenville Dr, E Lookout Dr, and Lakeside Blvd and at the intersection of E Lookout Drand Performance Dr (improvements 2A-G P-CW45, 55-57, and 78). The existing crosswalks have a faded, non-conforming brick pattem and dark outlines. White edge lines as traffic control devices are required to make crosswalks legally enforceable. Add yield lines and "Yield Here to Pedestrians" signing in each direction approaching the crosswalks ac ross N Glenville Drand at the intersection of E Lookout Drand Performance Dr to mitigate the risk of a dual threat situation for pedestrians.
- A marked crosswalk at the existing signed pedestrian crossing across E Lookout Dr midway between Performance Dr and N Glenville Dr (improvements 2A-GP-CW-58). Add yield lines and "Yield Here to Pedestrians" signing in each direction approaching the crosswalk to mitigate the risk of a dual threat situation for pedestrians.
- Marked crosswalks at the existing signed pedestrian crossing across Lakeside Blvd between Central Trail and Waterwood Dr (improvement 2A-GP-CW-80). Add yield lines and 'Yield Here to Pedestrians" signing in each direction approaching the crosswalksto mitigate the risk of a dual threat situation for pedestrians.
- White edge lines on the outside of brick crosswalksat the round about entries a nd exits where La keside Blvd intersects La wnview Dr (improvements 2A-GP-CW-81, 82 and 85). White edge linesastraffic control devic esare required to make crosswalkslegally enforceable. Also, the only way to reach the roundabout crosswalks from adjacent sidewalks is via stairs to/from the sidewalks above. Explore altematives for ADA-compliant access, and add pedestrian rampsat each crosswalk.
- A marked c rosswalk at the existing signed pedestrian crossing ac rossLakeside Blvd mid-block between Lawnview Drand the southem study boundary (improvement 2A-GP-CW-83). Add yield lines and "Yield Here to Pedestrians" signing in each direction approaching the crosswalk to mitigate risk of dual threat situation for pedestrians.

Many missing sidewalks will be constructed by the Palisades development as it is completed just west of Central Expy and the station. The developer will bear the cost for these improvements.

Additional details about other improvements recommended in Figure 2A-4, as well as challenges associated with the recommended gaps to remain, are included in the matrix notes for Galatyn Park Station that can be found in Appendix J.

DECEMBER 2020

Arapaho Center Station

Figure 2B-3 illustrates the existing conditions in the half-mile area around the Arapaho Center Station. Central Expy (U.S. 75), Collins Blvd, and Ara pa ho Rd are all arterials that provide ba miers to multi-modal travel to and from the station. Due to a lack of street and intersection density in the areas east of the station, multi-modal travel to and from that direction is significantly more circuitous, a nd a large number of a uto-oriented businesses and offic es with large parking lots also impede connectivity.

The Central Trail provides multi-modal access along the east side of Greenville Ave north of the station, switc hing to the west side of Greenville Ave south of the station via the tunnel between the train platform and the park \& ride lot/busloop. A local shared use path is present along the west side of Alma Rd from Collins Blvd to Woodall Dr, while on-street bike lanes are provided along both Greenville Ave and Alma Rd for the length of the study area, as well as along Collins Blvd east of Alma Rd.

Figure 2B-4 shows the recommended improvements in the half-mile area around the Arapaho Center Station. Coordination between the City, DART, and adjacent private property owners would be required to construct a sidewalk connection southwest of the tra in platform to connect more directly to the U.S. 75 northbound frontage road and the businesses located there (improvement 2B-AC-SW-37). Also highly recommended is the construction of sidewalk fronting several of those businesses farther south (improvement 2B-AC-SW-37).

A shared use pathway as part of the Regional Veloweb network is planned along the Kansas City Southem rail line entering the north part of the study area and connecting to Collins Blvd west of U.S. 75 (improvement 2B-AC-VW-V01). A sidewalk connecting this improvement and the existing sidewalk along the west side of Collins Blvd to the sidewalk along the U.S. 75 southbound fronta ge road should be constructed as well (improvement 2B-AC-SW-03).

The City of Richardson is planning local shared use paths along the south side of Arapaho Rd west of Greenville Ave and along the Kansas City Southem freight rail line southeast from its crossing of Alma Rd. On-street bike lanes are planned for Collins Blvd west of Alma Rd and across the bridge over U.S. 75. The City of Ric hardson plans to implement a road diet on the Collins Blvd bridge that will allow for wider sidewalks and protected bike lanes. The project should include signed and marked crosswalks with pedestrian-actuated rectangular rapid-flashing beacons (RRFB's) for crossing each of the four ramps between Collins Blvd and the U.S. 75 frontage roads, since the geometry of these ramps is conducive to high vehic ular speeds.

Two new crosswalks are recommended for crossing Richardson Dr. One is recommended south of Monte Blaine Ln (improvement 2B-AC-CW-53), where the existing sidewalk on the west side ends and the City's zoning code precludes removal of hedges from a narrow space to the south. The hedges provide necessary screening and would need to be removed to add sidewalk (improvement 2B-AC-CW-55), so the crosswalk will provide an altemate route via new and proposed sidewalk on the west side. The other crosswalk location (improvement 2B-AC-CW-53) a ligns with an existing break in the hedges that a ligns with the east end of J olee St (which does not connect forcartraffic to Richardson Dr).
Both crosswalks must be designed carefully to maximize sight distance around the hedges and the tree-lined horizontal curves in the roadway geometry. Both should include yield lines and "Yield

Here to Pedestrians" signing in each direction to mitigate risk of dual threat situation for pedestrians. Give strong consideration to installing pedestrian-actuated rectangular rapid flashing beacons (RRFB's), partic ularly due to the sight distance limitations. A road diet to introduce curb extensions and/or a median refuge island for pedestrians might also be considered to increase a vailable pedestrian sight distance.

Additional details about other improvements recommended in Figure 2B-4, as well as challenges associated with the recommended gaps to remain, are included in the matrix notes for Arapaho Center Station that can be found in Appendix J

DECEMBER 2020

Figure 2B-3 Existing Conditions

Arapaho Center
 Station

November 2020

Legend

E. DART Rail Station
— Railroad Track
Segment Category

- Existing Sidewalk/Crosswalk
— Sidewalk/Crosswalk Gap
Regional Veloweb (Mobility 2045)
- Regional Existing
- Regional Funded
- - Regional Planned

Local Shared Use Paths

- Local Existing
- Local Funded
- - Local Planned

Local On-Street Bikeways

- Local Existing Bicycle Facilities - Local Funded Bicycle Facilities - = Local Planned Bicycle Facilities DISPLAY
- 0.5 Mile Buffer
0.25 Mile Buffer
- Primary Routes

Primary Routes

Route	Street
A	Central Expwy
B	Alma Rd
C	Security Row
D	DART/Private ROW

FTA DART Stations Last Mile Connections Arapaho Center Station November 2020

Primary Routes

Route	Street
A	Central Expwy
B	Alma Rd
C	Security Row
D	DART/Private ROW

Improvement Code Legend (See Matrix) 2B-AC-SW-01
$2 B \longleftarrow$ Station Number
$\mathrm{AC} \longleftarrow$ Station Abbreviation
SW \longleftarrow Sidewalk (or CW for Crosswalk)
$01 \longleftarrow$ Improvement Number (Matches $\mathbf{1}$ on Map)

Spring Valley Station

Figure 2C-3 illustrates the existing conditions in the half-mile area a round the Spring Valley Station. U.S. 75, Spring Valley Rd, and Centennial Blvd are major arterials that pose bariers to bicycle and pedestrian travel, though signalized crossings generally provide good accessopportunities. Access to the transit-oriented development east of the station is good with new sidewalk, though somewhat indirect. The area west of U.S. 75 is only accessible to the station by traveling south along the southbound frontage road to the intersection with Spring Valley Ln, slightly outside the study half-mile area. Severalgaps in the sidewalk are present along the U.S. 75 frontage roadsand along the neighborhood streets east of Greenville Ave.

The Central Trail runs parallel to the DART track on the east side to the north of the station and crosses under the DART overpass just south of Spring Valley Rd to an alignment west of the tracks south of the station to Buckingham Dr

Figure 2C-4 shows the recommended improvements in the half-mile area around the Spring Valley Station. In addition to building sidewalk to fill gaps in the network, the recommended improvements include:

- At the west end of McKamy Springs $C t$, consider providing short break in the existing fence to provide a sidewalk connection to the Central Trail. This would require removal of a short section of fence and part of a short retaining wall, as well as a few medium-sized trees, but would provide a shorter walking distance to the station for many a partment a nd townhome residentsto the east. The City of Ric hard son indic atesthey will need to work with the property owner on whether they have a desire for this improvement.
- New or improved crosswalks a cross Ling co Dr between the station platform and park \& ride lot, across Sherman St at Lingco Dr, and across Greenville Ave at Pittman St (improvements 2C-SV-CW-16, 17 and 38). Yield lines, "Yield Here to Pedestrians" signing, and a pedestrian refuge island are recommended at the Lingco Dr and Greenville Ave crossings, while pedestrian-actuauted RRFB's are recommended at Lingco Dr. The Lingco Drcrossing should be coordinated with DART, as disc ussed in Section 3.1.4.
- New yield lines and "Yield Here to Pedestrians" signing for the two lanes in each direction approaching the existing signed and marked crosswalk across Greenville Ave at EPhillips St, nearthe northeast half-mile area boundary (improvements $2 \mathrm{C}-\mathrm{SV}-\mathrm{CW}-30$ a nd 31). Consider adding a pedestrian hybrid beacon if waranted by a study of pedestrian volumes during a rival and dismissal times for the First Baptist Church of Hamilton Park and the Richardson ISD Math Science Technology magnet school, both located nearby to the east.
- White crosswalk lines parallel to the existing pattemed concrete crosswalk across Buckngham Rd at the Central Trail crossing (improvement 2C-SV-CW-27), which already has lighting, pedestrian ramps and a median refuge. White edge lines astraffic control devices are required to make crosswalks legally enforceable. Add pedestrian waming signs at the are required to make crosswalks legally enforceable. Add pedestrian waming signs at the
crosswalk and advance pedestrian waming signs for the eastbound direction (currently installed only forwestbound). Add yield linesand "Yield Here to Pedestrians" signing forboth directions to mitigate the risk of a dual threat situation for pedestrians. Consider a traffic signal to facilitate crossings, particularly in conjunction with the future extension of the Central Trail south of Buckingham Rd at this location. A full traffic signal should be considered
instead of a RRFB or pedestrian hybrid beacon due to the adjacency to the existing DART railroad crossing gates and potential driver confusion with altemative meanings of flashing red lights.

Asdiscussed in Section 3.1.4, some pedestria nswere observed crossing Spring Valley Rd, a busy sixlane arterial, directly below the rail overpass instead of at the adjacent signalized crosswalks at Lingco Dr 200 feet to the west or Spring Valley Rd 200 feet to the east. The alignment of the Central Trail, which intersects the Spring Valley Rd sidewalks here without a direct crosswalk, likely contributes to this behavior. A crosswalk improvement for more direct pedestrian travel along the trail would pose an undue constraint on vehicular signal coordination given the short distance to the signalized crosswalks. The City of Ric hardson should coordinate with DART to consider adjusting the location of bus stops and installing aesthetic a nti-c limb median fencing (improvement 2C-SV-GR-25) along the median of Spring Valley Rd in front of the DARTstation to ensure pedestrians cross at the crosswalks.
The City of Richardson is planning to widen the sidewalk on the north side of Spring Valley Rd west of the station to become a shared use path on the Regional Veloweb network. East of the station, the sidewalk on the north side would also be widened fora local shared use path that continuesto Greenville Ave and along the west side of Greenville Ave north of Spring Valley Rd. The Central Trail is planned to be extended south of Buckingham Drparallel to the DARTtrackson the east side.

Additional details a bout other improvements recommended in Figure 2C-4, as well a s challenges associated with the recommended gaps to remain, are included in the matrix notes for Spring Valley Station that can be found in Appendix J.

DECEMBER 2020

Figure 2C-3 Existing Conditions
North Central Texas Council of Governments

Spring Valley

 Station December 2020
Legend

- DART Rail Station
— Railroad Track
- Railroad Track

Segment Category

- Existing Sidewalk/Crosswalk
- Sidewalk/Crosswalk Gap

Regional Veloweb (Mobility 2045)

- Regional Existing
- Regional Funded
- - Regional Planned

Local Shared Use Paths

- Local Existing
- Local Funded
- - Local Planned

Local On-Street Bikeways

- Local Existing Bicycle Facilities
- Local Funded Bicycle Facilities
- - Local Planned Bicycle Facilities DISPLAY
0.5 Mile Buffer
0.25 Mile Buffer
- Primary Routes

Primary Routes

Route	Street
A	S Greenville Ave
B	S Central Expy
C	S Floyd Rd
D	S Central Expy

Figure 2C-4 Recommended Improvements

Primary Routes

[^8]APPENDIX L: Half-Mile Improvement Matrices

ARS
DART Red \& Blue Line Corridors Last Mile Connections

Half Mile Area Improvements Matrix

CityLine Bush Station

Opinion of Probable Constr. Cost = \$1,495,600
Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Improvement Code Legend: ID: 1A-PR-SW-01	
$1 \mathrm{~A} \leftarrow$ Station Number	SW \leftarrow Sidewalk (or CW=Crosswalk,
$\mathrm{PR} \leftarrow$ Station Abbreviation	VW=Veloweb,
$01 \leftarrow$ Improvement Number	RP=Sidewalk Repair
(matches 1 on Map)	GR=Gap to Remain)

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

天
n of

ID	Owner	Type	Street Name	Between	Street	(ft)	Notes	Score	Probable Cost
1C-CB-RP-001	City of Plano	Sidewalk Repair	Taylor Dr	E Plano Pkwy \& F Ave	North	15	Settlement has created significant trip hazard at driveway ramp.	15	N/A
1C-CB-RP-002	City of Plano	Sidewalk Repair	Taylor Dr	E Plano Pkwy \& F Ave	North	20	Damage near water meter creates significant trip hazard.	9	N/A
1C-CB-RP-003	City of Plano	Sidewalk Repair	F Ave	North Study Boundary \& Taylor Dr	West	20	Settlement has created trip hazard with >2 " drop.	8	N/A
1C-CB-SW-004	City of Plano	New Sidewalk	E Plano Pkwy	North Study Boundary \& Taylor Dr	South	100		13	N/A
1C-CB-SW-005	City of Plano	New Sidewalk	E Plano Pkwy	North Study Boundary \& Taylor Dr	South	150		20	N/A
1C-CB-SW-006	City of Plano	New Sidewalk	E Plano Pkwy	North Study Boundary \& Taylor Dr	South	100		21	N/A
1C-CB-SW-007	City of Plano	New Sidewalk	Taylor Dr	E Plano Pkwy \& F Ave	South	315		13	N/A
1C-CB-SW-008	City of Plano	New Sidewalk	Taylor Dr	E Plano Pkwy \& F Ave	South	365		9	N/A
1C-CB-SW-009	City of Plano	New Sidewalk	E Plano Pkwy	Taylor Dr \& F Ave	North	725	Short retaining walls, tree removal would be needed to construct sidewalk. A City of Plano local shared use path is planned for this segment.	25	\$ 107,900
1C-CB-SW-010	City of Plano	New Sidewalk	F Ave	Taylor Dr \& E Plano Pkwy	West	480	Tree removal would be needed to construct sidewalk.	21	N/A
1C-CB-SW-012	City of Plano	New Sidewalk	F Ave	North Study Boundary \& E Plano Pkwy	East	630	Short retaining walls, tree removal would be needed to construct sidewalk. UPS mailbox may also need to be relocated.	21	N/A
1C-CB-SW-016	City of Plano	New Sidewalk	E Plano Pkwy	F Ave \& DART Tracks	North	420	Tree root damage likely if sidewalk installed on this segment. A City of Plano local shared use path is planned for this segment.	25	\$ 62,600
1C-CB-SW-018	City of Plano	New Sidewalk	E Plano Pkwy	DART Tracks \& J PI	North	10	Sidewalk would require tree removal, provision of parking stops in adjacent parking lot to prevent parked cars from encroaching in narrow sidewalk space. A City of Plano local shared use path is planned for this segment.	19	N/A
1C-CB-SW-019	City of Plano	New Sidewalk	E Plano Pkwy	DART Tracks \& J PI	North	165	A City of Plano local shared use path is planned for this segment.	24	\$ 108,900
1C-CB-SW-020	City of Plano	New Sidewalk	J PI	North Study Boundary \& E Plano Pkwy	East	160		8	N/A
1C-CB-SW-021	City of Plano	New Sidewalk	J PI	North Study Boundary \& E Plano Pkwy	East	165		10	N/A
1C-CB-SW-022	City of Plano	New Sidewalk	J PI	North Study Boundary \& E Plano Pkwy	East	180		14	N/A
1C-CB-SW-023	City of Plano	New Sidewalk	E Plano Pkwy	J PI \& K Ave	North	160	A City of Plano local shared use path is planned for this segment.	23	\$ 165,100
1C-CB-SW-025	City of Plano	New Sidewalk	E Plano Pkwy	K Ave \& North Study Boundary	North	510	Tree removal and mid-size retaining wall would be needed for sidewalk near K Ave intersection. Tree root damage likely elsewhere along segment.	21	N/A
1C-CB-SW-029	City of Plano	New Sidewalk	Executive Dr	N Central Expy \& Crawford Rd	South	720		20	N/A
1C-CB-SW-032	City of Plano	New Sidewalk	Crawford Rd	Executive Dr \& N President George Bush Hwy	West	120		25	\$ 10,800

Half Mile Area Improvements Matrix
CityLine Bush Station
Opinion of Probable Constr. Cost = \$1,495,600 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

pinion of Probable Constr. Cost = \$1,495,600	$01 \leftarrow$ Improvement Number (matches 1 on Map)	RP=Sidewalk Repair GR=Gap to Remain)
Sidewalk \& Shared Use Path Segments		

Sidewalk \& Shared Use Path Segments			
ID	Owner	Improvement Type	
1C-CB-SW-035	City of Plano	New Sidewalk	
1C-CB-SW-037	City of Plano	New Sidewalk	
1C-CB-SW-038	City of Plano	New Sidewalk	
1C-CB-SW-040	City of Plano	New Sidewalk	
1C-CB-SW-041	City of Plano	New Sidewalk	
1C-CB-SP-095	City of Plano	New Shared Use Path	
1C-CB-SP-097	City of Plano	New Shared Use Path	
1C-CB-SP-098	City of Plano	New Shared Use Path	

1C-CB-SP-064	City of Richardson	Shared Use Path	N Central Expy	Connector to Cotton Belt Line Regional Veloweb	West	425	Slopes and tree clearing will increase cost for shared use path for this connection.	9	N/A
1C-CB-SP-065	City of Richardson	Shared Use Path	N Central Expy	Connector to Spring Creek Trail Regional Veloweb	West	505	Slopes and tree clearing will increase cost for shared use path for this connection.	5	N/A
1C-CB-SP-067	City of Richardson	Shared Use Path	N Central Expy	Connector to Cotton Belt Line Regional Veloweb	East	200	Slopes and tree clearing will increase cost for shared use path for this connection.	16	N/A
1C-CB-SW-068	City of Richardson	New Sidewalk	W Cityline Dr	N Central Expy \& Routh West Dr	North	540	City of Richardson reports sidewalk construction anticipated as part of upcoming development.	23	N/A
1C-CB-SW-069	City of Richardson	New Sidewalk	Red Moon Way	E President George Bush Hwy \& W Cityline Dr	West	660	City of Richardson reports sidewalk construction anticipated as part of upcoming development.	25	N/A
1C-CB-GR-070	City of Richardson	Gap to Remain	Pipeline Dr	Topridge Dr \& West Routh Creek Pkwy	North	100	New segment of soft surface trail with benches is an existing break in the new sidewalk south of the apartment complex park. This appears to have been by design, and a parallel hard surface sidewalk is available on the south side of Pipeline Dr.	0	N/A
1C-CB-SW-074	City of Richardson	New Sidewalk	W Cityline Dr	N Central Expy \& Routh West Dr	South	545	Sidewalk construction anticipated as part of upcoming development.	23	N/A

Half Mile Area Improvements Matrix

CityLine Bush Station

Opinion of Probable Constr. Cost = \$1,495,600 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
1C-CB-SW-075	City of Richardson	New Sidewalk	Red Moon Way	W Cityline Dr \& E Renner Rd	West	1350	Sidewalk construction anticipated as part of upcoming development.	30	N/A
1C-CB-SW-077	City of Richardson	New Sidewalk	Red Moon Way	W Cityline Dr \& E Renner Rd	East	1335	Existing soft surface trail already present here. Anticipated sidewalk construction as part of upcoming development.	22	N/A
1C-CB-SW-078	City of Richardson	New Sidewalk	W Cityline Dr	N Central Expy \& Routh West Dr	South	530	Sidewalk construction anticipated as part of upcoming development.	26	N/A
1C-CB-SW-079	City of Richardson	New Sidewalk	W Cityline Dr	N Central Expy \& Routh West Dr	South	20	Sidewalk construction anticipated as part of upcoming development.	37	N/A
1C-CB-GR-080	City of Richardson	Gap to Remain	Routh West Dr	W Renner Rd \& South Study Boundary	West	570	Bridge over Spring Creek does not have sufficient width for sidewalk. West side of Routh Creek Parkway in this area is adjacent to only DART tracks and an office building that has alternative pedestrian access via Renner Road.	0	N/A
1C-CB-GR-081	City of Richardson	Gap to Remain	Routh West Dr	Peloton Dr \& W Renner Rd	East	100	A crosswalk across the south leg of the intersection would cause unnecessary disruption to landscaping and the existing boardwalk portion of the sidewalk on the west side of Routh Creek Parkway. The north crosswalk should be sufficient for serving pedestrian demand since land uses on the west side are primarily recreational.	0	N/A
1C-CB-SW-082	City of Richardson	New Sidewalk	Routh West Dr	Hill St \& Cityline Dr	East	330	Sidewalk construction adjacent to informal temporary park anticipated as part of master-planned development.	24	N/A
1C-CB-SW-083	City of Richardson	New Sidewalk	Hill St	Routh West Dr \& Newton St	South	405	Sidewalk construction adjacent to informal temporary park anticipated as part of master-planned development.	32	N/A
1C-CB-SW-084	City of Richardson	New Sidewalk	Cityline Dr	Routh West Dr \& N Plano Rd	North	465	Sidewalk construction adjacent to informal temporary park anticipated as part of master-planned development.	22	N/A
1C-CB-SW-085	City of Richardson	New Sidewalk	Keffler St	Hill St \& Cityline Dr	West	340	Sidewalk construction adjacent to informal temporary park anticipated as part of master-planned development.	29	N/A
1C-CB-GR-086	City of Richardson	Gap to Remain	Cityline Dr	Keffler St	West	75	Crosswalk would require elimination of on-street parking spaces on south side of street. Alternative path available via west leg crosswalk.	0	N/A
1C-CB-GR-089	City of Richardson	Gap to Remain	Heise Way	N Plano Rd \& Wilshire Way	North	640	Heise Way is a fire lane/service drive/alley for development on both sides of the pavement, so sidewalk is not required or desirable.	0	N/A
1C-CB-GR-090	City of Richardson	Gap to Remain	Heise Way	N Plano Rd \& Wilshire Way	South	575	Heise Way is a fire lane/service drive/alley for development on both sides of the pavement, so sidewalk is not required or desirable.	0	N/A
1C-CB-SW-091	City of Richardson	New Sidewalk	Wilshire Way	President George Bush Hwy EB Frontage Rd \& Heise Way	West	305	Sidewalk construction anticipated as part of upcoming development.	17	N/A
1C-CB-SW-093	City of Richardson	New Sidewalk	Wilshire Way	President George Bush Hwy EB Frontage Rd \& Cityline Dr	East	1380	A portion of this section will be completed as part of multi-family building under construction.	17	N/A
1C-CB-SW-094	City of Richardson	New Sidewalk	Cityline Dr	Wilshilre Way \& East Study Boundary	North	725	Existing soft surface trail already present here. Anticipated sidewalk construction as part of upcoming development.	10	N/A

Half Mile Area Improvements Matrix

CityLine Bush Station

Opinion of Probable Constr. Cost = \$1,495,600
Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Improvement Code Legend: ID: 1A-PR-SW-01	
$1 \mathrm{~A} \leftarrow$ Station Number	SW \leftarrow Sidewalk (or CW=Crosswalk,
$\mathrm{PR} \leftarrow$ Station Abbreviatio	VW=Veloweb,
¢Improvement Number	RP=Sidewalk Repair
(matches 1 on Map)	GR=Gap to Remain)

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

人
\rightarrow

Opinion of Prob	e Cost - City of	son Subtotal..					,			-
1C-CB-SW-046	Cities of Plano/Richardson	New Sidewalk	K Ave	N President George Bush Hwy	West	290	Lighting under PGBT bridges should be installed along with sidewalk.	32	\$	61,500
1C-CB-SW-047	Cities of Plano/Richardson	New Sidewalk	K Ave	N President George Bush Hwy \& E President George Bush Hwy	East	295	Lighting under PGBT bridges should be installed along with sidewalk.	25	\$	49,000
1C-CB-SW-056	DART/Cities of Plano/Richardson	New Sidewalk	Crawford Rd/Topridge Dr	President George Bush Hwy EB \& WB Frontage Rds	East	360	Of the total $\$ 39,400$ cost for this improvement, $2 / 3$ as listed at right is assumed attributable to the Cities of Plano \& Richardson, while $1 / 3$ is assumed attributable to DART (see DART cost matrix). See station area improvements 1C-CB-ST-08 for more information.	38	\$	26,300

1C-CB-SW-044	DART/Private Property	New Sidewalk	Station Platform Connector	Routh East Dr \& State St	South	100	Coordinate with the adjacent property owner to construct a short segment of sidewalk for more direct travel between the southern crosswalk to the train platform and the south sidewalk along State St. A "goat trail" cuts the corner where the existing sidewalk is offset from the crosswalk, indicating existing pedestrian demand. See DART Station Area improvement 1C-CB-ST-06 for more information. Cost assumed attributable to City of Richardson if negotiation with private property owner is successful since improvement is located just off DART station property.	28	\$	4,500
1C-CB-SW-071	DART/Private Property	New Sidewalk	N/A	E President George Bush Hwy \& Pipeline Dr	N/A	120	Worn path in grass indicates existing pedestrian demand for more direct path between DART rail platform and bus loop. Sidewalk would be on private property between volleyball courts and dog run on north side of Pipeline Dr. See DART Station Area improvement 1C-CB-ST-03 for more information. Cost assumed attributable to City of Richardson if negotiation with private property owner is successful since improvement is located just off DART station property.	41	\$	6,200

Opin	St		Ssumed City of Richas							10,700
1C-CB-SW-072	DART	New Sidewalk	West Routh Creek	Pipeline Dr \& Cityline Dr	East	270	As Routh West Drive will be replaced by the upcoming Cotton Belt/Silver Line station platform, this segment will be part of that platform design.	38		N/A
1C-CB-SW-073	DART	New Sidewalk	Routh Creek Pkwy	Pipeline Dr \& Cityline Dr	West	165	City of Richardson reports connectivity could be considered in conjunction with development of parcel to the south.	39	\$	22,000
1C-CB-VW-V01	DART	Shared Use Path	Regional Veloweb	West Study Boundary	N/A	1105		6		N/A
1C-CB-VW-V02	DART	Shared Use Path	Regional Veloweb	North Study Boundary \& E Plano Pkwy	East	655	City of Plano reports this segment is under construction as part of the Plano Transit Village Veloweb project.	11		N/A
1C-CB-VW-V03	DART	Shared Use Path	Regional Veloweb	E Plano Pkwy \& N President George Bush Hwy	East	1030	City of Plano reports this segment is under construction as part of the Plano Transit Village Veloweb project.	33		N/A

Half Mile Area Improvements Matrix

CityLine Bush Station

Opinion of Probable Constr. Cost = \$1,495,600

Sidewalk \& Shared Use Path Segments

Sidewalk \& Shared Use Path Segments
ID
Owner
1C-CB-VW-V04
IC-CB-VW-V05
DART
DART
1C-CB-VW-V06
1C-CB-VW-V07

Opinion of Probable Cost - DART Subtotal..

Opinion of Pro	st-D	I...							\$	22,000
1C-CB-SW-026	TxDOT	New Sidewalk	N Central Expy	North Study Boundary \& WB On Ramp	West	1610	Some tree removal may be needed near north part of segment to provide adequate sidewalk offset from U.S. 75 frontage road. Short retaining walls may be needed to level ground for sidewalk in several places, particularly under flyover ramps to westbound PGBT.	17		N/A
1C-CB-SW-027	TxDOT	New Sidewalk	N Central Expy	North Study Boundary \& Executive Dr	East	1095	Utility pole and low wall at north study boundary (right turn to Plano Pkwy) would need to be relocated to make room for sidewalk. Retaining walls and large guide sign relocation likely needed farther south.	27	\$	116,500
1C-CB-SW-028	TxDOT	New Sidewalk	N Central Expy	Executive Dr \& N President George Bush Hwy	West	165		20		N/A
1C-CB-SW-030	TxDOT	New Sidewalk	N President George Bush Hwy	N Central Expy \& Crawford Rd	North	705		24	\$	38,300
1C-CB-SW-036	TxDOT	New Sidewalk	N President George Bush Hwy	DART Tracks \& J PI	North	50		29	\$	5,000
1C-CB-SW-048	TxDOT	New Sidewalk	N President George Bush Hwy	N Central Expy \& Crawford Rd	South	630		27	\$	39,100
1C-CB-SW-050	TxDOT	New Sidewalk	N President George Bush Hwy	Crawford Rd \& DART Tracks	South	660		31	\$	40,000
1C-CB-SW-051	TxDOT	New Sidewalk	President George Bush Hwy WB Frontage Rd	DART Tracks \& K Ave	South	825	New sidewalk on north side of DART parking lot would include crosswalk across Uturn lane at K Ave/N Plano Rd signal.	35	\$	201,400
1C-CB-SW-052	TxDOT	New Sidewalk	N President George Bush Hwy	DART Tracks \& K Ave	North	760	Worn path in grass on this segment indicates existing pedestrian demand. City of Plano reports a portion of this segment is under construction with new development - see SP2018-001.	34	\$	48,100
1C-CB-GR-053	TxDOT	Gap to Remain	N President George Bush Hwy	K Ave	South	110	Crosswalks on inside legs of diamond interchange would not serve any demand between pedestrian generators and would interfere unnecessarily with vehicular traffic.	0		N/A
1C-CB-SW-054	TxDOT	New Sidewalk	N President George Bush Hwy	K Ave \& East Study Boundary	North	1440		25	\$	78,600

Half Mile Area Improvements Matrix

CityLine Bush Station

Opinion of Probable Constr. Cost = \$1,495,600 Sidewalk \& Shared Use Path Segments

Sidewalk \& Shared Use Path Segments			
ID	Owner	Improvement Type	
1C-CB-SW-055	TxDOT	New Sidewalk	
1C-CB-SW-057	TxDOT	New Sidewalk	
1C-CB-SW-058	TxDOT	New Sidewalk	
1C-CB-SW-060	TxDOT	New Sidewalk	
1C-CB-SW-061	TxDOT	New Sidewalk	EPP
1C-CB-GR-062	TxDOT	Gap to Remain	EPD
1C-CB-SP-063	TxDOT	Shared Use Path	
1C-CB-SP-066	TxDOT	Shared Use Path	
1C-CB-GR-076	TxDOT	Gap to Remain	
1C-CB-SP-087	TxDOT	Shared Use Path	
1C-CB-SP-088	TxDOT	Shared Use Path	

Opinion of Probable Cost - TxDOT Subtotal.

Improvement Code Legend: ID: 1A-PR-SW-01 $1 A \leftarrow$ Station Number SW \leftarrow Sidewalk (or CW=Crosswalk, $\mathrm{PR} \leftarrow$ Station Abbreviatio $01 \leftarrow$ Improvement Number (matches 1 on Map)
$\mathrm{VW}=$ Veloweb, RP=Sidewalk Repair GR=Gap to Remain)

DART Red \& Blue Line Corridors Last Mile Connections

人

Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
N Central Expy	N President George Bush Hwy \& E President George Bush Hwy	East	525		20	N/A
E President George Bush Hwy	N Central Expy \& Topridge Dr	North	360		25	N/A
N Central Expy	E President George Bush Hwy \& W Cityline Dr	East	55	City of Richardson reports sidewalk construction anticipated as part of upcoming development.	23	N/A
E President George Bush Hwy	Routh East Dr \& Routh West Dr	North	70	Track crossing would add expense to this short sidewalk segment and may not be necessary since pedestrian trips between the two parking lots on either side of the DART tracks are unlikely.	34	\$ 162,100
E President George Bush Hwy	Routh East Dr \& N Plano Rd	North	65	New sidewalk would connect crosswalk across U-turn lane with existing sidewalk for DART parking lot.	25	\$ 9,300
E President George Bush Hwy	K Ave	South	115	Crosswalks on inside legs of diamond interchange would not serve any demand between pedestrian generators and would interfere unnecessarily with vehicular traffic.	0	N/A
N Central Expy	SB On Ramp from PGBT \& South Study Boundary	West	2095	Sidewalk construction may cause drainage impacts near dog park entrance. Tree and shrub removal will be needed for sidewalk south of dog park. Bridge over Spring Creek would be needed, since no space for sidewalk exists on U.S. 75 southbound frontage road bridge over the creek.	19	N/A
N Central Expy	E Renner Rd \& DART Tacks	East	3310	Bridge over Spring Creek will be built as part of currently funded project, since no space for sidewalk exists on U.S. 75 northbound frontage road bridge over the creek.	22	N/A
N Central Expy	W Renner Rd \& South Study Boundary	East	150	Access provided via the Spring Creek Trail.	0	N/A
President George Bush Hwy EB Frontage Rd	N Plano Rd \& Wilshire Way	South	865	Shared use path construction anticipated as part of upcoming development.	24	N/A
President George Bush Hwy EB Frontage Rd	Wilshire Way \& East Study Boundary	South	740	Shared use path construction anticipated as part of upcoming development.	16	N/A

Half Mile Area Improvements Matrix

CityLine Bush Station

Opinion of Probable Constr. Cost = \$1,495,600 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01 $1 \mathrm{~A} \leftarrow$ Station Number $\quad \mathrm{SW} \leftarrow$ Sidewalk (or CW=Crosswalk, $P R \leftarrow$ Station Abbreviation $\quad V W=$ Veloweb, 01 ↔Improvement Number \quad RP=Sidewalk Repair (matches 1 on Map)

GR=Gap to Remain)

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections
os
\rightarrow

ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
1C-CB-SW-042	TxDOT/DART/City of Plano	New Sidewalk	Crawford Rd	President George Bush Hwy \& EB \& WB Frontage Rds	West	45	New segment of sidewalk would connect from crosswalk to existing sidewalk for DART parking lot under PGBT bridges. Provide pedestrian hybrid beacon with advance "Yield Here to Pedestrians" signing for crossing PGBT westbound frontage road. Evaluation and integration with other signals needed. Of the total $\$ 4,800$ cost for this improvement, $2 / 3$ as listed at right is assumed attributable to TxDOT and/or City of Plano, with the remaining $1 / 3$ assumed attributable to DART. See station area improvement 1C-CB-ST-07 in the DART cost matrix, and half-mile area improvement 1C-CB-CW-042 in the half-mile area crosswalk matrix for more details.	29	\$ 3,200
Opinion of Probable Cost - Mixed Ownership Subtotal...									

Half Mile Area Improvements Matrix

CityLine Bush Station

Opinion of Probable Constr. Cost = \$320,000 Crosswalk Segments

Opinion of Prob	Constr. Cost	20,000	$01 \leftarrow \underset{\text { Impro }}{\text { (match }}$		Repair main)	
ID	Owner	Improvement Type	Street Name	At/Between	Side of Street	Length (ft)
1C-CB-CW-011	City of Plano	New Crosswalk	E Plano Pkwy	Executive Dr	West	105
1C-CB-CW-013	City of Plano	New Crosswalk	E Plano Pkwy	F Ave	East	105
1C-CB-CW-014	City of Plano	New Crosswalk	F Ave	E Plano Pkwy	North	55
1C-CB-CW-015	City of Plano	New Crosswalk	Executive Dr	E Plano Pkwy	South	50
1C-CB-CW-017	City of Plano	New Crosswalk	E Plano Pkwy	DART Tracks	East	95
1C-CB-CW-024	City of Plano	New Crosswalk	E Plano Pkwy	K Ave	West	105
1C-CB-CW-031	City of Plano	New Crosswalk	Executive Dr	Crawford Rd	West	60
1C-CB-CW-033	City of Plano	New Crosswalk	Executive Dr	Crawford Rd	East	60
1C-CB-CW-039	City of Plano	New Crosswalk	K Ave	E Plano Pkwy	South	105

1C-CB-CW-092	City of Richardson	New Crosswalk	Cityline Dr	Wilshire Way	West	95	Ramps and median cut-through need to be built for crosswalk	18	N/A

Opinion of Probable Cost - City of Richardson Subtotal.....

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

Notes	Priority Score	Opinion of Probable Cost	
Provide marked crosswalks, pedestrian ramps, and countdown pedestrian signal heads. City of Plano reports this work is part of CIP project \#7063.	26	N/A	
Provide marked crosswalks, pedestrian ramps, and countdown pedestrian signal heads. City of Plano reports this work is part of CIP project \#7063.	25	N/A	
Provide marked crosswalks, pedestrian ramps, and countdown pedestrian signal heads. City of Plano reports this work is part of CIP project \#7063.	19	N/A	
Provide marked crosswalks and countdown pedestrian signal heads. City of Plano reports this work is part of CIP project \#7063.	30	N/A	
Need for crosswalk contingent on construction of Regional Veloweb shared use path. City of Plano reports this is being constructed as part of the Plano Transit Village Veloweb project. City is exploring a trail bridge alternative as part of the Cotton Belt project.	26	N/A	
Provide marked crosswalks, pedestrian ramps, and countdown pedestrian signal heads.	17	N/A	
Provide signed \& marked crosswalk across Executive Dr with advance "Yield Here to Pedestrians" signing. Consider road diet for median refuge island.	30	$\$$	29,400
Provide signed \& marked crosswalk across Executive Dr with advance "Yield Here to Pedestrians" signing. Consider road diet for median refuge island.	22	N/A	
Provide marked crosswalks, pedestrian ramps, and countdown pedestrian signal heads.	23	$\$$	36,100

| Install traffic...
 pedestrian demand. Add a traffic signal, signs, markings, and lighting. A
 pedestrian hybrid beacon (PHB) was considered for this location, but | | |
| :--- | :--- | :--- | :--- |
| potential exists for confusion between flashing red lights associated with
 a PHB and the flashing red lights associated with the rail crossing at the | 35 | N/A |
| DART tracks. Evaluation and integration with other signals needed. This
 improvement is under construction in conjunction with DART's Silver Line
 project. | | |

Half Mile Area Improvements Matrix

CityLine Bush Station

Opinion of Probable Constr. Cost = \$320,000 Crosswalk Segments

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost $=\$ 3,410,800$ Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Sidewalk \& Shared Use Path Segments (match 1					Rema		DART Red \& Blue Line Corridors Last Milie Connections		Σ
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2A-GP-RP-02	City of Richardson	Repair	Palisades Creek Dr	N Collins Blvd \& North Gate Dr	North	55	Correct trip hazard due to settled sidewalk panels near storm drain inlet.	16	N/A
2A-GP-RP-03	City of Richardson	Repair	Palisades Creek Dr	N Collins Blvd \& North Gate Dr	North	20	Correct trip hazard due to settled sidewalk panels.	14	N/A
2A-GP-SP-04	City of Richardson	Shared Use Path	W Prairie Creek Dr	West Study Boundary \& N Collins Blvd	South	275	A worn path in the grass indicates existing pedestrian demand adjacent to park. City of Richardson indicates this is part of Parks Department trail plan with no current funding.	3	N/A
2A-GP-SP-05	City of Richardson	Shared Use Path	W Prairie Creek Dr	North Study Boundary \& West Study Boundary	East	1020	Worn trails in the grass indicate existing pedestrian demand along and through Prairie Creek greenbelt park. City of Richardson indicates this is part of Parks Department trail plan with no current funding.	4	N/A
2A-GP-GR-06	City of Richardson	Gap to Remain	E Prairie Creek Dr	Prairie Creek Trail \& West Study Boundary	West	1910	Insufficient space exists for sidewalk between street and ornamental brick walls around trees at several points along the west side of E Prairie Creek Dr. Constructing sidewalk would require regrading slopes with impacts to adjacent trees, vegetation, and possibly the soft-surface recreational trail below. The need for sidewalk would be eliminated if the trail were converted to a concrete surface for full accessibility. No other non-recreational land uses exist on this side of the street.	0	N/A
2A-GP-GR-10	City of Richardson	Gap to Remain	N Collins Blvd	Palisades Blvd	North	100	No access to the single-family homes west of Collins Blvd exists within a quarter mile in either direction due to walls and fencing, so a crosswalk here would not provide meaningful access.	0	N/A
2A-GP-GR-11	City of Richardson	Gap to Remain	N Collins Blvd	Palisades Blvd	South	105	No access to the single-family homes west of Collins Blvd exists within a quarter mile in either direction due to walls and fencing, so a crosswalk here would not provide meaningful access.	0	N/A
2A-GP-SW-14	City of Richardson	New Sidewalk	North Gate Dr	Palisades Creek Dr \& Empire Dr	West	5		13	N/A
2A-GP-SW-15	City of Richardson	New Sidewalk	North Gate Dr	Palisades Creek Dr \& Empire Dr	East	5	Sidewalk construction anticipated as part of upcoming development.	8	N/A
2A-GP-SW-16	City of Richardson	New Sidewalk	Palisades Creek Dr	North Gate Dr \& N Central Expy	South	395	Adjacent property expected to develop in the future as part of Palisades development. Timing of development is unknown.	14	N/A
2A-GP-SW-28	City of Richardson	New Sidewalk	N Collins Blvd	Palisades Blvd \& Fall Creek Dr	East	220	The sloped retaining wall adjacent to sidewalk north of this gap may need to be continued south along the north part of this gap to construct new sidewalk.	18	N/A
2A-GP-SW-29	City of Richardson	New Sidewalk	Palisades Blvd	N Collins Blvd \& South Gate Dr	South	455		19	N/A
2A-GP-SW-30	City of Richardson	New Sidewalk	South Gate Dr	Palisades Blvd \& Galatyn Pkwy	West	160		21	N/A

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost $=\$ 3,410,800$ Sidewalk \& Shared Use Path Segments

Opinion of Prob	ed Use Path Segme	ts	(match	$1 \text { on Map) } \quad G R=G a$	to Remain)	
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)
2A-GP-SW-32	City of Richardson	New Sidewalk	South Gate Dr	Palisades Blvd \& Galatyn Pkwy	East	100
2A-GP-RP-37	City of Richardson	Repair	Fall Creek Dr	N Collins Blvd \& N Central Expy	North	35
2A-GP-RP-38	City of Richardson	Repair	Fall Creek Dr	N Collins Blvd \& N Central Expy	North	60
2A-GP-RP-39	City of Richardson	Repair	Fall Creek Dr	N Collins Blvd \& N Central Expy	North	90
2A-GP-SW-40	City of Richardson	New Sidewalk	Fall Creek Dr	N Collins Blvd \& N Central Expy	South	720
2A-GP-GR-44	City of Richardson	Gap to Remain	Routh Creek Pkwy	North Study Boundary \& N Glenville Dr	West	335
2A-GP-SW-48	City of Richardson	New Sidewalk	N Glenville Dr	Routh Creek Pkwy \& E Lookout Dr	West	1760
2A-GP-SW-49	City of Richardson	New Sidewalk	E Lookout Dr	N Central Expy \& DART Tracks	North	75
2A-GP-SW-50	City of Richardson	New Sidewalk	E Lookout Dr	DART Tracks	North	20
2A-GP-SW-52	City of Richardson	New Sidewalk	E Lookout Dr	Performance Dr \& N Glenville Dr	North	450
2A-GP-SP-53	City of Richardson	Shared Use Path	N Glenville Dr	Routh Creek Pkwy \& E Lookout Dr	East	1080
2A-GP-SP-54	City of Richardson	Shared Use Path	E Lookout Dr	N Glenville Dr \& East Study Boundary	North	515
2A-GP-SW-60	City of Richardson	New Sidewalk	Plaza Blvd	Performance Ct \& Galatyn Pkwy	West	635

Notes	Priority Score	Opinion of Probable Cost
Correct trip hazard due to settled sidewalk segment near fire hydrant.	37	$\$ 7,900$
Remove and replace several severely cracked sidewalk panels that are causing trip hazards. Build up earth around sidewalk where it traverses an underground utility vault, since dropoff from edge of sidewalk is also a significant trip hazard.	8	N/A
Remove and replace several severely cracked sidewalk panels that are causing trip hazards. Build up earth around sidewalk where it traverses an underground utility vault, since dropoff from edge of sidewalk is also a significant trip hazard.	9	N/A
Constructing sidewalk would require removing or significantly trimming back a long row of bushes.	7	N/A
Dense vegetation would need to be cleared to make way for sidewalk, which would not support any developed land use between this side of the street and Routh Creek.	0	N/A
Some regrading of slopes and/or short retaining walls may be needed to build sidewalk here. Sidewalk may not be necessary if the adjacent soft-surface walking trails are upgraded to sidewalk for full accessibility.	6	N/A
A worn path in the grass indicates existing pedestrian demand. Landscaping would need to be removed for sidewalk construction. A sidewalk crossing of the tracks may involve additional expense. Sidewalk will be added during the construction of the recently approved hotel at this location.	21	N/A
A worn path in the grass indicates existing pedestrian demand. Landscaping would need to be removed for sidewalk construction. A sidewalk crossing of the tracks may involve additional expense.	20	N/A
Sidewalk along part of this block may not be necessary if the adjacent soft-surface walking trails are upgraded to sidewalk for full accessibility.	9	N/A
Thick vegetation will need to be cleared to build sidewalk or shared use path along a portion of this segment. Slopes and other unknown conflicts may be present but hidden by vegetation.	5	N/A
Planned City shared-use path.	5	N/A
Southern portion of adjacent site is currently under construction, which will include new sidewalk. Northern parcel will be constructed at a later time.	48	\$6,700

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost = \$3,410,800 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2A-GP-GR-63	City of Richardson	Gap to Remain	Galatyn Pkwy	Plaza Blvd \& Performance Dr	South	305	The Galatyn Pkwy bridge over U.S. 75 is currently posted with a "No Pedestrians" prohibition. The bridge would either need to be widened to provide sidewalk, or a road diet would need to be implemented. Since bridge widening is presumed impractical, and some possibility for a road diet to provide sidewalk on the north side of the bridge may exist, it is assumed no sidewalk will be provided on the south side. The large parking garage on the south side of the street here precludes the likelihood of any pedestrian demand between the station and the south side of the street west of Performance Dr.	0	N/A
2A-GP-SW-65	City of Richardson	New Sidewalk	Waterwood Dr	Lakeside Blvd \& Performance Dr	North	25	An underground utility box would need to be adjusted to construct this short sidewalk segment.	17	N/A
2A-GP-SW-73	City of Richardson	New Sidewalk	N Greenville Ave	Infosys Driveway \& East Study Boundary	North	30		7	N/A
2A-GP-RP-74	City of Richardson	Repair	N Glenville Dr	Galatyn Pkwy \& Waterwood Dr Dr	East	165	Remove and replace several panels that have settled near a pair of telephone manhoes, creating significant trip hazards.	16	N/A
2A-GP-SW-75	City of Richardson	New Sidewalk	N Greenville Ave	N Glenville Dr \& Infosys Driveway	North	575	Adjacent site is currently under construction. Assumed that new sidewalk will be built.	9	N/A
2A-GP-SW-76	City of Richardson	New Sidewalk	N Glenville Dr	Waterwood Dr \& N Greenville Ave	West	700	The southern portion of this sidewalk will be installed as part of the development of a recently-approved hotel.	23	\$18,200
2A-GP-SW-77	City of Richardson	New Sidewalk	N Greenville Ave	N Glenville Dr \& Lawnview Dr	North	280	This sidewalk will be built as part of the development of a recently-approved hotel.	9	N/A
2A-GP-SW-79	City of Richardson	New Sidewalk	Lakeside Blvd	Central Trail \& Waterwood Dr	South	45	Two underground utility boxes and a manhole may need to be adjusted to construct this short sidewalk segment near the Greenway Business Park entrance sign.	25	\$4,600
2A-GP-RP-84	City of Richardson	Repair	Lakeside Blvd	Lawnview Dr \& South Study Boundary	Northwest	5	Remove and replace sidewalk panels near above-ground electric utility box where tree root heaving and poor drainage have created significant trip hazards and mud blocking the sidewalk.	13	N/A
2A-GP-GR-86	City of Richardson	Gap to Remain	N Greenville Ave	Lawnview Dr	West	40	Half-mile distance from station is likely to produce low demand for pedestrian crossings of 6-lane Greenville Ave at this location.	0	N/A
2A-GP-SW-87	City of Richardson	New Sidewalk	Lawnview Dr	N Greenville Ave	North	30	Provide a marked crosswalk, including ramps and sidewalk across channelized right turn islands. Move stop sign back behind crosswalk.	7	N/A
2A-GP-GR-88	City of Richardson	Gap to Remain	N Greenville Ave	Lawnview Dr	East	75	Half-mile distance from station is likely to produce low demand for pedestrian crossings of 6 -lane Greenville Ave at this location.	0	N/A

Half Mile Area Improvements Matrix

Galatyn Park Station
Opinion of Probable Constr. Cost = \$3,410,800 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2A-GP-SW-47	DART	New Sidewalk	N Glenville Dr	DART Tracks	South	125	Utility pole, fencing, underground utility manhole, drainage culvert, landscaping, and railroad crossing gate all impede the way and could need to be modified as part of future sidewalk construction. A wider sidewalk crossing of the tracks, if needed to bypass the existing railroad gate, will also add additional expense.	8	N/A

2A-GP-SW-19	Private Property	New Sidewalk	Empire Dr	Central Gate Dr \& South Gate Dr	West	855	Trees would likely need to be removed or suffer significant root damage to build sidewalk between street and existing office building parking lot. Short- to mediumheight retaining walls, removal of office building landscaping, removal of a concrete wall near a storm drain inlet, and reconstruction of a steep pedestrian walkway connecting to the crosswalks between buildings on either side of the street would also be required. To be built as part of Palisades development.	29	N/A
2A-GP-SW-21	Private Property	New Sidewalk	Empire Dr	Central Gate Dr \& South Gate Dr	East	820	Trees would likely need to be removed or suffer significant root damage to build sidewalk between street and existing office building parking lot. Removal of office building landscaping would also be required. To be built as part of Palisades development.	23	N/A
2A-GP-SW-31	Private Property	New Sidewalk	Business Driveway	Galatyn Pkwy \& KDC 2323 Investments	West	370	Additional sidewalk beyond that shown along driveway would be needed to connect pedestrians through parking lot to existing business front door on parcel to the south.	18	N/A
2A-GP-SW-35	Private Property	New Sidewalk	Business Driveway	Galatyn Pkwy \& KDC 2323 Investments	East	370	Additional sidewalk beyond that shown along driveway would be needed to connect pedestrians through parking lot to existing business front door on parcel to the south.	12	N/A
2A-GP-SW-69	Private Property	New Sidewalk	Infosys Driveway	N Glenville Dr \& Infosys Building	North	330	Sidewalk construction through sloped area would require short retaining walls, which could damage roots of several adjacent trees. Private property owner Infosys would need to agree to sidewalk construction.	11	N/A
2A-GP-SW-70	Private Property	New Sidewalk	Infosys Driveway	N Glenville Dr \& Infosys Building	South	345	Sidewalk construction through sloped area would require short retaining walls, which could damage roots of several adjacent trees. Private property owner Infosys would need to agree to sidewalk construction.	11	N/A
2A-GP-GR-71	Private Property	Gap to Remain	Infosys Driveway	Infosys Driveway \& N Greenville Ave	West	1185	Private property owner Infosys would need to agree to sidewalk construction. Many trees would need to be removed to construct sidewalk. Some street lighting poles would also need to be adjusted. Flattening of slopes or short retaining walls would also be required. The value of sidewalk on the west side of the Infosys driveway adjacent to the parking lot is questionable since sidewalk already exists along the building and a continuous sidewalk on the east side of the driveway may be feasible. However, this sidewalk would not serve a direct route between the business campus and the station.	0	N/A

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost $=\$ 3,410,800$ Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Opinion of Probable Constr. Cost = \$3,410,800	$01 \leftarrow$ Improvement Number (matches 1 on Map)	RP=Sidewalk Repair GR=Gap to Remain)
Sidewalk \& Shared Use Path Segments		

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

Notes	Priority Score	Opinion of Probable Cost
Private property owner Infosys would need to agree to sidewalk construction. Two or three trees would likely need to be removed to construct sidewalk. A few other trees may incur root damage. This sidewalk would not serve a direct route between the business campus and the station.	5	N/A
To be constructed as part of Palisades development.	11	N/A
To be constructed as part of Palisades development.	12	N/A
To be constructed as part of Palisades development.	17	N/A
To be constructed as part of Palisades development.	18	N/A
To be constructed as part of Palisades development.	16	N/A
To be constructed as part of Palisades development.	16	N/A
To be constructed as part of Palisades development.	14	N/A
To be constructed as part of Palisades development.	15	N/A
To be constructed as part of Palisades development.	20	N/A
To be constructed as part of Palisades development.	14	N/A
To be constructed as part of Palisades development.	16	N/A
To be constructed as part of Palisades development.	15	N/A
To be constructed as part of Palisades development.	15	N/A
To be constructed as part of Palisades development.	19	N/A
To be constructed as part of Palisades development.	19	N/A
To be constructed as part of Palisades development.	24	N/A
To be constructed as part of Palisades development.	24	N/A
To be constructed as part of Palisades development.	9	N/A

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost $=\$ 3,410,800$ Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Half Mile Area Improvements Matrix

Galatyn Park Station
Opinion of Probable Constr. Cost = \$3,410,800 Sidewalk \& Shared Use Path Segments

Half Mile Area Improvements Matrix

Galatyn Park Station
Opinion of Probable Constr. Cost = \$3,410,800 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01	
$1 \mathrm{~A} \leftarrow$ Station Number	SW \leftarrow Sidewalk (or CW=Cro
$\mathrm{PR} \leftarrow$ Station Abbreviation	VW=Velow
¢Improvement	RP=Sidewalk Repair
(matches 1 on Map)	GR=Gap to Remain)

ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2A-GP-SW-61	TxDOT	New Sidewalk	Galatyn Pkwy	N Central Expy \& Plaza Blvd	North	760	The Galatyn Pkwy bridge over U.S. 75 is currently posted with a "No Pedestrians" prohibition. While widening the bridge to provide sidewalk is considered impractical, there may be a small possibility that a road diet could be implemented to make space for new sidewalk while simultaneously increasing capacity on the bridge to handle traffic for upcoming development nearby. This might be possible by converting the interchange to a Diverging Diamond Interchange (DDI). See discussion on improvement 2A-GP-SW-42 for more details. On the east bridge approach, narrowing lanes from 11 feet wide to 10 feet wide (along with narrowing and realigning of the roadway median) could provide some of the space needed for new sidewalk, with additional space coming from the potential changes to lane configurations and phasing at the signalized interchange of Galatyn Parkway with the U.S. 75 ramps.	47	\$637,300
2A-GP-GR-62	TxDOT	Gap to Remain	Galatyn Pkwy	N Central Expy \& Plaza Blvd	South	795	The Galatyn Pkwy bridge over U.S. 75 is currently posted with a "No Pedestrians" prohibition. The bridge would either need to be widened to provide sidewalk, or a road diet would need to be implemented. Since bridge widening is presumed impractical, and some possibility for a road diet to provide sidewalk on the north side of the bridge may exist, it is assumed no sidewalk will be provided on the south side.	0	N/A

Opinion of Probable Cost - Total for All Sidewalk Recommendations in Half Mile Area.

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost = \$139,900 Crosswalk Segments

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

Crosswalk Segments									
ID	Owner	Improvement Type	Street Name	At/Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2A-GP-CW-08	City of Richardson	New Crosswalk	N Collins Blvd	Palisades Creek Dr	North	95	Add marked crosswalks and pedestrian ramps to cross N Collins Blvd at these wide crossings of an all-way stop-controlled intersection.	15	N/A
2A-GP-CW-09	City of Richardson	New Crosswalk	N Collins Blvd	Palisades Creek Dr	South	95	Add marked crosswalks and pedestrian ramps to cross N Collins Blvd at these wide crossings of an all-way stop-controlled intersection.	16	N/A
2A-GP-CW-12	City of Richardson	New Crosswalk	N Collins Blvd	Fall Creek Dr	North	100	Install a signed, marked and lit crosswalk. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians. Consider additional improvements if a study of pedestrian volumes warrants them, given the long distance to stop-controlled crossing locations in either direction.	12	N/A
2A-GP-CW-13	City of Richardson	New Crosswalk	N Collins Blvd	Fall Creek Dr	South	95	Install a signed, marked and lit crosswalk. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians. Consider additional improvements if a study of pedestrian volumes warrants them, given the long distance to stop-controlled crossing locations in either direction.	7	N/A
2A-GP-CW-26	City of Richardson	New Crosswalk	Palisades Blvd	South Gate Dr	West	65	Provide marked, signed, and lit crosswalks across Palisades Blvd. Consider curb extensions or a median refuge island in the wide $34-\mathrm{ft}$ roadway. Care should be taken to provide advance warning signs in the eastbound direction due to the crest vertical curve in the roadway to the west. Or, the potential also exists for revising traffic signage to make the north-south route primary. In addition, the Palisades master plan does include the possibility of Palisades Boulevard abandonment east of Empire Dr.	25	\$39,900
2A-GP-CW-27	City of Richardson	New Crosswalk	Palisades Blvd	South Gate Dr	East	80	Provide marked, signed, and lit crosswalks across Palisades Blvd. Consider curb extensions or a median refuge island in the wide $34-\mathrm{ft}$ roadway. Care should be taken to provide advance warning signs in the eastbound direction due to the crest vertical curve in the roadway to the west. Or, the potential also exists for revising traffic signage to make the north-south route primary. In addition, the Palisades master plan does include the possibility of Palisades Boulevard abandonment east of Empire Dr.	30	\$37,100

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost = \$139,900 Crosswalk Segments

Improvement Code Legend: ID: 1A-PR-SW-01 $1 \mathrm{~A} \leftarrow$ Station Number $\quad \mathrm{SW} \leftarrow$ Sidewalk (or CW=Crosswalk, $\mathrm{PR} \leftarrow$ Station Abbreviation $01 \leftarrow$ Improvement Number (matches 1 on Map)
$\mathrm{VW}=$ Veloweb, $\mathrm{RP}=$ Sidewalk Repair GR=Gap to Remain)

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

Crosswalk Segments									
ID	Owner	Improvement Type	Street Name	At/Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2A-GP-CW-45	City of Richardson	Upgrade Crosswalk	N Glenville Dr	Central Trail	N/A	90	Install bicycle/pedestrian warning signs and white crosswalk lines parallel to existing crosswalk with faded, non-conforming brick pattern and dark outline. White edge lines as traffic control devices are required to make crosswalks legally enforceable. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.	16	N/A
2A-GP-CW-55	City of Richardson	Upgrade Crosswalk	E Lookout Dr	Central Trail	N/A	135	Install bicycle/pedestrian warning signs and white crosswalk lines parallel to existing crosswalk with faded, non-conforming brick pattern and dark outline. White edge lines as traffic control devices are required to make crosswalks legally enforceable.	29	\$4,900
2A-GP-CW-56	City of Richardson	Upgrade Crosswalk	E Lookout Dr	Performance Dr	West	120	Install pedestrian warning signs and white crosswalk lines parallel to existing crosswalk with faded, brick pattern. White edge lines as traffic control devices are required to make crosswalks legally enforceable. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.	36	\$5,700
2A-GP-CW-57	City of Richardson	Upgrade Crosswalk	E Lookout Dr	Performance Dr	East	140	Install pedestrian warning signs and white crosswalk lines parallel to existing crosswalk with faded, brick pattern. White edge lines as traffic control devices are required to make crosswalks legally enforceable. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.	18	N/A
2A-GP-CW-58	City of Richardson	Upgrade Crosswalk	E Lookout Dr	Performance Dr \& N Glenville Dr	N/A	90	Add marked crosswalk at existing signed pedestrian crossing. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.	11	N/A
2A-GP-CW-67	City of Richardson	New Crosswalk	N Glenville Dr	Infosys Driveway	South	90	Consider installing pedestrian warning signs, a marked crosswalk, and pedestrian-actuated rectangular rapid flashing beacons (RRFB's) for more direct access to the Infosys corporate campus if coordinating sidewalk improvements to the building front door via Infosys private property to the east can also be made. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.	27	N/A

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost = \$139,900 Crosswalk Segments

Improvement Code Legend: ID: 1A-PR-SW-01

rosswalk Segments			GR=Gap to Remain)				ART Red \& Blue Line Corridors Last Mile Connections		
ID	Owner	Improvement Type	Street Name	At/Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2A-GP-CW-68	City of Richardson	New Crosswalk	N Glenville Dr	Waterwood Dr	South	85	Consider installing pedestrian warning signs, a marked crosswalk, and pedestrian-actuated rectangular rapid flashing beacons (RRFB's) for more direct access to the Hampton Inn hotel. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.	23	\$47,800
2A-GP-CW-78	City of Richardson	Upgrade Crosswalk	Lakeside Blvd	Central Trail	N/A	80	Install bicycle/pedestrian warning signs and white crosswalk lines parallel to existing crosswalk with faded, non-conforming brick pattern and dark outline. White edge lines as traffic control devices are required to make crosswalks legally enforceable.	26	\$4,500
2A-GP-CW-80	City of Richardson	Upgrade Crosswalk	Lakeside Blvd	Central Trail \& Waterwood Dr	N/A	90	Add marked crosswalks at existing signed pedestrian crossing. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.	19	N/A
2A-GP-CW-81	City of Richardson	Upgrade Crosswalk	Lakeside Blvd	Lawnview Dr	Northeast	70	Add white edge lines on outside of brick crosswalk at roundabout entry/exit. White edge lines as traffic control devices are required to make crosswalks legally enforceable. Also, the only way to reach the roundabout crosswalks from adjacent sidewalks is via stairs to/from the sidewalks above. Explore alternatives for ADA-compliant access, and add pedestrian ramps at each crosswalk.	11	N/A
2A-GP-CW-82	City of Richardson	Upgrade Crosswalk	Lakeside Blvd	Lawnview Dr	Southwest	70	Add white edge lines on outside of brick crosswalk at roundabout entry/exit. White edge lines as traffic control devices are required to make crosswalks legally enforceable. Also, the only way to reach the roundabout crosswalks from adjacent sidewalks is via stairs to/from the sidewalks above. Explore alternatives for ADA-compliant access, and add pedestrian ramps at each crosswalk.	12	N/A
2A-GP-CW-83	City of Richardson	Upgrade Crosswalk	Lakeside Blvd	Lawnview Dr \& South Study Boundary	N/A	105	Add marked crosswalks at existing signed pedestrian crossing. Add yield line and "Yield Here to Pedestrians" signing in each direction approaching crosswalk to mitigate risk of dual threat situation for pedestrians.	13	N/A
2A-GP-CW-85	City of Richardson	Upgrade Crosswalk	Lawnview Dr	Lakeside Blvd	Southeast	75	Add white edge lines on outside of brick crosswalk at roundabout entry/exit. White edge lines as traffic control devices are required to make crosswalks legally enforceable. Also, the only way to reach the roundabout crosswalks from adjacent sidewalks is via stairs to/from the sidewalks above. Explore alternatives for ADA-compliant access, and add pedestrian ramps at each crosswalk.	10	N/A

Opinion of Probable Cost - City of Richardson Subtotal...

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections
or $1 \mathrm{~A} \leftarrow$ Station Number SW \leftarrow Sidewalk (or CW=Crosswalk, $\mathrm{PR} \leftarrow$ Station Abbreviation $01 \leftarrow$ Improvement Number (matches 1 on Map)
$\mathrm{VW}=$ Veloweb, RP=Sidewalk Repair GR=Gap to Remain)

Half Mile Area Improvements Matrix

Galatyn Park Station

Opinion of Probable Constr. Cost = \$139,900 Crosswalk Segments

Opinion of Probable Constr. Cost = \$139,900			$\mathrm{PR} \leftarrow$ Station Abbreviation $01 \leftarrow$ Improvement Number (matches 1 on Map)		VW=Veloweb, RP=Sidewalk Repair GR=Gap to Remain)	North Central Texas Council of Governments \gg					
			ent Number $R P=$ Sidewa 1 on Map) $G R=$ Gap to			ART Red \& Blue Line Corridors Last Mile Connections		-			
Crosswalk Segments											
ID	Owner	Improvement Type		Street Name		At/Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2A-GP-CW-20	Private Property	Upgrade Crosswalk		Empire Dr	Central Gate Dr \& South Gate Dr	N/A	110	Add pedestrian warning signs, pedestrian ramps, and median cut-through at existing marked crosswalk.	21	N/A	
2A-GP-CW-97	Private Property	New Crosswalk	Unnamed Street	Empire Dr	West	65	To be constructed as part of Palisades development.	19	N/A		
2A-GP-CW-101	Private Property	New Crosswalk	Empire Dr	Golden Gate Dr	North	85	To be constructed as part of Palisades development.	14	N/A		
2A-GP-CW-102	Private Property	New Crosswalk	Empire Dr	Golden Gate Dr	South	95	To be constructed as part of Palisades development.	14	N/A		
2A-GP-CW-107	Private Property	New Crosswalk	Empire Dr	Unnamed Street	North	110	To be constructed as part of Palisades development.	22	N/A		
2A-GP-CW-108	Private Property	New Crosswalk	Empire Dr	Unnamed Street	South	100	To be constructed as part of Palisades development.	22	N/A		
2A-GP-CW-111	Private Property	New Crosswalk	North Gate Dr	Unnamed Street	North	55	To be constructed as part of Palisades development.	11	N/A		
2A-GP-CW-112	Private Property	New Crosswalk	North Gate Dr	Unnamed Street	South	60	To be constructed as part of Palisades development.	11	N/A		
2A-GP-CW-114	Private Property	New Crosswalk	Empire Dr	Unnamed Street	N/A	55	To be constructed as part of Palisades development.	13	N/A		
Opinion of Probable Cost - Private Property Subtotal. Opinion of Probable Cost - Total for All Crosswalk Recommendations in Half Mile Area.									\$0		
									\$139,900		

Opinion of Probable Cost - Total for All Crosswalk Recommendations in Half Mile Area..

Improvement Code Legend: ID: 1A-PR-SW-01	
$1 \mathrm{~A} \leftarrow$ Station Number	SW ¢ Sidewalk (or CW=Crosswalk,
$\mathrm{PR} \leftarrow$ Station Abbreviation	VW=Veloweb,
$01 \leftarrow$ Improvement Number	RP=Sidewalk Repair
(matches 1 on Map)	GR=Gap to Remain)

ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2B-AC-SW-01	City of Richardson	New Sidewalk	Melrose Dr	Richardson Dr \& Central Expy	North	55		16	N/A
2B-AC-SW-02	City of Richardson	New Sidewalk	N Collins Blvd	North Study Boundary \& Central Expy	South	210	Some fill dirt may be needed to level path for sidewalk on slope adjacent to ramp. One tree may need to be removed, and a few others may incur root damage depending on sidewalk's alignment. The City of Richardson reports plans to implement a road diet on the Collins Blvd bridge that will allow for wider sidewalks and protected bike lanes in the vicinity of this improvement. The City also reports this segment will be included in an upcoming Dallas County MCIP application.	21	N/A
2B-AC-VW-V02	City of Richardson	Shared Use Path	N Collins Blvd	Southbound Ramps \& Central Expy	South	120	Sidewalk construction in narrow gore area between Collins Blvd main lanes and ramp would require constructing a short retaining wall to level the sloped surface. A pedestrian railing would likely be needed between the sidewalk and the main lanes due to the drop-off. The existing vehicular guard rail end treatment protecting the wall at the beginning of the bridge abutment would need to be removed, and a new end treatment designed and constructed to protect the sidewalk retaining wall. City of Richardson staff reported that schoolchildren from the Winfree Academy northwest of U.S. 75 have been known to cross to and from the Arapaho Center station via the freight rail bridge just to the south of Collins Blvd. To discourage this type of behavior, fencing should be provided around the perimeter of the railroad property, and the Collins Blvd bridge pedestrian experience should be made safer and more comfortable. The City of Richardson reports plans to implement a road diet on the Collins Blvd bridge that will allow for wider sidewalks and protected bike lanes in the vicinity of this improvement. The City also reports this segment will be included in an upcoming Dallas County MCIP application.	27	\$39,500
2B-AC-SW-03	City of Richardson	New Sidewalk	Ramp from Southbound Collins Blvd to Southbound Central Expy	Collins Blvd \& Central Expy	South	610	Some fill dirt may be needed to level path for sidewalk on slope adjacent to ramp. One tree may need to be removed, and a few others may incur root damage depending on sidewalk's alignment. The City of Richardson reports this segment will be included in an upcoming Dallas County MCIP application.	25	\$28,000
2B-AC-VW-V03	City of Richardson	Shared Use Path	Regional Veloweb	N Greenville Ave \& Alma Rd	South	160	On the south side of the crosswalk, a portion of the guardrail protecting errant vehicles from the downhill slope below would need to be removed. Regrading of the slope, a retaining wall, and/or a pedestrian railing would be needed to add sidewalk that angles down the slope in either direction from the crosswalk to connect to existing sidewalk along the bottom of the slope. The City of Richardson reports this segment will be included in an upcoming Dallas County MCIP application.	10	N/A

Arapaho Center Station
Opinion of Probable Constr. Cost = \$261,300 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01	
$1 \mathrm{~A} \leftarrow$ Station Number	SW \leftarrow Sidewalk (or CW=Crosswalk,
$\mathrm{PR} \leftarrow$ Station Abbreviation	VW=Veloweb,
$01 \leftarrow$ Improvement Number	RP=Sidewalk Repair
(matches 1 on Map)	GR=Gap to Remain)

$\left.\begin{array}{c|c|c|}\hline \text { Priority } \\ \text { Score }\end{array} \begin{array}{c}\text { Opinion of } \\ \text { Probable } \\ \text { Cost }\end{array}\right]$

Half Mile Area Improvements Matrix
Arapaho Center Station
Opinion of Probable Constr. Cost = \$261,300 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Half Mile Area Improvements Matrix
Arapaho Center Station
Opinion of Probable Constr. Cost = \$261,300 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

			(matche	1 on Map) GR=Gap	Rema		ART Red \& Blue Line Corridors Last Mile Connection		
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2B-AC-GR-26	City of Richardson	Gap to Remain	N Greenville Ave	E Collins Blvd \& E Arapaho Rd	West	1745	Because the DART tracks run immediately east of the U.S. 75 Northbound Frontage Road, with Greenville Ave on the east side of the tracks, no meaningful land use for pedestrian access would be provided by building sidewalk adjacent to the tracks. Furthermore, landscaping would need to be removed and the travel experience would be highly uncomfortable for pedestrians. Just south of the westbound ramps for Collins Blvd, a large pole for high-voltage overhead electric lines occupies most of the greenway between the curb and the DART fence, allowing insufficient space for sidewalk.	0	N/A
2B-AC-SW-27	City of Richardson	New Sidewalk	Security Row	Alma Rd \& East Study Boundary	South	505	An architectural wall that extends a short distance from the corner with Alma Road would need to be removed or rebuilt farther from the curb to make way for sidewalk. Trees farther to the east could suffer root damage depending on the sidewalk's alignment. Short retaining walls may be needed if sidewalk will be built adjacent to curb.	18	N/A
2B-AC-RP-28	City of Richardson	Repair	Security Row	Alma Rd \& East Study Boundary	South	90	Remove and replace sidewalk panels that have settled near tree roots, creating trip hazards and acculmulation of sediment.	10	N/A
2B-AC-RP-29	City of Richardson	Repair	Security Row	Alma Rd \& East Study Boundary	North	95	Repair sidewalk that has settled around storm drain inlet, creating a trip hazard.	4	N/A
2B-AC-GR-31	City of Richardson	Gap to Remain	Richardson Dr	Monte Blaine Ln \& Jolee St	West	600	A long row of hedges would need to be removed to accommodate sidewalk in a narrow space. About a dozen trees may either also need to be removed or would suffer significant root damage. The hedges cannot be removed as they provide necessary screening for the neighborhood alley as per the City's zoning code. Also, the sidewalk is not necessary as it would not provide development connectivity.	0	N/A
2B-AC-GR-32	City of Richardson	Gap to Remain	Richardson Dr	Jolee St \& W Arapaho Rd	West	870	A long row of hedges would need to be removed to accommodate sidewalk in a narrow space. More than a dozen trees may either also need to be removed or would suffer significant root damage. The hedges cannot be removed as they provide necessary screening for the neighborhood alley as per the City's zoning code. Also, the sidewalk is not necessary as it would not provide development connectivity.	0	N/A
2B-AC-RP-33	City of Richardson	Repair	Richardson Dr	Monte Blaine Ln \& W Arapaho Rd	East	200	Remove and replace a few sidewalk panels that have settled and cracked, creating trip hazards.	29	\$3,500
2B-AC-RP-34	City of Richardson	Repair	Richardson Dr	Monte Blaine Ln \& W Arapaho Rd	East	260	Remove and replace a few sidewalk panels that have settled and cracked due to tree root upheaval or where poor drainage has caused erosion and sediment accumulation on top of the sidewalk, creating trip hazards.	29	\$4,500

Half Mile Area Improvements Matrix
Arapaho Center Station
Opinion of Probable Constr. Cost = \$261,300 Sidewalk \& Shared Use Path Segments

Sidewalk	d Use Path Segme		(match	1 on Map) $\quad G R=G a$	Remai				
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2B-AC-SW-38	City of Richardson	New Sidewalk	Alma Rd	Alma Rd \& E Arapaho Rd	West	900	Regrading of adjacent ditch may be necessary to provide level way for sidewalk. Modification of drainage structures may be required. The City of Richardson notes that the southern portion of the roadway, which today nearly connects with Arapaho Rd, may be removed as part of future development on private property and may therefore also preclude a sidewalk connection to Arapaho Rd.	13	N/A
2B-AC-SW-39	City of Richardson	New Sidewalk	Alma Rd	Alma Rd \& E Arapaho Rd	East	870	Short retaining walls would be needed adjacent to some sloped areas, with associated street light pole relocation, tree root damage, underground utility adjustments, and removal of business landscaping. The City of Richardson notes that the southern portion of the roadway, which today nearly connects with Arapaho Rd, may be removed as part of future development on private property and may therefore also preclude a sidewalk connection to Arapaho Rd.	20	N/A
2B-AC-RP-40	City of Richardson	Repair	W Arapaho Rd	West Study Boundary \& Richardson Dr	North	5	Adjust traffic signal hand box to be same elevation as sidewalk so it does not cause a trip hazard.	17	N/A
2B-AC-RP-41	City of Richardson	Repair	E Arapaho Rd	N Dorothy Dr \& Grove Rd	South	95	Remove and replace several sidewalk panels near a steel electric utility pole and utility manhole, where severe settlement has created significant trip hazards.	25	\$11,100
2B-AC-GR-42	City of Richardson	Gap to Remain	E Arapaho Rd	N Dorothy Dr \& Grove Rd	North	225	Utility poles, a traffic signal pole, and a steep driveway block the way for sidewalk in the narrow space between the curb and the fence for a historic cemetery. Regrading and resetting of the fence would be needed to add sidewalk, with likely disturbance to some graves in the cemetery. A sidewalk already exists to bypass the cemetery on its north and west boundaries away from the roadway.	0	N/A
2B-AC-SW-44	City of Richardson	New Sidewalk	N Interurban St	E Arapaho Rd \& South Study Boundary	East	695	Steep driveways, the accessibility ramp to a business, concrete steps to entries of several other businesses, sloped concrete retaining walls to business landscaping, and right angle parking flush with the street would all combine to make construction of sidewalk on this side of the street extremely challenging. On-street parallel parking is prevalent on both sides of the street, so a road diet to build sidewalk would also be an unlikely option.	18	N/A
2B-AC-SW-45	City of Richardson	New Sidewalk	Hilltop Ave	N Greenville Ave \& N Dorothy Dr	North	830	Three large trees could suffer root damage by constructing sidewalk here. A brick wall adjacent to the greenway runs the entire length of the block with no pedestrian access to the businesses to the north of this otherwise residential street, so demand for pedestrian travel on this side of the street is unlikely. The businesses to the north have access via a driveway on Dorothy Dr, and existing residential sidewalk on the south side of the street provides connectivity.	15	N/A

Half Mile Area Improvements Matrix
Arapaho Center Station
Opinion of Probable Constr. Cost = \$261,300 Sidewalk \& Shared Use Path Segments

Half Mile Area Improvements Matrix
Arapaho Center Station
Opinion of Probable Constr. Cost = \$261,300 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Sidewalk \& Sh	se Path Se		(ma	on Map)	Rem		DART Red \& Blue Line Corridors Last Mile Connections		
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2B-AC-SW-37	DART/Private Property	New Sidewalk	N/A	Central Expy \& Station Platform	N/A	550	Build sidewalk connecting train platform to U.S. 75 frontage road. See station improvement 2B-AC-ST-13. A bent chain link fence and nearby makeshift stepstool near the tracks indicate existing pedestrian demand for this connection. Improvement will require adjusting chain link fence, handrail, and other utilities near the station platform. A right-of-way easement or acquisition would be needed to connect through private property, and adjacent business parking would need to be monitored to ensure it remains available for businesses and not used by DART park-and-ride customers. Some tree roots and business landscaping would be affected. A very short retaining wall may be needed between adjacent parking lots at slightly different elevations. City of Richardson reports this improvement is currently under discussion with DART and the property owners.	53	N/A

Opinion of Probable Cost - DART/Private Property Subtotal.....

A \leftarrow Station Number	SW \leftarrow Sidewalk (or CW=Crosswalk,
$\mathrm{PR} \leftarrow$ Station Abbreviation	VW=Veloweb,
\leftarrow Improvement Number	RP=Sidewalk Repair
(matches 1 1 on Map)	GR=Gap to Remain)

$\$ 0$ Some backfill may be needed to level path for sidewalk on slope adjacent to railroad

2B-AC-SP-V01	Kansas City Southern Railroad	Shared Use Path

Regional Veloweb

| North Study Boundary \& N
 Collins Blvd | N/A | 910 |
| :---: | :---: | :---: | tracks. City of Richardson reports no near-term plans for trail along KCS Railroad

2B-AC-GR-08	TxDOT	Gap to Remain	Central Expy	North Study Boundary \& N Collins Blvd	East	1025	Because the DART tracks run immediately east of the U.S. 75 Northbound Frontage Road, with Greenville Ave on the east side of the tracks, no meaningful land use for pedestrian access would be provided by building sidewalk adjacent to the tracks. Furthermore, landscaping would need to be removed and the travel experience would be highly uncomfortable for pedestrians.	0	N/A
2B-AC-RP-23	TxDOT	Repair	Central Expy	N Collins Blvd \& Melrose Dr	West	285	The sidewalk has settled significantly relative to the curb, creating an unacceptable cross slope. Several panels should be removed and replaced.	22	\$34,000
2B-AC-RP-24	TxDOT	Repair	Central Expy	Melrose Dr \& Monte Blaine Ln	West	5	Remove and replace sidewalk panels that have settled, creating significant trip hazards.	37	\$1,800
2B-AC-GR-25	TxDOT	Gap to Remain	Central Expy	E Collins Blvd \& E Arapaho Rd	East	1650	Handrail near fire hydrant would need to be adjusted to continue sidewalk north near the Ten 50 BBQ restaurant. Some landscaping adjacent to the restaurant would need to be removed. Farther north, the greenway tapers into a narrow space between the frontage road and the DART tracks. No meaningful land use for pedestrian access would be provided by building sidewalk adjacent to the tracks. Furthermore, landscaping would need to be removed and the travel experience would be highly uncomfortable for pedestrians.	0	N/A
2B-AC-RP-35	TxDOT	Repair	Central Expy	Monte Blaine Ln \& W Arapaho Rd	West	45	Remove and replace settled sidewalk panels near drainage problem area at corner of church parking lot since they create a significant trip hazard.	34	\$3,200

Half Mile Area Improvements Matrix

Arapaho Center Station

Opinion of Probable Constr. Cost = \$261,300

Sidewalk \& Shared Use Path Segments

Opinion of Probable Constr. Cost $=\mathbf{\$ 2 6 1 , 3 0 0}$

Sidewalk \& Shared Use Path Segments			
ID	Owner	Improvement Type	
2B-AC-SW-36	TxDOT	New Sidewalk	
2B-AC-SW-43	TxDOT	New Sidewalk	

Opinion of Probable Cost - TxDOT Subtotal..

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

| Notes | Priority
 Score | Opinion of
 Probable
 Cost |
| :--- | :--- | :---: | :---: |
| Some short retaining walls may be needed to build sidewalk in narrow space
 between frontage road curb and higher elevation business parking lots.
 Underground utility boxes and a drainage structrure for the parking lot may need to
 be modified. Streetlight poles may need to be relocated. Two trees could suffer
 significant root damage. | 54 | $\$ 123,000$ |
| Underground utility manholes and boxes would need to be adjusted to build
 sidewalk in the narrow space between the frontage road curb and a car dealership
 parking lot. Some short retaining walls may be needed, and adjustments to
 drainage features of the adjacent parking lot would likely need to be modified near
 the north end of the sidewalk gap. | 14 | $\mathrm{~N} / \mathrm{A}$ |

Opinion of Probable Cost - Total for All Sidewalk Recommendations in Half Mile Area.
$\$ 162,000$
$\$ 261,300$

Half Mile Area Improvements Matrix

Arapaho Center Station

Opinion of Probable Constr. Cost = \$220,300 Crosswalk Segments

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

ID	Owner	Improvement Type	Street Name	At/Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2B-AC-CW-04	City of Richardson	New Crosswalk	Ramp from Southbound Collins Blvd to Southbound Central Expy	Collins Blvd \& Central Expy	N/A	35	Add signed, marked, and lit crosswalk to cross high-speed ramp from Collins Blvd to U.S. 75. Consider pedestrian-actuated rectangular rapid flashing beacons (RRFB's) to increase yielding compliance by drivers. The City of Richardson reports plans to implement a road diet on the Collins Blvd bridge that will allow for wider sidewalks and protected bike lanes in the vicinity of this improvement. The City also reports this segment will be included in an upcoming Dallas County MCIP application.	24	\$29,300
2B-AC-CW-05	City of Richardson	New Crosswalk	Ramp from Southbound Collins Blvd to Southbound Central Expy	Collins Blvd \& Central Expy	N/A	30	Add signed, marked, and lit crosswalk to cross high-speed ramp from U.S. 75 to Collins Blvd. Consider pedestrian-actuated rectangular rapid flashing beacons (RRFB's) to increase yielding compliance by drivers. The City of Richardson reports this segment will be included in an upcoming Dallas County MCIP application.	23	\$29,300
2B-AC-CW-16	City of Richardson	New Crosswalk	Ramp from Northbound Greenville Ave to Eastbound Collins Blvd	N Greenville Ave \& Alma Rd	N/A	35	Add signed, marked, and lit crosswalk to cross high-speed ramp from U.S. 75 to Collins Blvd. Consider pedestrian-actuated rectangular rapid flashing beacons (RRFB's) to increase yielding compliance by drivers. The City of Richardson reports this segment will be included in an upcoming Dallas County MCIP application.	20	N/A
2B-AC-CW-17	City of Richardson	New Crosswalk	Ramp from Westbound Collins Blvd to Northbound Central Expy	Central Expy \& Alma Rd	N/A	25	Add signed, marked, and lit crosswalk to cross high-speed ramp from Collins Blvd to U.S. 75. Consider pedestrian-actuated rectangular rapid flashing beacons (RRFB's) to increase yielding compliance by drivers. The City of Richardson reports this segment will be included in an upcoming Dallas County MCIP application.	14	N/A

Arapaho Center Station

Opinion of Probable Constr. Cost = \$220,300 | Crosswalk Segments |
| :--- |

[^9]Half Mile Area Improvements Matrix

Spring Valley Station

Opinion of Probable Constr. Cost = \$380,800 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Sidewalk \& Shared Use Path Segments									
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2C-SV-SW-61	City of Richardson	New Sidewalk	S Greenville Ave	Buckingham Dr \& South Study Boundary	East	360	Sidewalk construction would involve impacts to residential landscaping for one home. The distance from the station for this segment is relatively high, and there is a lack of development to the south.	18	N/A
2C-SV-SW-05	City of Richardson	New Sidewalk	S Floyd Rd	James Dr \& S Central Expy	West	70		25	\$19,300
2C-SV-SW-07	City of Richardson	New Sidewalk	W Phillips St	S Central Expy \& S Sherman St	North	20	City of Richardson reports that Town North Mazda is expected to be filing new development plans for their site within the year that will address this issue.	6	N/A
2C-SV-RP-13	City of Richardson	Repair	S Sherman St	North Study Boundary \& W Phillips St	East	20	Remove and replace sidewalk panels where trip hazards exist due to tree root upheaval and settlement near storm drain manholes.	14	N/A
2C-SV-RP-14	City of Richardson	Repair	W Phillips St	S Sherman St \& DART Tracks	North	5	Remove and replace sidewalk panels where trip hazard exists due to severe cracking adjacent to underground utility box.	7	N/A
2C-SV-RP-15	City of Richardson	Repair	W Phillips St	S Sherman St \& DART Tracks	South	45	Correct trip hazard that has occurred due to tree root upheaval.	7	N/A
2C-SV-RP-18	City of Richardson	Repair	W Spring Valley Rd	S Central Expy \& S Sherman St	South	95	Correct trip hazards caused by differential settlement near a fire hydrant and driveway.	17	N/A
2C-SV-RP-19	City of Richardson	Repair	W Spring Valley Rd	S Sherman St \& Lingco Dr	South	70	Correct trip hazard caused by settlement of narrow sidewalk panel behind storm drain inlet.	45	\$12,800
2C-SV-GR-20	City of Richardson	Gap to Remain	S Sherman St	North Dallas Community Bible Fellowship	N/A	100	This existing crosswalk across a six-lane divided arterial without other safety countermeasures should be removed. It is not accessible, and the City of Richardson reports it is not utilized and they have recently removing the pedestrian warning signs. If the crosswalk remains, signing should be re-installed along with additional measures, including yield lines and "Yield Here to Pedestrians" signing for the three lanes in each direction at a minimum. (Note removal of this crosswalk will not negatively impact access to and from the DART Station.)	0	N/A
2C-SV-GR-21	City of Richardson	Gap to Remain	Texas St	North Study Boundary \& E Phillips St	West	420	The street lacks curb and gutter. Removal of over a dozen trees and some regrading would need to occur to provide sidewalk in the narrow space between the street and a guardrail and a large concrete drainage channel. Sidewalk is unnecessary on this side of the street since the Central Trail shared-use path is already present on the west side of the drainage channel.	0	N/A

Half Mile Area Improvements Matrix

Spring Valley Station

Opinion of Probable Constr. Cost = \$380,800 Sidewalk \& Shared Use Path Segments

Sidew			(matches	1 on Map) GR=G	to Rema	
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)
2C-SV-SW-22	City of Richardson	New Sidewalk	Texas St	North Study Boundary \& E Phillips St	East	425
2C-SV-RP-23	City of Richardson	Repair	E Phillips St	Texas St \& S Greenville Ave	North	30
2C-SV-SW-24	City of Richardson	New Sidewalk	McKamy Springs Ct	Central Trail \& Brick Row	South	45
2C-SV-GR-25	City of Richardson	Gap to Remain	Central Trail	Spring Valley Rd	N/A	135
2C-SV-SW-26	City of Richardson	New Sidewalk	S Greenville Ave	Centennial Blvd \& Buckingham Dr	West	350
2C-SV-SW-28	City of Richardson	New Sidewalk	Buckingham Rd	DART Tracks \& S Greenville Ave	South	1355

Notes	Priority Score	Opinion of Probable Cost
Street does not have existing curb and gutter, which should be constructed with sidewalk to avoid drainage problems. A ditch would need to be filled, with several existing pipe culverts modified or replaced. Some vegetation would need to be removed, and tree root impacts could occur. Except for one 4-plex building on the corner, which already has sidewalk access via Phillips St, the land along this segment is undeveloped. City of Richardson reports this sidewalk will probably be built when the property is redeveloped.	4	N/A
Remove and replace sidewalk panels where trip hazards exist due to panel settlement near driveways.	10	N/A
Consider providing short break in fence to provide a sidewalk connection to the Central Trail. This would require removal of a short section of fence and part of a short retaining wall, as well as a few medium-sized trees, but would provide a shorter walking distance to the station for many apartment and townhome residents. The City of Richardson indicates they will need to work with the property owner on whether they have a desire for this improvement.	21	N/A
Signalized crosswalks are available at less than 200 feet in either direction along Spring Valley Rd from the station platform and the adjacent Central Trail running along the DART tracks. A crosswalk improvement for more direct pedestrian travel along the trail would pose an undue constraint on vehicular signal coordination given the short distance of the trail detour to cross. Nonetheless, pedestrian crossing demand was observed in the field. Consider adjusting the location of bus stops and adding aesthetic but anti-climb fencing in the median of Spring Valley Road to channelize all pedestrian and bicyclist crossings to the nearby crosswalks. See station improvement 2C-SV-ST-09.	0	N/A
Five large trees would need to be removed to provide sidewalk in narrow space between curb and business parking lot. Above-ground and underground utility boxes and manholes would need to be modified, and excavation would be needed to level the existing mound of earth. A DART bus stop without sidewalk access is posted along this segment.	31	\$39,300
Sidewalk construction would likely cause root damage to some large trees lining the edge of the Restland Cemetery. Other trees may need to be removed, and short retaining walls could be needed in some places due to the cemetery's elevation above street level. Vegetation and tree branches hanging over the future sidewalk's path would also need to be cleared, particularly for a large stand of bamboo trees near the west end of the gap. A DART bus stop without sidewalk access is posted along this segment.	17	N/A

Half Mile Area Improvements Matrix

Spring Valley Station
Opinion of Probable Constr. Cost = \$380,800
Sidewalk \& Shared Use Path Segments

		S380,000	(match	$\begin{array}{l\|l} \hline 1 & \text { on } M a p) \quad G R=G \end{array}$	to Rem	
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)
2C-SV-SW-29	City of Richardson	New Sidewalk	S Greenville Ave	Buckingham Dr \& South Study Boundary	West	560
2C-SV-SW-33	City of Richardson	New Sidewalk	Huffhines St	S Greenville Ave \& East Study Boundary	North	570
2C-SV-SW-34	City of Richardson	New Sidewalk	Huffhines St	S Greenville Ave \& East Study Boundary	South	510
2C-SV-SW-35	City of Richardson	New Sidewalk	Wista Vista Dr	West Terminus \& East Study Boundary	North	615
2C-SV-SW-36	City of Richardson	New Sidewalk	Wista Vista Dr	West Terminus \& East Study Boundary	South	660

Notes	Priority Score	Opinion of Probable Cost
Sidewalk construction would require adjustments to underground utility boxes and traffic signs.	13	$\mathrm{~N} / \mathrm{A}$
Sth		

Street does not have existing curb and gutter, which should be constructed with sidewalk to avoid drainage problems. Above-ground and underground utility boxes and manholes would need to be adjusted. Residential landscaping and other vegetation would need to be removed. Utility poles are present but likely avoidable City of Richardson reports that when approached about street reconstruction, residents in the neighborhood were against the idea of new sidewalk.
Street does not have existing curb and gutter, which should be constructed with sidewalk to avoid drainage problems. Sump drainage inlet would need to be removed. Backfill to regrade ditch for level sidewalk could impact residential landscaping. Tree root damage could occur. Housing density is low, and street does not connect to rest of study area pedestrian network without exiting half-mile radius, so pedestrian walking trips to the station are less likely. City of Richardson reports that when approached about street reconstruction, residents in the neighborhood were against the idea of new sidewalk.
Street does not have existing curb and gutter, which should be constructed with sidewalk to avoid drainage problems. Several grate drainage inlets would need to be removed. Backfill to regrade ditch for level sidewalk could impact residential landscaping. Tree root damage could occur. Underground utility boxes would need to be adjusted. Housing density is low, and street does not connect to rest of study area pedestrian network without exiting half-mile radius, so pedestrian walking trip to the station are less likely. City of Richardson reports that when approached about street reconstruction, residents in the neighborhood were against the idea of new sidewalk.

$12 \quad \mathrm{~N} / \mathrm{A}$
s
13

N/A

5 N/A

Half Mile Area Improvements Matrix
Spring Valley Station
Opinion of Probable Constr. Cost = \$380,800 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Sidewalk \& Shared Use Path Segments							DART Red \& Blue Line Corridors Last Mile Connections		
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2C-SV-SW-37	City of Richardson	New Sidewalk	Pittman St	S Greenville Ave \& Abrams Rd	North	9	Street does not have existing curb and gutter, which should be constructed with sidewalk to avoid drainage problems. Several grate drainage inlets would need to be removed. Backfill to regrade ditch for level sidewalk could impact residential landscaping. Some vegetation would need to be removed. City of Richardson reports that when approached about street reconstruction, residents in the neighborhood were against the idea of new sidewalk.	16	N/A
2C-SV-SW-39	City of Richardson	New Sidewalk	Pittman St	S Greenville Ave \& Abrams Rd	South	1000	Street does not have existing curb and gutter, which should be constructed with sidewalk to avoid drainage problems. Several grate drainage inlets would need to be removed. Backfill to regrade ditch for level sidewalk could impact residential landscaping. Some vegetation would need to be removed, and tree root damage could occur. Above-ground and underground utility boxes, manholes, and possibly utility poles would need to be adjusted. City of Richardson reports that when approached about street reconstruction, residents in the neighborhood were against the idea of new sidewalk.	16	N/A
2C-SV-SW-40	City of Richardson	New Sidewalk	Maple St	Abrams Rd \& East Study Boundary	North	190		10	N/A
2C-SV-SW-41	City of Richardson	New Sidewalk	Maple St	Abrams Rd \& East Study Boundary	South	205	Steep driveways may need to be reconstructed or bypassed in order to provide sidewalk.	10	N/A
2C-SV-RP-42	City of Richardson	Repair	E Spring Valley Rd	S Greenville Ave \& Abrams Rd	North	920	Several significant trip hazards exist along this block due to severely cracked sidewalk. Much of the rest of the sidewalk on the block is in fair condition at best and likely to deteriorate to poor conditions in coming years. Consider removing and replacing sidewalk for the entire block.	21	N/A
2C-SV-SW-43	City of Richardson	New Sidewalk	E Spring Valley Rd	Abrams Rd \& East Study Boundary	North	325	Two medium-sized trees, a signal mast arm pole, and a signal cabinet occupy the space that would be needed for sidewalk. Due to the cross slope, each may need to be either removed or adjusted to level for sidewalk. The north side of Spring Valley Road on this block faces mostly back yard fences for the adjacent homes, all of which have existing sidewalk access fronting Grace Dr to the north.	12	N/A
2C-SV-RP-44	City of Richardson	Repair	S Greenville Ave	E Spring Valley Rd \& Centennial Blvd	East	115	Remove and replace sidewalk panels where trip hazards exist due to tree root upheaval from trees on either side of residential back yard fence.	20	N/A
2C-SV-GR-45	City of Richardson	Gap to Remain	Centennial Blvd	Abrams Rd \& East Study Boundary	North	300	Insufficient space exists for sidewalk between roadway curb and wall protecting Lois Branch concrete-lined drainage channel. A road diet or modification of the drainage channel would be needed to provide sidewalk, which would not connect to any pedestrian access points to adjacent land.	0	N/A
2C-SV-RP-46	City of Richardson	Repair	Centennial Blvd	S Greenville Ave \& Abrams Rd	South	15	Correct trip hazard caused by settlement of narrow sidewalk panel behind storm drain inlet.	22	\$6,300

Half Mile Area Improvements Matrix
Spring Valley Station
Opinion of Probable Constr. Cost = \$380,800 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)
2C-SV-RP-56	City of Richardson	Repair	S Greenville Ave	Rosehill Ct \& Buckingham Dr	East	35
2C-SV-SW-57	City of Richardson	New Sidewalk	S Greenville Ave	Rosehill Ct \& Buckingham Dr	East	130
2C-SV-SW-58	City of Richardson	New Sidewalk	Buckingham Rd	S Greenville Ave \& East Study Boundary	North	45
2C-SV-SW-59	City of Richardson	New Sidewalk	Willingham Dr	Abrams Rd \& East Study Boundary	South	195
2C-SV-SW-60	City of Richardson	New Sidewalk	Buckingham Rd	S Greenville Ave \& East Study Boundary	South	45

Notes	Priority Score	Opinion of Probable Cost
Adjust an underground communications utility box that has settled significantly below the elevation of surrounding sidewalk, creating a significant trip hazard.	20	N/A
A worn path in the grass indicates existing pedestrian demand leading to a DART bus stop at the north end of the gap. Sidewalk construction would involve adjusting the guy wire for a utility pole, possibly reconstructing a steep residential driveway, and potential adjustments to underground utility boxes. At the northeast corner of the intersection with Buckingham Dr, a utility pole blocks access to the existing crosswalks where the curb is depressed to street level for a diagonal pedestrian ramp that has not yet been built. Realignment of crosswalks, construction of the curb for two perpendicular pedestrian ramps, and associated changes to stop bar locations and vehicle detection loops may be required unless the utility pole can be relocated.	19	N/A
Sidewalk construction may require adjustments to traffic signal ground boxes.	18	N/A
Sidewalk construction may require adjustments to underground utility boxes. City of Richardson reports that sidewalk construction would be required as part of development plans for these sites.	7	N/A
Sidewalk construction may require adjustments to traffic signal ground boxes. Significant root damage may occur to a tree near the corner with Greenville Ave unless the signal mast arm pole on the corner can be reconstructed in a new location to make way for sidewalk.	12	N/A

Opinion of Probable Cost - City of Richardson Subtotal...

2C-SV-GR-47	Private Property	Gap to Remain	Prince Albert Ct	West Terminus \& Cotswolds Ct	North	205
2C-SV-GR-48	Private Property	Gap to Remain	Prince Albert Ct	West Terminus \& Cotswolds Ct	South	200
2C-SV-GR-49	Private Property	Gap to Remain	Rosehill Ct	S Greenville Ave \& Cotswolds Ct	North	300

Because the neighborhood is gated, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk construction would not be able to be coordinated.	0	N/A
Because the neighborhood is gated, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk construction would not be able to be coordinated.	0	N/A
Trees and landscaping would need to be removed to provide sidewalk. The access gate to the neighborhood would also need to be modified since there is no existing pedestrian gate. Beyond the access gate, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk	0	N/A

Half Mile Area Improvements Matrix
Spring Valley Station
Opinion of Probable Constr. Cost = \$380,800 Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Opinion of Pr Sidewalk \& S	Use Path Seg		(matches	$1 \text { on Map) } \quad \text { GR= }$	Rem		DART Red \& Blue Line Corridors Last Mile Connections		
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2C-SV-GR-50	Private Property	Gap to Remain	Rosehill Ct	S Greenville Ave \& Cotswolds Ct	South	290	Trees and landscaping would need to be removed to provide sidewalk. The access gate to the neighborhood would also need to be modified since there is no existing pedestrian gate. Beyond the access gate, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk construction would not be able to be coordinated.	0	N/A
2C-SV-GR-51	Private Property	Gap to Remain	Queen Victoria Ct	West Terminus \& Cotswolds Ct	North	195	Because the neighborhood is gated, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk construction would not be able to be coordinated.	0	N/A
2C-SV-GR-52	Private Property	Gap to Remain	Queen Victoria Ct	West Terminus \& Cotswolds Ct	South	195	Because the neighborhood is gated, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk construction would not be able to be coordinated.	0	N/A
2C-SV-GR-53	Private Property	Gap to Remain	Cotswolds Ct	Prince Albert Ct \& Rosehill Ct	West	205	Because the neighborhood is gated, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk construction would not be able to be coordinated.	0	N/A
2C-SV-GR-54	Private Property	Gap to Remain	Cotswolds Ct	Rosehill Ct \& Queen Victoria Ct	West	160	Because the neighborhood is gated, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk construction would not be able to be coordinated.	0	N/A
2C-SV-GR-55	Private Property	Gap to Remain	Cotswolds Ct	Prince Albert Ct \& Queen Victoria Ct	East	625	Because the neighborhood is gated, access was not available to inventory any constraints that may apply to future sidewalk construction. This is a private neighborhood street outside of the City's purview, so it is assumed that sidewalk construction would not be able to be coordinated.	0	N/A
2C-SV-SW-02	TxDOT	New Sidewalk	S Central Expy	North Study Boundary \& Dumont Dr	West	440	Driveways between these sidewalk gaps may be steep enough to require reconstruction in order to build sidewalk that avoids utility poles, private property, or other adjacent constraints. Short retaining walls would likely be needed to level the way for sidewalk in the narrow, sloped space between the roadway curb and parking lots at a higher elevation. Some business landscaping would need to be removed. Underground utility boxes and manholes would likely need to be adjusted. This gap is on the outside edge of the study area and a long travel distance from the station.	16	N/A

Half Mile Area Improvements Matrix
Spring Valley Station
Opinion of Probable Constr. Cost = \$380,800
Sidewalk \& Shared Use Path Segments

Improvement Code Legend: ID: 1A-PR-SW-01

Sidewalk \& Shared Use Path Segments									
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)	Notes	Priority Score	Opinion of Probable Cost
2C-SV-SW-03	TxDOT	New Sidewalk	S Central Expy	Dumont Dr \& James Dr	West	120	Driveways between these sidewalk gaps may be steep enough to require reconstruction in order to build sidewalk that avoids utility poles, private property, or other adjacent constraints.	22	\$73,100
2C-SV-SW-04	TxDOT	New Sidewalk	S Central Expy	James Dr \& S Floyd Rd	West	55	A utility pole blocks the path of existing sidewalk at the southern end of this gap. Two other utility poles and a streetlight pole may also need to be adjusted to build sidewalk. Two wide, steep driveways, one of them to right-angle business parking, would need to be reconstructed or bypassed. Short retaining walls would likely be needed to level the way for sidewalk in the narrow, sloped space between the roadway curb and parking lots at a higher elevation. City of Richardson reports this sidewalk will be built when the property is redeveloped.	20	N/A
2C-SV-SW-06	TxDOT	New Sidewalk	S Central Expy	North Study Boundary \& W Phillips St	East	255	Sidewalk construction may require reconstruction of somewhat steep business driveways and adjustments to underground utility boxes. City of Richardson reports that Town North Mazda is expected to be filing new development plans for their site within the year that will address this issue.	8	N/A
2C-SV-RP-08	TxDOT	Repair	S Central Expy	W Phillips St \& W Spring Valley Rd	East	25	Correct trip hazard that has occurred due to uneven sidewalk panel settlement.	15	N/A
2C-SV-SW-09	TxDOT	New Sidewalk	S Central Expy	W Phillips St \& W Spring Valley Rd	East	105	Backfill would need to be added to provide a level surface for sidewalk adjacent to the Como Motel, requiring a re-design of the drainage system for the site. A grate inlet and underground utility box would need to be adjusted.	21	N/A
2C-SV-RP-10	TxDOT	Repair	S Central Expy	W Phillips St \& W Spring Valley Rd	East	65	Remove and replace a few sidewalk panels near a crape myrtle tree and a low point where poor drainage may have caused sidewalk spalling. Repair several other trip hazards caused by sidewalk settlement or tree root heaving.	24	\$4,500
2C-SV-SW-11	TxDOT	New Sidewalk	S Central Expy	W Phillips St \& W Spring Valley Rd	East	990	A large tree would need to be removed near the corner with Spring Valley Road to build sidewalk unless parking spaces in the adjacent office building surface lot were removed to provide a sidewalk bypass. Bypassing this tree would likely still cause root damage, which is also likely for two other trees nearby. Short retaining walls would likely be needed to build sidewalk in narrow spaces between the curb and elevated parking lots. One or more steep driveways would probably need to be reconstructed. Fire hydrants and streetlight poles may need to be adjusted. City of Richardson reports that redevelopment of the Comerica Bank site is slated to occur in next few years, fixing the issues on that parcel.	25	\$225,500

Half Mile Area Improvements Matrix

Spring Valley Station

Opinion of Probable Constr. Cost = \$380,800
Sidewalk \& Shared Use Path Segments

pinion of Prob	nstr. Cost	80,800	$01 \leftarrow$ Improvement Number (matches 1 on Map)		RP=Sidewalk Repair GR=Gap to Remain)	
ID	Owner	Improvement Type	Street Name	Between	Side of Street	Length (ft)
2C-SV-RP-12	TxDOT	Repair	S Central Expy	W Phillips St \& W Spring Valley Rd	East	70

Opinion of Probable Cost - TxDOT Subtotal...
Opinion of Probable Cost - Total for All Sidewalk Recommendations in Half Mile Area.

Notes	Priority Score	Opinion of Probable Cost
Correct trip hazards due to tree root upheaval and/or other differential settlement near storm drain inlet. City of Richardson reports that redevelopment of the Comerica Bank site is slated to occur in next few years, fixing the issues on that parcel.	17	$\mathrm{~N} / \mathrm{A}$

Half Mile Area Improvements Matrix

Improvement Code Legend: ID: 1A-PR-SW-01

Spring Valley Station

Opinion of Probable Constr. Cost = \$147,800

Norih Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

Half Mile Area Improvements Matrix

Spring Valley Station

Opinion of Probable Constr. Cost = \$147,800 Crosswalk Segments

North Central Texas Council of Governments
DART Red \& Blue Line Corridors Last Mile Connections

Length (ft)	Notes	Priority Score	Opinion of Probable Cost
85	Add yield line and "Yield Here to Pedestrians" signing for the two lanes in each direction approaching existing signed and marked crosswalk to mitigate risk of dual threat situation for pedestrians. Consider adding a pedestrian hybrid beacon if warranted by a study of pedestrian volumes during arrival and dismissal times for the First Baptist Church of Hamilton Park and the Richardson ISD Math Science Technology magnet school, both located nearby to the east.	9	$\mathrm{~N} / \mathrm{A}$
85	Consider a new signed, marked, and lit crosswalk across the south leg of the intersection, with yield lines and "Yield Here to Pedestrians" signing for the two lanes in each direction to mitigate risk of dual threat situation for pedestrians. The existing median would be modified to provide a pedestrian refuge area.	23	$\$ 51,800$

Opinion of Probable Cost - City of Richardson Subtotal
Opinion of Probable Cost - Total for All Crosswalk Recommendations in Half Mile Area
147,800

APPENDIX K: Estimated Quantities \& Opinions of Probable Construction Cost- Half-Mile

 Improvements

Opinion of Probable Construction cost CityLine Bush Station

OPCC 1C				1C-CB-SW-046		1C-CB-SW-047		1C-CB-SW-073		1C-CB-SW-027		1C-CB-SW-030		1C-CB-SW-036		1C-CB-SW-037		1C-CB-SW-048	
ENTITY	ITEM	UNIT	cost	QUANTITY	cost	QuANTITY	cost	Quantity	cost	quantity	cost	QuANTTIV	cost	QuANTITY	cost	QuANTTTY	cost	quantir	cost
dallas	SIDEWALK(${ }^{\text {s }}$)	${ }^{\text {LF }}$	535.00		50.00	295	\$10,325.00	165	\$5,775.00	1095	$538,325.00$	705	\$24,675.00	50	\$1,750.00	130	\$4,550.00	630	\$22,050.00
dallas	SIIEWALK ((10' PATH)	LF	570.00	290	S20,300.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	REMOVE SIDEWALK	LF	520.00		\$0.00		50.00		50.00	50	\$1,000.00		50.00		50.00		50.00		50.00
	Retaling wall (1)	LF	520.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
Dallas	Retaling Wall (2)	LF	\$40.00		50.00		50.00		50.00	260	\$10,400.00		50.00		50.00		50.00		\$0.00
dallas	Retalinng Wall (3)	LF	\$75.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	Retaling Wall (4)	LF	\$100.00		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00		50.00
dallas	Retaling Wall (5)	${ }^{\text {LF }}$	\$125.00		50.00		50.00		50.00	15	\$1,875.00		50.00		50.00		50.00		\$0.00
dallas	CURB AND GUTTER	LF	\$39.72	200	\$7,944.00	200	\$7,944.00	150	\$5,958.00		50.00		50.00		50.00		50.00		50.00
dallas	DRAINAGE INLETS (MODIFY)	EA	¢3,518.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	RCP 18"	${ }^{\text {LF }}$	558.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
TXOOT	PED RAMPS	EA	${ }_{52,182.75}$		\$0.00		50.00		50.00	6	\$13,096.50	2	\$4,365.50	1	${ }^{52,182.75}$		50.00	4	58,731.00
TX0OT	MEDIAN CUT (5)	${ }_{\text {LF }}$	S36.15		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
TxDOT	MEDIAN CUT (10' Path)	$\stackrel{\text { LF }}{\text { EA }}$	$\frac{572.30}{539722}$		S0.00 5000		50.00 5000		$\stackrel{50.00}{5000}$		50.00 500		50.00 5000		S0.00 5000		50.00 5000		S0.00 S000
DALLAS	DRIVEWAY (CoMM	EA	¢8,444.44		$\stackrel{50.00}{50}$		$\stackrel{50.00}{50}$		$\stackrel{50.00}{50}$		$\frac{50.00}{50.00}$		$\stackrel{50.00}{50}$		$\stackrel{50.00}{5}$		${ }_{50}$		$\stackrel{50.00}{500}$
N/A	UTLUTT POLE RELCCATED	EA	\$22,000.00		50.00		50.00		50.00	1	\$22,000.00		50.00		50.00		50.00		50.00
dallas	MANHOLE ADUUSTMENT	EA	\$557.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	TreE Relocations	EA	\$2,768.00		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00		50.00
dallas	TREE REMOVALS	EA	5886.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	Rallroad crossing	EA	\$120,000.00		50.00		50.00		50.00		50.00		\$0.00		\$0.00		\$0.00		50.00
dallas	TRAFFIIC SIGNS RELOCATED	EA	5223.00	2	\$446.00	2	\$446.00	1	S223.00	5	\$1,115.00	6	\$1,338.00		50.00		50.00	1	5223.00
TXDOT	Trafic signs new	EA	\$650.00		\$0.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	PAVEMENT MARKINGS (CROSSWALK)	${ }^{\text {LF }}$	59.00		\$0.00		\$0.00		50.00		50.00		\$0.00		50.00		50.00		50.00
dallas	PAVEMENT MARKINGS (STOP BAR)	LF	58.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PAVEMENT MARRINGS (TRIANGLESS	EA	\$60.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
TXDOT	UTLITY Box RELOCATION	EA	S729.33	2	\$1,458.66	2	\$1,458.66	1	S729.33		50.00		\$0.00		50.00		50.00		50.00
dallas	MEDIAN ISLAND (SEE SHEET [ST THAT FOLIOW FOR MORE INFO)	EA	SEE OTHER SHEET		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00		50.00
dallas	LIGHT Pole relocation	EA	\$4,758.00		50.00		50.00	1	\$4,758.00	1	\$4,758.00		50.00		50.00		50.00		50.00
dallas	fence (remove and replace)	LF	553.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	FIRE HYORANT RELOCATED	EA	¢3,640.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	PARKING STOP	EA	597.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PED GENERALLIGHTING (NOT For crosswalk)	EA	\$21,000.00	1	\$21,000.00	1	\$21,000.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PED CROSSWALK LGGHTING (H11) - 2 LANE UNDIVIIDED	EA	\$26,435.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PRED CROSSWALK LGGTING (H1) - 3 LANE UNDVVIDED	${ }_{\text {EA }}$	$\frac{527,182.50}{500.407 .50}$		S0.00 0.00		S0.00 50.00		$\frac{50.00}{50.00}$		50.00 50.00		50.00 50.00		S0.00 50.00		S0.00 50.00		S0.00 50.00
N/A	PED Crosswalk Lichting (lil)-4 LANE DIVIDED	EA	\$41,183,75		$\stackrel{50.00}{50}$		$\frac{50.00}{50}$		$\frac{50.00}{50}$		$\stackrel{50.00}{5}$		$\stackrel{50.00}{50}$		$\stackrel{50.00}{5}$		$\stackrel{5}{50.00}$		$\frac{5000}{}$
N/A	PED CROSSWALK LGHTTIN ((11) - L LANE UNOVIVIDED	EA	\$41,839.25		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PED Crosswalk lighting (\#1) - 6 LANE DIVIIED	EA	\$42,615.50		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	RREB (\#7) - 3 LLNES W/O MEDIAN	EA	\$24,000		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	RRRB (477 - 1 SOLAR SIGN \& PUSH BUUTION IN MEDIAN	EA	\$36,000		\$0.00		50.00		50.00		50.00		50.00		50.00		S0.00		S0.00
N/A	RRREB (77) - 2 SOLAR SIGNS \& PUSHBUTTON IN MEDIAN	EA	\$48,000		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00		50.00
N/A	PRED HYBRRID BEACON (49) - 3 LANE UNDIVIDED	EA	S150,000		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	Peed hrbrid beacon (t9) - - Lane ivilided	EA	\$175,000		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	Ped hybrid beacon (t9) - 6 LANE DIVIIDED	EA	\$200,000		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	APS \& COUNTDOWN PED SIGNAL (\#10)- 1 CW	EA	\$9,500		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	APS 2 countoown PeD SIGNAL ((10)-2 -2 W	EA	S11,500		50.00		50.00		50.00		\$0.00		\$0.00		50.00		50.00		50.00
N/A	APS \& COUNTDOWN PED SIGNAL (\#10)-3CW	EA	\$21,500		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	APS \& COUNTDOWN PEDS SIGNAL (\#10) - 4 CW	EA	S27,500		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A		${ }_{\text {EA }}$	$\frac{}{\text { S150,000 }}$		$\stackrel{50.00}{500}$		$\stackrel{50.00}{500}$		$\stackrel{50.00}{500}$		¢0.00		S0.00 5000		$\begin{array}{r}50.00 \\ \hline 5000\end{array}$		50.00		50.00 5000
N/A		EA	\$5210,000		50.00 5000		$\underline{50.00}$		50.00 5000		50.00 5000		50.00		50.00 50.00		$\stackrel{50.00}{50.00}$		50.00 5000
	construction cost (without signals)	total			\$30,148.66		\$20,173.66		\$17,443,33		\$92,569.50		\$30,378.50		\$3,932.75		\$4,550.00		\$31,004.00
	CONSTRUCTION COST	Total			\$51,148.66		\$41,173.66		\$17,43,33		\$92,569.50		\$30,378.50		\$3,932.75		\$4,550.00		\$31,004.00
	enginerring design	10\%			\$5,114.87		\$4,117.37		\$1,744.33		\$9,256.95		\$3,037.85		\$393.28		\$455.00		\$3,10.40
	general Landscaping	4\%			\$1,205.95		\$806.95		\$697.73		\$3,702.78		\$1,215.14		\$157.31		\$182.00		\$1,200.16
	swppp	2\%			\$602.97		\$403.47		\$348.87		\$1,851.39		\$607.57		\$78.66		\$91.00		\$620.08
	trafil control	3\%			\$904.46		\$605.21		\$523.30		\$2,777.09		\$911.36		\$117.98		\$136.50		\$930.12
	mobilzation	4\%			\$1,314.48		\$879.57		\$76.53		\$4,036.03		\$1,324.50		\$171.47		\$198.38		\$1,351.77
	federal contingency	2\%			\$1,205.83		\$999.72		\$430.36		\$2,283.87		\$799.50		\$97.03		\$112.26		\$764.93
	opcc	total			\$61,500.00		\$49,000.00		\$22,000.00		\$11,500.00		\$38,300.00		\$5,000.00		\$5,800.00		\$39,100.00
	average cost per lf of sidewalk				\$212.07 PER LF		\$166.10 PER LF		\$133.33 PER LF		\$106.39 PER LF		\$54.33 Per LF		\$100.00 PER LF		\$44.62 PER LF		\$62.06 PER LF
	GRAND total for group 1 C	\$1,950,7																	

Total
TOTAL

\section*{| ENGINERRING DESIGN |
| :---: |
| GENRRALIANOSCAPING |}

${ }_{\text {TRPAFFIC }}$ SONTROL
federal contingency
opcc
average cost per lf of sidewalk
grand total for group 1 C

\$31,295.24	\$4,869.00
\$31,295,24	\$4,869.00
\$3,129.52	5486.90
\$1,251.81	\$194.76
\$625.90	\$97.38
\$938.86	\$146.07
\$1,364.47	\$212.29
\$772.12	\$120.13
\$39,400.00	\$6,200.00
\$109.44 PER LF	\$51.67 PER LF

\$1,950,700.00
$\$ 23,320.83$
$\$ 23,320.83$
$\$ 2,332.08$
$\$ 3238$
$\$ 469.42$
$\$ 690.62$
$\$ 1,016.79$
$\$ 575.37$
$\$ 29,400.00$
\#DVV/0!
$\$ 14,84.16$
$\$ 30,344.16$
$\$ 3,034.42$
$\$ 5337$
$\$ 297.78$
$\$ 44.53$
$\$ 547.21$
$\$ 07.24$
$\$ 36,100.00$
\#DV/ $0!$
$\$ 3,998.33$
53.998 .33
$\$ 6,788.33$
$\$ 156,788.33$

$\$ 15,678.83$
$\$ 271.53$
$\$ 13577$

$\underset{\substack{ \\\$ 1235.77 \\ \$ 20.65}}{\$}$
$\$ 203.65$
$\$ 295.97$
$\begin{array}{ll}53,467.48 & \$ 69.63\end{array}$
\$176,900.00
$\$ 3,600.00$

Assumptions

along Executive Drive, heading west from Crawford
assume 45 foot long
tear drop shape - will estimate as 2 triangles
asume max width at Crawford as 10 foot wide
remove existing conc pavement (will equal median area plus couple of feet for curb and gutter) add mediian refuge conc pvmt
add conc curb across median refuge
conc C \& G along Executive
add striping west of tear drop directing traffic around median refuge add signs for median - assume 2 and then one on median
area of median - assume 2 triangles
$0.5 \times 45 \times 10 \times 2=450 \mathrm{sf}$
area of removal
add 45 If $\times 2$ sides plus 20 feet for median nose to median area
$=450+[(45 \times 2)+20]=560 \mathrm{SF}$

ITEM NO	ITEM UNIT	QTY	UNIT COST	TOTAL
01046001	SF	560	$\$ 0.49$	$\$ 274.40$
356	SF	450	$\$ 6.00$	$\$ 2,700.00$
407	LF	20	$\$ 32.00$	$\$ 640.00$
407	LF	110	$\$ 32.00$	$\$ 3,520.00$
06666035	LF	200	$\$ 0.84$	$\$ 168.00$
$0636 \& 0646$	EACH	2	$\$ 650.00$	$\$ 1,300.00$
				$\$ 8,602.40$

OPCC 2A				2A-GP-SW-61		2A-GP-CW-26		2A-GP-CW-27		2A-GP-CW-55		2A-GP-CW-56		2A-GP-CW-68		2A-GP-CW-78	
ENTITY	\|TEM	UNIT	cost	QuANTITY	cost												
dallas	SIDEWALK(${ }^{(5)}$	LF	535.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
TXOOT	SIDEWALK (6)' ON BRIDGE ABUTMENT/DECK	LF	\$660.00	760	\$501,60.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	SIDEWALK (10' PATH)	LF	570.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	REMOVE SIDEWALK	LF	520.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	Retaling wall (1)	LF	520.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	Retaling wall (2')	LF	540.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	Retaling Wall (3)	LF	\$75.00		50.00		50.00		\$0.00		50.00		50.00		50.00		50.00
dallas	Retalinc Wall (4)	LF	\$100.00		50.00		50.00		50.00		50.00		50.00		50.00		${ }_{50.00}$
dallas	Retaling wall (5)	LF	\$125.00		50.00		50.00		50.00		50.00		50.00		50.00		${ }_{50.00}$
dallas	CURB AND GUTtier	LF	\$39.72		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	DRAINAGE ILLTES (MODIFY)	EA	\$7,036.00		\$0.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	RCP 18"	LF	558.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
TXOOT	PED RAMPS	EA	\$2,182.75		50.00	1	\$2,182.75		50.00		50.00		50.00		50.00		50.00
TXOOT	MEDIAN CUT (5')	LF	${ }_{5} 536.15$		50.00		50.00		50.00		50.00		50.00		50.00		${ }_{50.00}$
TXOOT	MEDIAN CUT (10' PATH)	LF	\$72.30		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	DRIVEWAY (RESIDENTIAL)	EA	\$3,972.22		50.00		50.00		50.00		50.00		50.00		50.00		${ }^{50.00}$
dallas	DRIVEWAY (COMMERCALA)	EA	\$8,444.44		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	UTILITY POLE RELCCATED	EA	\$22,000.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	MANHOLE ADJUSTMENT	EA	5572.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	TReE Relocations	EA	\$2,768.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
DALLAS	TREEEREMOVALS RAILRAOD CROSSING	EA	$\frac{5886.00}{\text { S1200000 }}$		50.00 5000		\$0.00		S0.00 S00		50.00 50.00		50.00 5000		50.00 5000		S0.00
dallas	TRAAFIIC SIINS R RLIOCATED	EA	$\frac{515233.00}{}$		$\frac{50.00}{50}$		$\frac{50.00}{50.0}$		$\frac{50.00}{50.00}$		$\frac{50.00}{50.0}$		$\frac{50.00}{50.0}$		$\frac{50.00}{50.0}$		$\frac{50.00}{}$
TXOOT	TRAFFIC SIGSNS New	EA	\$650.00		50.00	1	S 550.00	1	\$650.00	4	\$2,600.00	4	\$2,600.00	6	\$3,900.00	4	\$2,600.00
dallas	PAVEMENT MARKINGS (CROSSWALK)	Lf	59.00		50.00	90	5810.00	90	\$810.00	135	\$1,215.00	150	\$1,350.00	140	\$1,260.00	100	5900.00
dallas	PAVEMENT MARKINGS (STOP BAR)	LF	58.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PAVEMENT MARKINGS (TriANGLLES)	EA	560.00		50.00		50.00		50.00		50.00	9	\$540.00	12	S720.00		50.00
N/A	MEDIAN ISLAND/OTHER TEMS	EA	SEE OTHER SHEET	1	\$4,84, ${ }^{\text {c }}$	1	\$16,214,60	1	\$16, 214,60		\$0.00		50.00		\$0.00		50.00
TXDOT	UTLITY Box Relocation	EA	\$729.33		$\stackrel{50.00}{500}$		$\stackrel{50.00}{ }$		S0.00		50.00		$\stackrel{50.00}{500}$		50.00		${ }_{5}^{50.00}$
${ }^{\text {dallas }}$	$\xrightarrow{\text { LIGHT POLE RELOCATION }}$ (ENCE (REMOVE AND REPLACE)	$\frac{\text { EA }}{\text { Lf }}$	$\frac{54,758.00}{553.00}$		S0.00 50.00		S0.00 S0.00		50.00 50.00		S0.00 50.00		S0.00 50.00		50.00 50.00		$\frac{50.00}{50.00}$
dallas	FRE HYORANT RELOCATED	EA	${ }_{5} 53,640000$		\$0.00		\$0.00		\$0.00		$\stackrel{5}{50.00}$		$\frac{50.00}{50}$		50.00		${ }_{5}^{50.00}$
DAlLAS	PARKING STOP	EA	597.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PED CROSSWALK LIGHTING (H11) - L LANE UNDIVIDED	EA	S26,435.00		50.00	0.5	${ }_{513,217.50}$	0.5	\$13,217.50		50.00		50.00		50.00		50.00
N/A		EA	$\frac{527,182.50}{500407.50}$		S0.00 50.00		50.00 50.00		50.00 50.00		S0.00 50.00		50.00 50.00		50.00 50.00		50.00 50.00
N/A	PED Crosswalk lichting (li) - - Lane ivilied	EA	${ }_{\text {S44,1,183,75 }}$		$\frac{50.00}{50}$		$\frac{50.00}{50}$		$\stackrel{\text { S0.00 }}{ }$		$\stackrel{5}{50.00}$		$\stackrel{50.00}{50}$		$\stackrel{50.00}{50}$		$\stackrel{50.00}{ }$
N/A	PED CROSSWALK LGHTING (H1) - 6 LANE UNOVIVIDED	EA	\$41,839.25		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PED Crosswalk lichting (\#1) - 6 LANE DIVIDED	EA	\$42,615.50		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	RREB (\#7) - 3 LINES W/O MEDIAN	EA	\$24,000		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	$\frac{\text { RRFB }}{\text { (\#7) - } 1 \text { SOLLAR SISN \& PUSH BUTTON IN MEDIAN }}$	EA	\$36,000		50.00		50.00		50.00		50.00		50.00	1	\$36,000.00		${ }^{50.00}$
N/A		EA	S48,000 S15000		50.00 5000		50.00 5000		$\begin{array}{r}50.00 \\ \hline 000 \\ \hline\end{array}$		50.00 5000		50.00 5000		50.00 000		$\frac{50.00}{5000}$
N/A	PED HYERID BEACON (H9) - 4 LANE DIVIIDED	EA	S175,000		\$0.00		${ }_{50} 50.00$		¢0.00		${ }_{50} 50.00$		${ }_{50}$		${ }_{5}^{50.00}$		${ }_{5}^{50.00}$
N/A	PED HYBRID BEACON (\#9) - 6 LANE DIVIIDED	EA	\$200,000		50.00		50.00		50.00		\$0.00		50.00		\$0.00		50.00
N/A	APS \& Countoown Ped Signal (\#10)-1 CW	EA	\$9,500		50.00		50.00		50.00		50.00		$\stackrel{50.00}{ }$		$\stackrel{5}{50.00}$		${ }_{5}^{50.00}$
N/A	APS \& Countoown Ped Signal (10)- - CW	EA	\$15,500		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	APS \& COUNTDOWN PEDSIIGAL (\#1) -3CW	EA	S21,500		\$0.00		\$0.00		50.00		50.00		50.00		50.00		${ }_{50.00}$
N/A		EA	${ }_{\text {S27,500 }}{ }_{\text {S150,00 }}$		50.00 50.00		50.00 50.00		50.00 50.00		50.00 50.00		50.00 50.00		50.00 50.00		S0.00
N/A	PEED TRAFFFIC SIGNAL (\#11)-4 LIANE DIVIIEED	EA	\$175,000				${ }_{50} 50.00$		50.00 50.0		$\stackrel{50.00}{50.0}$		$\stackrel{50.00}{50.0}$		$\stackrel{50.00}{50.0}$		${ }_{5}^{50.00}$
	Peed trafic signal (\#11) - 6 LaNE Divided	EA	\$210,000		50.00		50.00		50.00		50.00		50.00		50.00		50.00
	Construction cost (without signals)	total total			$\$ 506,443.80$ \$506,443.80		$\$ 19,857.35$				$\$ 3,815.00$		\$4,490.00		\$5,880.00		\$3,500.00
	construction cost						$\$ 33,074.85$		$\$ 30,892.10$		$\$ 3,815.00$		\$4,490.00		$\$ 41,880.00$		\$3,500.00
	enginering design						\$3,307.49		\$3,089.21		\$381.50		\$499.00		\$4,188.00		\$350.00
	general lanoscaping	10\%			\$		\$794.29		\$706.98		\$152.60		\$179.60		\$235.20		\$140.00
	swppp	2\%					\$397.15		\$353.49		\$76.30		\$89.80		\$117.60		\$70.00
	trafic control	3\%					\$595.72		\$530.24		\$114.45		\$134.70		\$176.40		\$105.00
	mobllzation	4\%					\$865.78		\$770.61		\$166.33		\$195.76		\$256.37		\$152.60
	federal contingency	2\%			\$12,494.98		\$780.71		\$72.85		\$94.12		\$110.78		\$937.07		\$86.35
	opcc	total			\$637,30.00		\$39,900.00		\$37,100.00		\$4,900.00		\$5,70.00		\$47,80.00		\$4,500.00
	average cost per lf of sidewalk				N/A		\#DIV/0!		\#DIV/0!		\#Div/0!		\#olv/0!		\#oivo!		\#olvo!
	GRAND TOTAL For Group 2 a	\$3,550,70															

Assumptions

along Palisades Blvd at S Gate Dr
assume 60 foot long
tear drop shape - will estimate as 2 triangles
asume max width at S Gate Dr as 10 foot wide
remove existing conc pavement (will equal median area plus couple of feet for curb and gutte add mediian refuge conc pvmt
add conc curb across median refuge
conc C \& G along Palisades Blvd
add striping west of tear drop directing traffic around median refuge
and also reducing EB traffic to one lane each way. Also along median both sides/edges add signs for median - assume 2 for PED Crossing,
plus 1 on each end of median directing traffic around would be 6 total
area of median - assume 2 triangles
$0.5 \times 60 \times 10 \times 2=600 \mathrm{~s}$
area of removal
add 60 If $\times 2$ sides plus 20 feet for median nose to median area
$=600+[(60 \times 2)+20]=740 \mathrm{SF}$

ITEM NO	ITEM UNIT	QTY	UNIT COST	TOTAL
01046001	SF	740	$\$ 0.49$	$\$ 362.60$
356	SF	600	$\$ 6.00$	$\$ 3,600.00$
407	LF	20	$\$ 32.00$	$\$ 640.00$
407	LF	220	$\$ 32.00$	$\$ 7,040.00$
06666035	LF	800	$\$ 0.84$	$\$ 672.00$
0636 \& 0646	EACH	6	$\$ 650.00$	$\$ 3,900.00$
				$\$ 16,214.60$

Assumptions

along Palisades Blvd at S Gate Dr
assume 60 foot long
tear drop shape - will estimate as 2 triangles
asume max width at S Gate Dr as 10 foot wide
remove existing conc pavement (will equal median area plus couple of feet for curb and gutte add mediian refuge conc pvmt
add conc curb across median refuge
conc C \& G along Palisades Blvd
add striping west of tear drop directing traffic around median refuge
and also reducing EB traffic to one lane each way. Also along median both sides/edges add signs for median - assume 2 for PED Crossing,
plus 1 on each end of median directing traffic around would be 6 total
area of median - assume 2 triangles
$0.5 \times 60 \times 10 \times 2=600 \mathrm{~s}$
area of removal
add 60 If $\times 2$ sides plus 20 feet for median nose to median area
$=600+[(60 \times 2)+20]=740 \mathrm{SF}$

ITEM NO	ITEM UNIT	QTY	UNIT COST	TOTAL
01046001	SF	740	$\$ 0.49$	$\$ 362.60$
356	SF	600	$\$ 6.00$	$\$ 3,600.00$
407	LF	20	$\$ 32.00$	$\$ 640.00$
407	LF	220	$\$ 32.00$	$\$ 7,040.00$
06666035	LF	800	$\$ 0.84$	$\$ 672.00$
$0636 \& 0646$	EACH	6	$\$ 650.00$	$\$ 3,900.00$

Assumptions

Sidewalk along north side of Galatyn Parkway
Sidewalk and drainage inlet modification accounted for on main spreadsheet tab
Median island work for DDI accounted for under 2A-GP-SW-42
Eliminate existing pavement markings (4")
Eliminate existing pavement markings (12")
New double yellow markings (4") - $290 \mathrm{ft} \times 2$
Remove pavement marking arrows

ITEM NO	ITEM UNIT	QTY	UNIT COST	TOTAL
6776001	LF	1500	$\$ 0.39$	$\$ 585.00$
6776005	LF	304	$\$ 1.51$	$\$ 459.04$
6686043	LF	580	$\$ 5.06$	$\$ 2,934.80$
6776008	EA	6	$\$ 53.30$	$\$ 319.80$
6686122	EA	4	$\$ 800.00$	$\$ 3,200.00$
				$\$ 7,498.64$

length of 6" pavement marking removal
200 left turn solid white +620 double yellow $+230 / 4$ skip white $=$
1497.5 round to 1500
$16 \times 19=304 \mathrm{f}$

Assumptions

Road diet with Diverging Diamond Interchange (DDI) - sidewalk in median

Median \& splitter island construction for crossovers on bridge abutment/deck (see below) Eliminate existing pavement markings (4")
Remove pavement marking arrows
Pavement marking arrows
Eliminate existing pavement markings (24")
New double yellow markings (4")

ITEM NO	ITEM UNIT	QTY	UNIT COST	TOTAL
XXX	SF	4740	$\$ 110.00$	$\$ 521,400.00$
6776001	LF	200	$\$ 0.39$	$\$ 78.00$
6776008	EA	5	$\$ 53.30$	$\$ 266.50$
6686122	EA	8	$\$ 800.00$	$\$ 6,400.00$
6776007	LF	44	$\$ 3.39$	$\$ 149.16$
6686043	LF	250	$\$ 5.06$	$\$ 1,265.00$
				$\$ 529,558.66$

area of islands - assume each approach splitter island approximated by 200 x 14^{\prime} diamond
$0.5 \times 200 \times 14=\quad 1400 \mathrm{sf} \times 2$ islands $=$ 2800 sf total
Assume median island approximated by $130^{\prime} \times 16^{\prime}$ diamond
$0.5 \times 130 \times 16=$ 1040 sf
Assume 2 crossover islands per instersection, each approximated by $30^{\prime} \times 15^{\prime}$ diamonds
$0.5 \times 30 \times 15=$
$225 \mathrm{sf} \times 4$ islands
900 sf total

Assumptions

Sidewalk along north side of Galatyn Parkway
Median island work for DDI accounted for under 2A-GP-SW-42
New single white marking (edge line) (4")
Remove pavement marking arrows
Pavement marking arrows
length of 6" pavement marking removal
200 left turn solid white +620 double yellow $+230 / 4$ skip white $=$
length of 12" pavement marking removal for diagonal lines
$16 \times 19=304 \mathrm{ft}$

ITEM NO	ITEM UNII	QTY	UNIT COST	TOTAL
6686043	LF	620	$\$ 5.06$	$\$ 3,137.20$
6776008	EA	2	$\$ 53.30$	$\$ 106.60$
6686122	EA	2	$\$ 800.00$	$\$ 1,600.00$
				$\$ 4,843.80$

1497.5 round to 1500

OPCC 2B				2B-AC-VW-V02		2B-AC-SW-03		2B-AC-RP-06		2B-AC-SW-14		2B-AC-RP-22		2B-AC-RP-33	
ENTITY	ITEM	UNIT	cost	QUANTITY	Cost										
DALLAS	SIDEWALK (5')	LF	\$35.00	120	\$4,200.00	610	\$21,350.00	25	\$875.00	35	\$1,225.00	15	\$525.00	50	\$1,750.00
dallas	SIDEWALK (10' PATH)	LF	570.00		50.00		50.00		\$0.00		50.00		50.00		50.00
dallas	Remove sidewalk	LF	\$20.00		\$0.00		\$0.00		\$0.00		\$0.00	15	\$300.00	50	\$1,000.00
dallas	Retaining WALL (1)	LF	\$20.00		50.00		50.00		50.00		50.00		50.00		50.00
DALLAS	Retaling WALL (2')	LF	\$40.00		\$0.00		50.00		\$0.00		50.00		\$0.00		50.00
dallas	Retaling W Wall (${ }^{\prime}$)	LF	\$75.00	120	\$9,000.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00
dallas	Retaining wall (4)	LF	\$100.00		\$0.00		50.00		\$0.00		50.00		\$0.00		50.00
dallas	Retaling wall (5')	LF	\$125.00		\$0.00		50.00		\$0.00		50.00		\$0.00		50.00
dallas	CURB AND GUTTER	LF	\$39.72		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		50.00
dallas	DRAINAGE INLETS (MODIFY)	EA	\$3,518.00		\$0.00		\$0.00	1	\$3,518.00	1	\$3,518.00		\$0.00		\$0.00
TXDOT	RAIL (HANDRAIL TY E)	LF	\$140.00	120	\$16,800.00		50.00		\$0.00		50.00		50.00		50.00
TXDOT	PED RAMPS	EA	\$2,182.75		\$0.00		50.00		\$0.00		\$0.00		50.00		50.00
TXDOT	MEDIAN CUT (5^{\prime})	LF	\$36.15		\$0.00		\$0.00		\$0.00		50.00		\$0.00		50.00
TXDOT	MEDIAN CUT (10^{\prime} PATH)	LF	\$72.30		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00
dallas	DRIVEWAY (RESIDENTIAL)	EA	\$3,972.22		50.00		50.00		\$0.00		50.00		\$0.00		50.00
Dallas	DRIVEWAY (COMMERCIAL)	EA	\$8,444.44		50.00		50.00		50.00		50.00		50.00		50.00
N/A	UTLITY POLE RELOCATED	EA	\$22,000.00		\$0.00		50.00		\$0.00		\$0.00		\$0.00		\$0.00
dallas	MANHOLE ADJUSTMENT	EA	\$572.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00
dallas	tree relocations	EA	\$2,768.00		\$0.00		50.00		\$0.00		\$0.00		50.00		50.00
dallas	tree removals	EA	\$886.00		\$0.00	1	\$886.00		\$0.00		\$0.00		\$0.00		\$0.00
N/A	Rallroad crossing	EA	\$120,000.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		50.00
dallas	TRAFFIC SIGNS RELICATED	EA	\$223.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00
TXDOT	TRAFIIC SIGNS New	EA	\$650.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		50.00
dallas	PAVEMENT MARKINGS (CROSSWALK)	LF	\$9.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00
Dallas	PAVEMENT MARKINGS (STOP BAR)	LF	\$8.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PAVEMENT MARKINGS (TRIANGLES)	EA	\$60.00		\$0.00		\$0.00		\$0.00		50.00		50.00		50.00
N/A	MEDIAN ILLAND/OTHER IMPROVEMENTS	EA	SEE OTHER SHEET		\$0.00		\$0.00		\$0.00		50.00		50.00		50.00
TxDOT	UTLITY Box Relocation	EA	\$729.33		\$0.00		\$0.00		\$0.00		50.00		\$0.00		50.00
dallas	LIGHT Pole relocation	EA	\$4,758.00		50.00		50.00		\$0.00		50.00		\$0.00		50.00
dallas	fence (REMOVE AND REPLACE)	LF	\$53.00		50.00		\$0.00		\$0.00		50.00		\$0.00		50.00
Dallas	FREE HYDRANT RELOCATED	EA	\$3,640.00		50.00		50.00		\$0.00		50.00		\$0.00		50.00
TXDOT	GUARDRALL END TREATMENT (MOVE \& RESET)	EA	\$1,369.00	1	\$1,369.00		50.00		\$0.00		50.00		\$0.00		50.00
N/A	RREB (\#7) - 3 LANES W/O MEDIAN	EA	\$24,000		50.00		50.00		\$0.00		50.00		\$0.00		50.00
N/A	RRFB (\#7) - 1 SOLAR SIGN \& PUSH BUTTON IN MEDIAN	EA	\$36,000		\$0.00		50.00		\$0.00		50.00		\$0.00		50.00
N/A	RRFB (\#7) - 2 SOLAR SIGNS \& PUSHBUTTON IN MEDIAN	EA	\$48,000		\$0.00		\$0.00		\$0.00		50.00		\$0.00		50.00
N/A	PeD HYBRID BEACON (H9) - 3 LANE UNDIVIDED	EA	\$150,000		\$0.00		\$0.00		\$0.00		50.00		\$0.00		50.00
N/A	PED HYBRID BEACON (\#9) - 4 LANE DIVIDED	EA	\$175,000		\$0.00		50.00		\$0.00		50.00		\$0.00		50.00
N/A	PED HYBRID BEACON (\#9) - 6 LANE DIVIDED	EA	\$20,000		50.00		50.00		50.00		50.00		50.00		50.00
N/A	APS \& COUNTDOWN PED SIGNAL (\#10) - 1 CW	EA	\$9,500		50.00		\$0.00		\$0.00		\$0.00		\$0.00		50.00
N/A	APS \& Countoown Ped signal (110)-2 2 W	EA	\$15,500		50.00		50.00		50.00		50.00		50.00		50.00
N/A	APS \& COUNTDOWN PED SIGNAL (\#10)-3 CW	EA	\$21,500		50.00		50.00		50.00		50.00		50.00		50.00
N/A	APS \& COUNTDOWN PEDS SIGNAL (\#10) - 4 CW	EA	\$27,500		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PEED TRAFFIC SIGNAL (\#11) - 3 LANE UNDIVIDED	EA	\$150,000		50.00		\$0.00		\$0.00		\$0.00		\$0.00		$\stackrel{50.00}{ }$
N/A	PED TRAFFIC SIGNAL (\#11) - - LANE DIVIDED	EA	\$175,000		$\stackrel{\text { S0.00 }}{ }$		\$0.00		\$0.00		$\stackrel{50.00}{ }$		\$0.00		\$0.00
N/A	PED TRAFFIC SIGNAL (\#11) - 6 LANE DIVIIED	EA	\$210,000		50.00		50.00		50.00		50.00		50.00		\$0.00
	construction cost (Without signals)	total		\$31,369.00			\$22,236.00		\$4,393.00		\$4,743.00		\$825.00		\$2,750.00
	construction cost	total			\$31,369.00		\$22,236.00		\$4,393.00		\$4,743.00		\$825.00		\$2,750.00
	engineering design	10\%			\$3,136.90		\$2,223.60		\$439.30		\$474.30		\$82.50		\$275.00
	general landscaping	4\%2\%			\$1,254.76		\$889.44		\$175.72		\$189.72		\$33.00		\$110.00
	SWPPP				\$627.38		\$444.72		\$87.86		\$94.86		\$16.50		\$55.00
	tRAFFIC CONTROL mobillzation	$3 \%$$4 \%$			$\begin{gathered} \$ 941.07 \\ \$ 1,367.69 \end{gathered}$		$\$ 667.08$ $\$ 969.49$		\$131.79 $\$ 191.53$		\$142.29 $\$ 206.79$		\$24.75 $\$ 35.97$		\$82.50 $\$ 119.90$
															\$119.90
	federal contingency	2\%			\$773.94		\$548.61		\$108.38		\$117.02		\$20.35		\$67.85
	opcc	total			\$39,500.00		\$28,000.00		\$5,600.00		\$6,000.00		\$1,100.00		\$3,500.00
	average cost per lf of sidewalk				\$329.17 PER LF		\$45.90 Per LF		S224.00 PER LF		\$171.43 PER LF		\$73,33 PER LF		\$70.00 PER LF
	GRAND total for group $2 B$	\$481,600.00													

OPCC 2B				2B-AC-CW-04		2B-AC-CW-05		2B-AC-CW-55	
Entity	\|TEM	UNIT	cost	QuANTITY	cost	QuANTITY	cost	QuANTITY	cost
Dallas	SIDEWALK (5')	LF	535.00		50.00		50.00		50.00
Dallas	SIDEWALK (10' PATH)	LF	570.00		\$0.00		50.00		\$0.00
Dallas	Remove sidewalk	LF	\$20.00		\$0.00		\$0.00		\$0.00
dallas	Retaling wall (1)	LF	\$20.00		\$0.00		\$0.00		\$0.00
dallas	RETAINING WALL (2')	LF	540.00		50.00		\$0.00		50.00
Dallas	Retaling WAll (${ }^{\prime}$)	LF	\$75.00		\$0.00		\$0.00		\$0.00
Dallas	Retaining wall (4)	LF	\$100.00		\$0.00		\$0.00		\$0.00
Dallas	RETAINING WALL (5')	LF	\$125.00		\$0.00		\$0.00		\$0.00
dallas	CURB AND GUTTER	LF	\$39.72		\$0.00		50.00		\$0.00
dallas	DRAINAGE INLETS (MODIFY)	EA	\$3,518.00		\$0.00		\$0.00		\$0.00
TXDOT	RAIL (HANDRAIL TY E)	LF	\$140.00		\$0.00		\$0.00		\$0.00
TXDOT	PED RAMPS	EA	\$2,182.75		\$0.00		\$0.00	2	\$4,365.50
TXDOT	MEDAA CUT (5')	LF	\$36.15		\$0.00		\$0.00		\$0.00
TXDOT	MEDIAN CUT ($10{ }^{\text {' Path }}$	LF	\$72.30		\$0.00		\$0.00		\$0.00
dallas	DRIVEWAY (RESIDENTAL)	EA	\$3,972.22		50.00		50.00		50.00
Dallas	DRIVEWAY ((COMMERCIAL)	EA	\$8,444.44		50.00		50.00		50.00
N/A	UTLITY POLE RELOCATED	EA	\$22,000.00		\$0.00		\$0.00		\$0.00
dallas	MANHOLE ADJUSTMENT	EA	\$572.00		\$0.00		\$0.00		\$0.00
Dallas	tree relocations	EA	\$2,768.00		\$0.00		50.00		\$0.00
dallas	TREE REMOVALS	EA	\$886.00		\$0.00		\$0.00		\$0.00
N/A	Rallroad crossing	EA	\$120,000.00		\$0.00		\$0.00		\$0.00
dallas	TRAFFIC SIGNS RELOCATED	EA	\$223.00		\$0.00		\$0.00		\$0.00
TXDOT	TRAFIIC SIGNS New	EA	\$650.00	2	\$1,300.00	2	\$1,300.00	8	\$5,200.00
dallas	PAVEMENT MARKINGS (CROSSWALK)	LF	59.00	35	\$315.00	30	\$270.00	65	\$585.00
dallas	PAVEMENT MARKINGS (STOP BAR)	LF	\$8.00		50.00		\$0.00		50.00
N/A	PAVEMENT MARKINGS (TRIANGLES)	EA	\$60.00	4	\$240.00	4	\$240.00	14	\$840.00
N/A	MEDIA ISLAND/OTHER IMPROVEMENTS	EA	SEE OTHER SHEET		\$0.00		\$0.00	1	\$85,391.50
TXDOT	UTLITY BoX Relocation	EA	5729.33		50.00		50.00		50.00
dallas	Light pole relocation	EA	\$4,758.00		\$0.00		\$0.00		50.00
dallas	Fence (REMOVE AND REPLACE)	LF	\$53.00		50.00		\$0.00		\$0.00
dallas	FiRE HYDRANT RELOCATED	EA	\$3,640.00		\$0.00		\$0.00		\$0.00
TXDOT	GUARDRALL END TREATMENT (MOVE \& RESET)	EA	\$1,369.00		\$0.00		\$0.00		\$0.00
N/A	RRFB (\#\#) - 3 LANES W/O MEDIAN	EA	\$24,000	1	\$24,000.00	1	\$24,000.00		50.00
N/A	RRFB (\#7)-1 SOLAR SIGN \& PUSH BUUTTON IN MEDIAN	EA	\$36,000		50.00		\$0.00	1	36,00.00
N/A	RRFB (\#7) - 2 Solar SIGNS \& PUSHBUTTON IN MEDIAN	EA	\$48,000		\$0.00		\$0.00		50.00
N/A	Ped hYbrid beacon (\#9) - 3 LANE UNDIVIDED	EA	\$150,000		\$0.00		\$0.00		\$0.00
N/A	PED HYBRID DEACON (\#9) - 4 LANE DIVIDED	EA	\$175,000		\$0.00		50.00		\$0.00
N/A	PED HYBRID BEACON (\#9) - 6 LANE DIVIIDED	EA	\$200,000		\$0.00		50.00		\$0.00
N/A	APS \& COUNTDOWN PED SIGNAL (\#10) - 1 CW	EA	\$9,500		\$0.00		50.00		50.00
N/A	APS \& Countoown Ped signal (\#10) - 2 CW	EA	\$15,500		\$0.00		50.00		\$0.00
N/A	APS \& COUNTDOWN PED SIGNAL (\#10) - 3 CW	EA	\$21,500		\$0.00		\$0.00		\$0.00
N/A	APS \& COUNTDOWN PED SIGNAL (\#10) - 4 CW	EA	\$27,500		\$0.00		\$0.00		\$0.00
N/A	PED TRAFFIC SIGNAL (\#11) - 3 LANE UNDIVIIDED	EA	\$150,000		\$0.00		\$0.00		\$0.00
N/A	PED TRAFFIC SIGNAL (\#11) - 4 LANE DIVIDED	EA	\$175,000		\$0.00		50.00		50.00
N/A	PED TRAFFIC SIGNAL (\#11)-6 LANE DIVIDED	EA	\$210,000		50.00		50.00		50.00
	CONSTRUCTION COSt (WITHOUT SIGNALS)	total			\$1,855.00		\$1,810.00		\$96,382.00
	CONSTRUCTION COSt	Total			\$25,855.00		\$25,810.00		\$132,382.00
	engineering design	10\%			\$2,585.50		\$2,581.00		\$13,238.20
	general landscaping	4\%			\$74.20		\$72.40		\$3,855.28
	swppp	2\%			\$37.10		\$36.20		\$1,927.64
	TRAFFIC CONtrol	3\%			\$55.65		\$54.30		\$2,891.46
	mobilization	4\%			\$80.88		\$78.92		\$4,202.26
	federal contingency	2\%			\$573.77		\$572.66		\$3,169.94
	opcc	total			\$29,300.00		\$29,300.00		\$161,70.00
	average cost per lf of sidewalk				\#DV/0!		\#DV/0!		\#DV/0!

GRAND TOTAL FOR GROUP 2B
\$481,600.00

Median Island Detailed Estimate - LOCATION 2B-AC-CW-55

ASSUMPTIONS

Assume 3 median islands that will be 8 ft wide and total 700 ft long so the leading end is visible from both ends of S-curve
add median nose signs each end as well as road narrows signs NB and SB - 8 total
add striping around new island and on both approaches to median
rem ex conc rdwy pvmt plus couple (4) ft for new C \& G
add refuge conc rdwy pvmt
conc refuge med pvmt
add C \& G across refuge
add $C \& G$ along median edge
add striping along new median
remove conc rdwy pvmt
8 ft wide +4 ft C \& G = 12 ft wide
700 ft long $+4 \mathrm{ft} \mathrm{C} \mathrm{\&} \mathrm{G}=704 \mathrm{LF}$
total rem $704 \times 12=8448$ SF
conc rdwy refuge pvmt
$10 \times 10=100 \mathrm{SF}$
conc refuge med pvm
take total width req'd minus refuge rdwy pvmt
$(700 \times 8)-100=5500 \mathrm{SF}$
$C \& G$ across refuge med
$10 \times 2=20 \mathrm{LF}$
C \& G along median
take total length plus end minus refuge width times each side
$(700+8 * 3-10) \times 2$
$714 \times 2=1428$ LF
striping around median go thru refuge leaveout
$700+700+8^{*} 6=1448 \mathrm{LF}$

Opinion of Probable Construction Cost Spring Valley Station												2C-SV-SW-03		2C-SV-RP-10		2C-SV-SW-11		2C-SV-CW-16	
	OPCC 2C			2C-SV-SW-05		2C-SV-RP-19		2C-SV-SW-26		2C-SV-RP-46									
ENTITY	ITEM	UNIT	cost	QUANTITY	cost														
dallas	SIDEWALK (5')	LF	\$35.00	70	\$2,450.00	70	\$2,450.00	350	\$12,250.00	15	\$525.00	120	\$4,200.00	65	\$2,27.00	990	\$34,650.00		\$0.00
dallas	SIDEWALK (10' PATH)	LF	\$70.00		50.00		50.00		S0.00		50.00		50.00		\$0.00		50.00		50.00
dallas	Remove sidewalk	LF	\$20.00		50.00	70	\$1,400.00		\$0.00	15	\$300.00		50.00	65	\$1,300.00		\$0.00		50.00
dallas	Retaling wall (1)	LF	520.00		50.00		50.00	175	\$3,500.00	30	\$600.00		50.00		50.00	200	\$4,000.00		50.00
dallas	Retaling wall (2)	LF	540.00		50.00	70	\$2,800.00		\$0.00		50.00		50.00		\$0.00		50.00		50.00
dallas	Retaling wall (3)	LF	\$75.00		50.00		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00
dallas	Retaling wall (4)	LF	\$100.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	Retaling WALL ($5^{\text {' }}$	LF	\$125.00		50.00		50.00		\$0.00		\$0.00		S0.00		\$0.00		\$0.00		50.00
dallas	CURB AND GUTTER	LF	539.72		50.00		50.00		\$0.00		\$0.00	120	\$4,766.40		50.00	250	$\stackrel{59,930.00}{ }$		50.00
dallas	DRAINAGE INLETS (MODIFY)	EA	\$3,518.00		50.00	1	\$3,518.00		\$0.00	1	\$3,518.00		50.00		50.00		\$0.00		50.00
dallas	RCP $18{ }^{\prime \prime}$	LF	\$58.00		50.00		50.00		50.00		\$0.00		50.00		\$0.00		50.00		50.00
TXDOT	PED RAMPS	EA	\$2,182.75	2	\$4,365.50		50.00	2	\$4,365.50		50.00	7	\$15,279.25		50.00	15	\$32,741.25	2	54,365.50
TXDOT	MEDIAN CUT (5')	LF	\$36.15		50.00		50.00		50.00		50.00		50.00		50.00		50.00		\$0.00
TXDOT	MEDIAN CUT (10' PATH)	LF	572.30		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
dallas	DRIVEWAY (RESIDENTAL)	EA	\$3,972.22		50.00		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00
dallas	DRIVEWAY (COMMERCIAL)	EA	\$8,444.44	1	\$8,444.44		\$0.00		\$0.00		50.00	4	\$33,77.76		\$0.00	8	\$67,55.52		50.00
N/A	UTLITY POLE RELICATED	EA	\$22,000.00		50.00		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00
dallas	MANHOLE ADUSTMENT	EA	\$572.00		50.00		50.00	4	\$2,288.00		50.00		50.00		\$0.00		\$0.00		50.00
DAllas	tree relocations	EA	\$2,768.00		50.00		50.00		50.00		S0.00		50.00		\$0.00		50.00		50.00
dallas	TREE REMOVALS	EA	5886.00		50.00		\$0.00	5	\$4,433.00		50.00		50.00		50.00	2	\$1,772.00		50.00
N/A	Rallroad crosing	EA	\$120,000.00		50.00		\$0.00		\$0.00		\$0.00		\$0.00		50.00		\$0.00		50.00
dallas	traffic signs relocated	EA	\$223.00		50.00		50.00		50.00		50.00		50.00		50.00	5	\$1,115.00		\$0.00
TXDOT	Trafic signs new	EA	\$650.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00	4	\$2,600.00
dallas	PAVEMENT MARKINGS (Crosswalk)	LF	59.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00	60	\$540.00
dallas	PAVEMENT MARKINGS (STOP BAR)	LF	58.00		50.00		50.00		50.00		50.00		50.00		50.00		\$0.00		\$0.00
N/A	PAVEMENT MARKINGS (TRIANGLLS)	EA	\$60.00		50.00		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00
N/A	MEDIAN ISLAND	EA	SEE OTHER SHEET		50.00		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00
TXDOT	UTUITY BOX RLLICATION	${ }_{\text {EA }}$	5729.33 $\$ 4.7500$		S0.00 50.00		50.00 5000	1	\$ $\frac{572933}{50.00}$		S0.00 50.00		S0.00 50.00		S0.00 50.00	3	S2,187.99 $\$ 114274.00$		S0.00 50.00
dallas	fence (REMOVE AND REPLACE)	LF	S53.00		${ }_{50} 5000$		50.00 50		${ }_{50} 50.00$		S0.00		50.00 50		S0.00 0.00		$\frac{}{\text { sili, }}$		S0.00 50.00
DAllas	FIRE HYORANT RELOCATED	EA	${ }_{5}^{53,640.00}$		${ }_{50}$		\$0.00	1	\$3,640.00		\$0.00		\$0.00		\$0.00	3	\$10,920.00		${ }_{5}^{50.00}$
dallas	PARKING STOP	EA	\$97.00		50.00		S0.00		50.00		50.00		50.00		\$0.00		50.00		50.00
N/A	PED CROSSWALK LIGHTING (\#1) - - LANE UNDIVIDED	EA	\$26,435.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
N/A	PEE CROSSWALK LIGHTING (\#1) - 3 LANE UNDIVIIED	EA	S27,182.50		50.00		50.00		50.00		50.00		50.00		50.00		50.00	1	S27,182.50
N/A	PED CROSSWALK LIGHTING (\#1) - 4 LANE UNDIVIDED	EA	540,407.50		50.00		\$0.00		50.00		\$0.00		50.00		\$0.00		50.00		50.00
N/A	Ped Crosswalk lighting (H1) - L Lane divided	EA	\$41,183.75		50.00		50.00		\$0.00		50.00		50.00		50.00		50.00		S0.00 0.00
N/A	${ }^{\text {PED CROSSWALK LIGHTING (1\#1)-6 L LNE UNDIVIDED }}$	${ }_{\text {EA }}$	$\frac{541,839.25}{542615.50}$		S0.00 50.00		S0.00 50.00		S0.00 0.00		S0.00 5000		S0.00 5000		50.00 5000		50.00 5000		S0.00 0.00
N/A	${ }^{\text {Refeb (\#7) - } 3 \text { LANES W/O MEDIAN }}$	${ }_{\text {EA }}$	$\frac{542,615.50}{\$ 24,000}$		\$0.00		\$0.00		$\stackrel{\text { Solo }}{ }$		\$0.00		\$0.00		S0.00 50		S0.00		S0.00 50.00
N/A	RRFEB (\#7) - 1 SOLAR SIGN \& PUSH BUTTON IN MEDIAN	EA	\$36,000		50.00		50.00		50.00		50.00		50.00		S0.00		50.00		50.00
N/A	RRFEB (\#7) - 2 Solar Signs \& PUSHBUTTON IN MEDIAN	EA	\$48,000		50.00		\$0.00		50.00		50.00		50.00		\$0.00		50.00		50.00
N/A	Ped heril beacon (\#9) - 3 LANE UNDIVIILED	EA	\$150,000		${ }^{50.00}$		\$0.00		$\stackrel{\text { S0.00 }}{5}$		$\stackrel{50.00}{ }$		S0.00		$\stackrel{50.00}{ }$		$\stackrel{\text { S0.00 }}{ }$		$\stackrel{\text { S0.00 }}{5}$
N/A	PED HYRRID BEACON (\#\#) - 4 LANE DVIIDED	EA	\$175,000		50.00		50.00		\$0.00		50.00		50.00		50.00		50.00		S0.00
N/A		$\stackrel{\text { EA }}{\text { EA }}$	$\frac{5200,000}{59500}$		S0.00 Soun		S0.00 5000		S0.00 50.00		S0.00 5000								
N/A	APS \& COUNTDOWN PEED SIGNAL (\#10)- - 2 CW	EA	\$15,500		${ }_{50}$		\$0.00		S0.00		${ }_{5}$		${ }_{50}$				$\stackrel{\text { Sol }}{ }$		50.0 50.00
N/A	APS \& COUNTDOWN PEDSIGNAL (\#10)-3 $\mathbf{C W}$	EA	\$21,500		\$0.00		50.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00		\$0.00
N/A	APS \& COUNTDOWN PED SIGNAL (\#10)-4 4 W	EA	\$27,500		50.00		\$0.00		\$0.00		50.00		50.00		\$0.00		50.00		\$50.00
N/A	PED TRAFFIC SIGNAL (\#11) - 3 LANE UNDIVIIDED	EA	\$150,000		50.00		50.00		50.00		50.00		50.00		\$0.00		50.00		50.00
N/A	Ped trafic signal (\#11) - 4 LANE DIVIDED	EA	\$175,000		50.00		\$0.00		\$0.00		\$0.00		50.00		\$0.00		50.00		$\stackrel{50.00}{50.00}$
N/A	PED TRAFFIC SIIGNAL (\#11)-6 LANE DIVIIED	EA	\$220,000		50.00		50.00		50.00		50.00		50.00		50.00		50.00		50.00
	construction cost (WITHOUT SIINALS)				\$15,259.94		\$10,168.00		\$31,202.83		\$4,943.00		\$58,023.41		\$3,575.00		\$179,145.76		\$7,505.50
	CONSTRUCTION COST				\$15,259.94		\$10,168.00		\$31,202.83		\$4,943.00		\$58,023.41		\$3,575.00		\$179,145.76		\$34,688.00
	enginetring design				\$1,525.99		\$1,016.80		\$3,120.28		\$494.30		\$5,802.34		\$357.50		\$17,914.58		\$3,468.80
	General lanoscaping				\$610.40		\$406.72		\$1,248.11		\$197.72		\$2,320.94		\$143.00		\$7,165.83		\$300.22
	swppp				\$305.20		\$203.36		\$624.06		598.86		\$1,160.47		\$71.50		\$3,582.92		\$150.11
	tRAFFIC CONTROL mobllization				\$457.80 $\$ 665.33$		$\begin{aligned} & \$ 305.04 \\ & \$ 443.32 \end{aligned}$		$\$ 936.08$ $\$ 1,360.44$		\$148.29		$\begin{aligned} & \$ 1,740.70 \\ & \$ 2,529.82 \end{aligned}$		$\$ 107.25$ $\$ 155.87$		\$5,374.37 \$7,810.76		$\$ 225.17$ $\$ 327.24$
	federal contingency				\$376.49		\$250.86		\$769.84		\$121.95		\$1,431.55		\$88.20		\$4,419.88		\$783.19
	opcc				\$19,300.00		\$12,800.00		\$39,300.00		\$6,300.00		\$73,100.00		\$4,500.00		\$225,500.00		\$40,000.00
	average cost per lf of sidewalk				275.71 Per LF		\$182.86 PER LF		\$112.29 PER LF		\$420.00 PER LF		\$609.17 PER LF		\$69.23 PER LF		\$227.78 PER LF		

Opinion of Probable Construction CostSpring Valley Station				$1 \mathrm{~A} \leftarrow$ Station Number PR \leftarrow Station Abbreviation		Improvement Code Legend: ID: 1A-PR-SW-01 SW \leftarrow Sidewalk (or CW=Crosswalk, VW=Veloweb, RP=Sidewalk Repair, GR=Gap to Remain) $01 \leftarrow$ Improvement Number (matches $\quad 1$ on Map)		
OPCC 2C				2C-SV-CW-17		2C-SV-CW-38		
ENTITY	ITEM	UNIT	cost	QUANTITY	cost	QUANTITY	cost	
dallas	SIIEWALK (5)	LF	535.00		50.00		50.00	
dallas	SIDEWALK (10' PATH)	LF	\$70.00		\$0.00		50.00	
dallas	REMOVE SIDEWALK	LF	\$20.00		50.00		50.00	
DAllas	Retalining wall (1)	LF	\$20.00		\$0.00		50.00	
dallas	Retaling wall (2')	LF	540.00		50.00		50.00	
dallas	Retaling wall (3)	LF	\$75.00		50.00		50.00	
dallas	Retaling wall (4)	L	\$100.00		50.00		50.00	
dallas	Retaling wall (5)	LF	\$125.00		\$0.00		50.00	
dallas	CURB AND GUTIER	LF	\$39.72		50.00		50.00	
dallas	DRAINAGE INLETS (MODIFY)	EA	\$3,518.00		50.00		50.00	
dallas	RCP $18{ }^{\prime \prime}$	LF	\$58.00		50.00		50.00	
TXDOT	PED RAMPS	EA	\$2,182.75		50.00	2	\$4,365.50	
TXDOT	MEDIAN CUT (5)	${ }^{\text {LF }}$	\$36.15		50.00	10	\$361.50	
TXDOT	MEDIAN CUT (10' PATH)	LF	572.30		50.00		50.00	
dallas	DRIVEWAY (RESIDENTAL)	EA	\$3,972.22		50.00		50.00	
dallas	DRIVEWAA (COMMERCIAL)	EA	\$8,444.44		$\stackrel{50.00}{500}$		$\stackrel{50.00}{\$ 00}$	
V/A	UTLUTY POLE RELOCATED	$\stackrel{\text { EA }}{\text { EA }}$	S22,00.00 $\$ 572.00$		S0.00 50.00		S0.00 50.00	
dallas	tree relocations	EA	\$2,768.00		50.00		S0.00	
dallas	TREE Removals	EA	5886.00		S0.00		\$5000	
年/A	$\frac{\text { RAlROAD CROSSING }}{\text { Traffic IIGNS RELOCATED }}$	${ }_{\text {EA }}$	$\frac{5120,000.00}{}$		S0.00 50.00		S0.00 50.00	
TXDOT	TRAFFIL SIGNS NEW	EA	\$650.00	2		4	$\stackrel{\text { S2,600.00 }}{ }$	
Dallas	PAVEMENT MARKINGS (CROSSWALK)	LF	59.00	55	${ }_{\text {S495.00 }}$	85	\$765.00	
dallas	PAVEMENT MARKINGS (STOP BAR)	LF	58.00		50.00		50.00	
N/A	PAVEMENT MARKINGS (TRIANGLLS)	EA	560.00	8	5480.00	16	\$960.00	
N/A	MEDIAN ISLAND	EA	${ }_{\text {SEE OTHER SHEET }}^{\text {S }}$	1	¢		S0.00 000	
${ }^{\text {TxDOT }}$ Dallas	UTILTY BoX Rellocation	$\stackrel{\text { EA }}{\text { EA }}$	\$292,33 $\$ 4,758.0$		S0.00 0.00		S0.00 50.00	
dallas	fence (remove and replace)	LF	\$53.00		\$0.00		50.00	
Dalas	FRRE HYORANT RELOCATED	EA	\$3,640.00		S0.00		S0.00 Soiol	
DALAS	PARKING STOP ${ }^{\text {PED CRSSWALK LIGHTING (\#1) - } 2 \text { LANE UNDIVIIDED }}$	$\stackrel{\text { EA }}{\text { EA }}$	597.00 $526,435.00$		50.00 50.00		S0.00 50.00	
N/A	PED CROSSWALK LIGHTING (\#1) - 3 LANE UNDIVIDED	EA	\$27,182.50		50.00		50.00	
N/A	PEDC CROSSWALK LIGHTING (\#\#1)-4 LANE UNDIVIIDED	EA	S22,007,50 		S0.00		¢	
年/A		${ }_{\text {EA }}$	S41,183.75 $141,89.25$		S0.00 50.00		S0.00 50.00	
N/A	PED CROSSWALK LIGHTING (\#1)- -6 LANE DIVIIED	EA	\$42,615.50		\$0.00		50.00	
N/A	RRRE (H7)-3 LANES W/O MEDIAN	EA	\$24,000		50.00		S0.00	
N/A		EA	S36,000 54800	1	${ }_{\text {S36,000.00 }}^{500}$	1	\$36,000.00	
N/A	PED HYBRID BEACON (\#9) - 3 LANE UNOIVIDED	EA	\$150,000		$\stackrel{50.00}{ }$		$\stackrel{50.00}{50}$	
N/A	Ped hybrid beacon (H9) - 4 LANE DIVIDED	EA	\$175,000		50.00		50.00	
N/A	PeD HYBRID BEACON (H9) - 6 LANE DIVIIDED	EA	\$200,000		50.00		50.00	
N/A	APS \& Countoown Ped signal (\#10) - 1 CW	EA	\$9,500		50.00		50.00	
N/A	APS \& Countoown Peb Signal	EA	S15,500 $\$ 2500$		\$0.00		\$ 50.00	
N/A	APS \& COUNTDOWN PEDSIGNAL (\#10)-3 - ${ }^{\text {c/ }}$	${ }_{\text {EA }}^{\text {EA }}$	S21,500 $\$ 27,500$		S0.00 5000		S0.00 50.00	
N/A	PED TRAFFIC SIGNAL (\#11) - 3 LANE UNDIVIDED	EA	\$150,000		S0.00		S0.00	
N/A	PED TRAFFIC SIIGNAL (\#11) - 4 LANE DIVIIED	EA	\$175,000		\$0.00		50.00	
N/A	PED TRAFFII SIIGNAL (\#11) - 6 LANE DIVIDED	EA	\$210,000		50.00		50.00	
	construction cost (Without signals)				\$12,388.40		\$9,052.00	
	construction cost				\$48,388.40		\$45,052.00	
	enginerring design				\$4,832.84		\$4,50.20	
	General Landscaping				\$493.14		\$362.08	
	${ }_{\text {TRAPFIC Control }}$						\$1881.04	
	moblızation				\$537.52		\$394.67	
	federal contingency				\$1,096.17		\$1,015.33	
	opcc				\$56,00.00		\$51,800.00	

Grand total for group 2c

Assumptions

is across Lingco Dr at DART Park \& Ride Crosswalk
assume 45 foot long
tear drop shape on both sides - estimate as 2 triangles
assume max width is 10 foot
remove ex conc pavement (will equal new median area plus couple feet for C \& G construction) add median refuge island median pavment
add conc roadway pavement thru refuge island space
add conc curb across median refuge island
add C \& C along Lingco Dr across median refuge length
add striping on SB Lingco Dr directing traffic to one lane each direction add striping north of tear drop to direct traffic around island approach add signs - north 1 on median, 2 advance signs to merge
area of median - assume 2 triangle
$0.5 \times 45 \times 10 \times 2=450 \mathrm{sf}$
area of removal
add 45 If $\times 2$ sides plus 20 feet for median nose to median area
$=450+[(45 \times 2)+20]=560 \mathrm{SF}$
conc rdway pvmt at median refuge assume 10 ft wide $\times 10 \mathrm{ft}$ long $=100 \mathrm{SF}$

[^0]: Improvement Code Legend (See Matrix) 1C-CB-SW-01
 $1 C \longleftarrow$ Station Number
 $C B \longleftarrow$ Station Abbreviation
 SW \longleftarrow Sidewalk (or CW for Crosswalk)
 $01 \longleftarrow$ Improvement Number (Matches 1 on Map)

[^1]: Improvement Code Legend (See Matrix)
 $2 \mathrm{~A} \longleftarrow$ Station Numb
 GP \longleftarrow Station Abbreviation
 SW \longleftarrow Sidewalk (or CW for Crosswalk)
 $01 \longleftarrow$ Improvement Number (Matches 1 on Map)

[^2]: Improvement Code Legend (See Matrix)
 2B-AC-SW-01
 tation Number
 $\mathrm{AC} \longleftarrow$ Station Abbreviation
 SW¿— Sidewalk (or CW for Crosswalk)
 $01 \longleftarrow$ Improvement Number (Matches \square on Map)

[^3]:

[^4]: See Oregon Department of Transportation, "Analysis Procedures Manual, Version 2," November 2018, pages 14-28 to 14-51. Accessed at: https://www.oregon.gov/ODOT/Planning/Documents/APMv2 Ch14.pdf

[^5]: Opinion of Probable Cost - DART Subtotal..
 Extension Project.

[^6]: Improvement Code Legend (See Matrix) 1C-CB-SW-01
 $1 C \longleftarrow$ Station Number
 $\mathrm{CB} \longleftarrow$ Station Abbreviation
 SW \longleftarrow Sidewalk (or CW for Crosswalk)
 $01 \longleftarrow$ Improvement Number (Matches 1 on Map)

[^7]: Improvement Code Legend (See Matrix)
 2A-GP-SW-01
 $2 \mathrm{~A} \longleftarrow$ Station Number
 GP «-Station Abbreviation
 SW¿—Sidewalk (or CW for Crosswalk)
 $01 \longleftarrow$ Improvement Number (Matches $\mathbf{1}$ on Map)

[^8]: Improvement Code Legend (See Matrix) 2C-SV-SW-01
 $2 \mathrm{C} \longleftarrow$ Station Number
 SV \longleftarrow Station Abbreviation
 SW \longleftarrow Sidewalk (or CW for Crosswalk)
 $01 \longleftarrow$ Improvement Number (Matches 1 on Map)

[^9]: Opinion of Probable Cost - City of Richardson Subtotal...

