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Procedures for Webinar

» The webinar will be recorded and posted to NCTCOG’s

website under the green banner called “Webinars” here:
https://www.nctcog.org/envir/natural-resources/water-resources

» If you submitted an RSVP for this webinar, you will receive
an email with the presentation, and eventually, a link to the
recording. If you did not RSVP and would like these webinar
materials, please email eberg@nctcog.org or type your
email address in the chat.

» Please keep your microphone on mute until the Question-
and-Answer period at the end of the presentation.

» Thank you!


https://www.nctcog.org/envir/natural-resources/water-resources
mailto:eberg@nctcog.org
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Key Points:

+ Water stakeholders should prepare
for future droughts that will be
unlike past droughts

+ Information available from climate
projections often does not align with
the detailed information needed for
water planning

« Better awareness of the mismatch
between available and needed
information will help inform efforts
to close this gap

Supporting Information:
+ Supporting Information S1
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Unprecedented Drought Challenges for Texas
Water Resources in a Changing Climate:
What Do Researchers and Stakeholders

Need to Know?

John W. Nielsen-Gammon' | ", Jay L. Banner>” | "), Benjamin I. Cook*” ("), Darrel M. Tremaine?®?>,
Corinne I. Wong™'? (), Robert E. Mace®, Huilin Gao’ |, Zong-Liang Yang® (),
Marisa Flores Gonzalez® ", Richard Hoffpauir’, Tom Gooch'’, and Kevin Kloesel

Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA, 2Deparl:rruﬂflt of Geological
Sciences, University of Texas at Austin, Austin, TX, USA, 3Environmental Science Institute, University of Texas at Austin,
Austin, TX, USA, *NASA Goddard Institute for Space Studies, New York, NY, USA, °Division of Ocean and Climate
Physics, Lamont-Doherty Earth Observatory, Palisades, NY, USA, ®The Meadows Center for Water and the Environment,
Texas State University, San Marcos, TX, USA, 7Department of Civil and Environmental Engineering, Texas A&M
University, College Station, TX, USA, 8Water Forward, City of Austin, Austin, TX, USA, 9Hoffpauir Consulting, PLLC,
Bryan, TX, USA, 'Freese and Nichols Inc., Fort Worth, TX, USA, ''College of Atmospheric and Geographic Sciences,
University of Oklahoma, Norman, OK, USA, 12Now at Facebook, Inc., Austin, TX, USA

Abstract Long-range water planning is complicated by factors that are rapidly changing in the 21st
century, including climate, population, and water use. Here, we analyze climate factors and drought
projections for Texas as an example of a diverse society straddling an aridity gradient to examine how the
projections can best serve water stakeholder needs. We find that climate models are robust in projecting
drying of summer-season soil moisture and decreasing reservoir supplies for both the eastern and western
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RESEARCH ARTICLE

CLIMATOLOGY 2015 © The Authors, some rights reserved;
exclusive licensee American Association for

Unprecedented 21St Century drought risk in the the Advancement of Science. Distributed

under a Creative Commons Attribution

American Southwest and Central Plains Non-Commercial License 40 (CC BY-NC)

10.1126/sciadv.1400082

Benjamin I. Cook,"** Toby R. Ault,> Jason E. Smerdon?

In the Southwest and Central Plains of Western North America, climate change is expected to increase drought
severity in the coming decades. These regions nevertheless experienced extended Medieval-era droughts that
were more persistent than any historical event, providing crucial targets in the paleoclimate record for bench-
marking the severity of future drought risks. We use an empirical drought reconstruction and three soil moisture
metrics from 17 state-of-the-art general circulation models to show that these models project significantly drier
conditions in the later half of the 21st century compared to the 20th century and earlier paleoclimatic intervals.
This desiccation is consistent across most of the models and moisture balance variables, indicating a coherent and
robust drying response to warming despite the diversity of models and metrics analyzed. Notably, future drought
risk will likely exceed even the driest centuries of the Medieval Climate Anomaly (1100-1300 CE) in both moderate
(RCP 4.5) and high (RCP 8.5) future emissions scenarios, leading to unprecedented drought conditions during the
last millennium.

INTRODUCTION

used to compare variability and trends in drought across regions. Av-
Millennial-length hydroclimate reconstructions over Western North  erage moisture conditions (relative to a defined baseline) are denoted by
America (I1-4) feature notable periods of extensive and persistent PDSI = 0; negative PDSI values indicate drier than average conditions



Fig. 1 Top: Multimodel mean summer (JJA) PDSI and standardized soil moisture (SM-30cm and
SM-2m) over North America for 2050-2099 from 17 CMIP5 model projections using the RCP 8.5

emissions scenario.
CMIP5 Drought Projections (RCP 8.5, 2050-2099 CE)
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Volume 368(6488):314-318
DROUGHT April 17, 2020

Large contribution from anthropogenic warming
to an emerging North American megadrought

A. Park Williams'*, Edward R. Cook’, Jason E. Smerdon’, Benjamin I. Cook™?, John T. Abatzoglou®*,
Kasey Bolles!, Seung H. Baek'®, Andrew M. Badger®”2, Ben Livneh®®

Severe and persistent 21st-century drought in southwestern North America (SWNA) motivates
comparisons to medieval megadroughts and questions about the role of anthropogenic climate change.
We use hydrological modeling and new 1200-year tree-ring reconstructions of summer soil moisture
to demonstrate that the 2000-2018 SWNA drought was the second driest 19-year period since

800 CE, exceeded only by a late-1500s megadrought. The megadrought-like trajectory of 2000-2018
soil moisture was driven by natural variability superimposed on drying due to anthropogenic

warming. Anthropogenic trends in temperature, relative humidity, and precipitation estimated from

31 climate models account for 47% (model interquartiles of 35 to 105%) of the 2000-2018 drought
severity, pushing an otherwise moderate drought onto a trajectory comparable to the worst SWNA
megadroughts since 800 CE.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association
for the Advancement of Science. No claim to original U.S. Government Works
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Fig. 4 Trends in summer soil moisture simulated directly from coupled models.
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Fig. 2 Effects of anthropogenic climate trends.
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What about Texas?
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Palmer Drought Severity Index
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CMIP5 Projections
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Attributing a trend to climate change

* Is there a clear historical trend?
* Do models project a consistent future trend?
* |s there a sound physical understanding of why there should be a trend?



Attributing a trend to climate change

* Is there a clear historical trend?
* Do models project a consistent future trend?
* |s there a sound physical understanding of why there should be a trend?

* Example: extreme cold
* Clear historical trend: milder extreme cold
e Consistent model projections: milder extreme cold
* Physical understanding: warmer Arctic (but changing weather patterns)



Why more droughts? Or more aridity?

* On the drying side... * On the wetting side...
e Changes in temperature e Changes in biosphere water use
e Changes in rainfall extremes, month efficiency
to month

e Changes in rainfall seasonality

On the unclear side...
 Changes in annual precipitation
* Changes in rainfall extremes, single
storms
 Changes in biomass



What does this mean for surface water supply?

* Uncertainty for future
 How much carbon dioxide etc.?
How much will the climate system respond?
* How do we infer local details, given the climate system response?
 How do we model the hydrology?
* How important is all of this compared to natural variability?

e Also relevant: demand and flood resilience



What does this mean for groundwater supply?

* Fast-recharge aquifers: supply-driven impacts
* Slow-recharge aquifers: demand-driven impacts
* In between: demand-driven impacts + future supply-driven impacts



What do stakeholders really need to know?
Case 1: Large surface water suppliers

* An estimate of resilience implied by planning for “drought of record”
* A way to incorporate future uncertainties and single-event planning
* Texas regulatory models that are set up to incorporate climate change



What do sta
Case 2: Sma

keholo

ers really need to know?

| grou

ndwater management districts

* Prediction of demand-side response driven by climate change

* Technical expertise

e Short-term and long-term outlooks tailored to needs



What do stakeholders real
Case 3: Regional water pla

v need to know?

NNINE Eroups

e Understanding of climate-driven interactions
* Rising temperatures: rising energy demand: increased cooling water needs

* Tools for designing climate-resilient water supply portfolios

* Ways of satisfying diverse stakeholders and diverse public opinions



What did Austin Water do?

* Water Forward: a 100-year integrated water resources plan

* Input: Global climate model projections of temperature and precipitation
* Input: Historical statistical relationship with streamflow

* Tool: Future scenarios = drought of record and 3x drought of record

 All info tailored for direct input to Water Availability Model

* Key: Working directly with climate scientists

* Now: Next iteration, including science advisory team
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Special Section:
CMIPé6: Trends, Interactions,
and Impacts.

Key Points:

Coupled Model Intercomparison
Project models project changes to the
annual cycle of many hydroclimate
variables, many of which are more
significant than annual mean
changes

In the continental United States,
there are significant earlier shifts in
the annual cycle in a high emissions
scenario

Significant changes to the annual
cycle are largely avoided in the
lowest-emissions scenario

Supporting Information:

Supporting Information may be found
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Projected Changes to Hydroclimate Seasonality in the
Continental United States

Kate Marvel'” (), Benjamin I. Cook’, Céline Bonfils®, Jason E. Smerdon* ',
A. Park Williams*® ", and Haibo Liu*

I'NASA Goddard Institute for Space Studies, New York, NY, USA, ’Center for Climate Systems Research, Columbia
University, New York, NY, USA, 3Lawrence Livermore National Laboratory, Livermore, CA, USA, 4Lamont-Doherty

Earth Observatory, Palisades, NY, USA, Now at Department of Geography, University of California, Los Angeles, Los
Angeles, CA, USA

Abstract Future changes to the hydrological cycle are projected in a warming world, and any shifts

in drought risk may prove extremely consequential for natural and human systems. In addition to long-
term moistening, drying, or warming trends, perturbations to the annual cycle of regional hydroclimate
variables may also have substantial impacts. We analyze projected changes in several hydroclimate
variables across the continental United States, along with shifts in the amplitude and phase of their

annual cycles. We find that even in regions where no robust change in the annual mean is expected,
coherent changes to the annual cycle are projected. In particular, we identify robust regional phase shifts
toward earlier arrival of peak evaporation in the northern regions, and peak runoff and total soil moisture
in the western regions. Changes in the amplitude of the annual cycle of total and surface soil moisture

are also projected, and reflect changes to the annual cycle in surface water supply and demand. Whether 30



(a) Precipitation Annual Mean (b) Evaporation Annual Mean
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(b) Column-integrated Soil Moisture Annual Mean
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(a) Surface Runoff Annual Mean
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What about really heavy rain?

(research funded by Harris County Flood Control District)
(additional work by Savannah Jorgensen)
(paper to be submitted very soon)



2018: NOAA Atlas 14:
Official estimates of
extreme rainfall risk
(100-yr events, etc.)
Analysis includes 2017
rainfall

Previous analysis dates
from 1960s

Old analysis (contours)
and change (shading) in
1-day 100-yr rainfall
amounts shown at right
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Models predict increases, but...

b) FLOR Annual c) HiFLOR

Van der Weil et al. (2016)



Your Experience May Vary
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Stationary Return Values (in.
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Stationary Return Values (in.)
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Return Value Trend, 1960-2020 (%)

gcd 01d 2019 Combine PercRP100

I4O
- 20 I
- —20

-




100-year 1-day amount (inches)
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Summary

* Soils getting drier: probably

* Runoff increasing: maybe

* Lake evaporation increasing: definitely
* Extreme rainfall increasing: yes

* Note: extreme rainfall and runoff trends are what should happen relative
to what should have happened, not what actually happened

n-g@tamu.edu



Summary

* Soils getting drier: probably

* Runoff increasing: maybe

* Lake evaporation increasing: definitely
* Extreme rainfall increasing: yes

* Note: extreme rainfall and runoff trends are what should happen relative
to what should have happened, not what actually happened

* How large are these changes? | wish | could tell you!

n-g@tamu.edu






Wrap-Up

»If you submitted an RSVP for this webinar, you will
receive an email with the presentation slides and a
subsequent email with a link to the recording. The
slides will be posted under the green banner
“Webinars” here:

https://www.nctcog.org/envir/natural-resources/water-resources

»If you did not RSVP and would like these webinar
materials, please email eberg@nctcog.org to be
included in the follow-up emails or type your
email address in the chat.



https://www.nctcog.org/envir/natural-resources/water-resources
mailto:eberg@nctcog.org

North Central Texas Council of Governments

Thank you for attending!

N CTCOG We b] nNar Prepared in cooperation with the

Texas Commission on Environmental Quality and
February 23 ) 2022 U.S. Environmental Protection Agency

Elena Berg, NCTCOG
eberg@nctcog.org
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