Street Maintenance Program

Richard E Martinez Assistant Director

Transportation and Public Works Department

- Street System Inventory- 7,420 LM
- Street Condition Assessments (3 year cycle)
- Prioritize Street Construction and Maintenance
- Identify the Proper Pavement Treatments
- Implement Proper Maintenance Cycles

Service Areas

In-house

- Pothole Repair
- Base and Pavement Repair
- Concrete Repair
- Chip Sealing
- Crack Sealing
- Asphalt Mill and Overlay
- Bridge and Guardrail Repair

Contractual

- Alley Mowing
- Base and Pavement Repair-Arterials
- Bridge Repair- Structural
- Asphalt Mill and Overlay
- Hot in Place Recycling
- Micro-surfacing
- Reclamation
- Fog Sealing
- Joint Sealing

Concrete Restoration

Pothole Repair

- High Priority Customer Satisfaction
- Repair Procedures
 - Potholes are squared, tacked and compacted
- Repaired Annually– 45,000
- Standard Pothole
 - 2 foot wide
 - 2 foot long
 - 4 inches deep

Pavement Design Manual

- All <u>new streets</u> are to be designed and built as <u>rigid pavements</u> - portland cement, concrete pavement.
- Maximize the life-cycle
 - Sustainability
 - Maximize life usability risk of failure
 - Minimize impact on maintenance costs

Maintenance Funding Gap

Network Conditions

	Classification of Streets							
PQI Condition	Principal Arterial	Collector	Local Residential	Total	Percent of Network	Percent Condition		
Excellent	466.75	262.43	1,823.11	2,557.29	34.47%			
Good	791.00	370.38	1,484.11	2,645.49	35.65%	/0.12/0		
Fair	297.26	363.84	1,088.68	1,749.78	23.58%			
Poor	15.71	84.00	367.88	467.59	6.30%	29.00%		
	1,570.72	1,080.65	4,768.78	7,420.15	100.00%	100.00%		

	Asphalt Streets									
			rt Worth	Functional Classification of Streets in Fort Worth						
of rk	Percent of Network	Total	Local Residential	County Type Road	Collector	Minor Arterial	Major Arterial	Principal Arterial	PQI Condition	PQI Range
30.59%	5.31%	226.76	184.86	24.82	10.36	1.89	4.83		Poor	2.00-4.09
3%	25.28%	1079.44	761.46	126.65	101.10	29.76	54.10	6.37	Fair	4.10-6.09
^{9%} co 41%	37.69%	1609.31	1000.61	182.69	179.08	76.87	131.91	38.15	Good	6.10-8.09
09.41%	31.72%	1354.52	767.69	75.90	153.99	124.76	195.68	36.50	Excellent	8.10-10.00
0% 100.009	100.00%	4270.03	2714.62	410.06	444.53	233.28	386.52	81.02		

Concrete Streets										
	Functional Classification of Streets in Fort Worth									
PQI Range	PQI Condition	Principal Arterial	Major Arterial	Minor Arterial	Collector	County Type Road	Local Residential	Total	Percent of Network	
2.00-4.09	Poor		4.38	2.50	3.90		13.28	24.06	0.76%	6 26%
4.10-6.09	Fair	20.50	30.78	23.60	21.60	0.13	77.69	174.30	5.50%	0.20%
6.10-8.09	Good	130.19	105.05	69.21	57.98	0.60	244.39	607.42	19.17%	02 749/
8.10-10.00	Excellent	97.00	258.38	132.87	137.56	4.51	1733.32	2363.64	74.58%	95.74%
		247.69	398.59	228.18	221.04	5.24	2068.68	3169.42	100.00%	100.00%

<section-header>

Prioritizing Streets

- Construction and Maintenance
 - Pavement and Flat Work Conditions
 - Neighborhood Approach
 - Poor Streets Bond
 - Fair Streets- Rehabilitation
 - Good Streets- Sealants
 - Excellent Streets- Minor Maintenance
 - Multimodal Routes
 - Schools

FORT WORTH

- Bus Routes
- Density of Population
 - Residential
- Customer Service Requests
 - High Customer Service Requests
 - Continual Maintenance

- Total Life-Cycle Costs
- Soil Conditions
- Risk of Failure
- Time To First Maintenance

 3 Years- Flexible
 8 Years- Rigid
- Maintenance Cycles

Risk of Failure

ASPHALT LAYER BASE LAYER	Cracks
SUBGRADE	

- Cracking
- Moisture penetration
- Weakens the pavement structure

- Prolonged moisture weakens base layer
- Ground saturation
- Street structure can no longer support vehicle weights
- Continual traffic chip the pavement developing potholes

Pavement Distresses

Asphalt Pavement:

- Alligator Cracking
- Bleeding
- Distortion
- Edge Cracking
- Excessive Crown/Shoulder Drop off
- Longitudinal Cracking
- Transverse Cracking
- Patching
- Potholes
- Raveling and Weathering
- Ripping and Shoving
- Rutting

Concrete Pavement:

- Cracking
- Corner Cracking
- Distortion
- Joint Sealant Loss
- Spalling
- Panel Displacement
- Longitudinal Cracking
- Patching
- Polishing

Asphalt Maintenance

- Crack Sealing
- Fog Sealing
- Chip Sealing
- Micro-Surfacing
- Asphalt Overlay
- Asphalt Rehabilitation
- Reconstruction

Concrete Maintenance

- Joint Sealing
- Slab Lifting
- Concrete Restoration
- Reconstruction

maintaining now...saves funds later....

Concrete Infrastructure Repair

Joint Seal - \$21,000 Lane Mile

Pavement Preservation

Crack Seal -\$1,000 Lane Mile

Chip Seal - \$16,000 Lane Mile

Fog Sealing

Seal Coating

Street Reclamation

Maintenance Cycles

- 25 Year Street Life Cycle Asphalt
 - Scheduled Maintenance, Sealants to Rehabilitation
 - Recapitalization, Full Reconstruction
- 40 Year Street Life Cycle -Concrete
 - Joint Sealing to Panel Replacement
 - Recapitalization, Full Reconstruction
- Optimum Maintenance Cycle
 - 16 Years- Asphalt
 - 25 Years- Concrete
- ROI Minimal Maintenance
- Optimum-Short Cycle
 - Deter Rehabilitation Costs

Pavement Life Cycle Costs - 25 Yr

Asphalt Pavements

- 3 Yrs Crack Seal
- 8 Yrs Seal Coat
- 16 Yrs- Asphalt Overlay
- 19 Yrs- Crack Seal
- 24 Yrs- Seal Coat

Concrete Pavements

- 8 Yrs- Joint Seal
- 17 Yrs- Point Repairs
- 25 Yrs- Joint Seal

- Total Cost \$242,276 LM
 > 2% annual inflation
- Total Cost \$146,429 LM
 > 2% annual inflation

FORT WORTH

Pavement Life Cycle Costs – 40 Yr

Asphalt Pavements

- 3 Yrs Crack Seal
- 8 Yrs Seal Coat
- 16 Yrs- Asphalt Overlay
- 19 Yrs- Crack Seal
- 24 Yrs- Seal Coat
- 29 Yrs- <u>Reconstruction</u>
- 31 Yrs- Crack Seal
- 35 Yrs- Seal Coat

Concrete Pavements

- 8 Yrs- Joint Seal
- 17 Yrs- Point Repairs 10%
- 25 Yrs- Joint Seal
- 33 Yrs- Point Repairs 25%
- 40 Yrs- Joint Seal

• Total Cost \$1,113,767 LM • Total Costs \$492,845 LM

Managing Aging Assets

Asset Management

upfront *planning* of the asset life cycle...

...*efficient* maintenance cost.

...ongoing *effective* maintenance...

...effective life cycle...

Questions?

Richard Martinez- (817) 392-7914

richard.martinez@fortworthtexas.gov