

Water Resources Council (WRC)

October 15, 2025

Housekeeping Items

- Please remember to sign in, take an agenda & past meeting summary.
- Bathrooms, Emergency Exits, and Safety Procedures
- Thank you all for attending!

Welcome and Introductions

- Meeting attendees will introduce themselves.
- Welcome to our new members:
 - Taylor Alvarez, City of Watauga
 - Stephanie Griffin, Halff
 - Katelyn Hearon, City of Lewisville
 - Nosa Irenumaagho, City of Dallas
 - Michael Kivlan, Mustang SUD
 - David Phan, City of Dallas
 - Robert Sauceda, City of Hurst
- Welcome guests.
- Thank you all for attending!

Action Item

Meeting Summary

The July 9, 2025 meeting summary will be presented for approval.

Action Item

Approval of the Dallas-Fort Worth Air Quality Improvement Plan- Comprehensive Action Plan (DFW AQIP-CAP) Water and Wastewater Elements.

> NCTCOG staff will seek the WRC's approval of the water and wastewater elements of DFW AQIP-CAP.

North Central Texas Council of Governments

DALLAS-FORT WORTH AIR QUALITY IMPROVEMENT PLAN

Dallas-Fort Worth Air Quality Improvement Plan

Deliverable 1

Priority Action Plan (PAP)- Submitted March 1, 2024;

www.publicinput.com/dfwAQIP

Requirements:

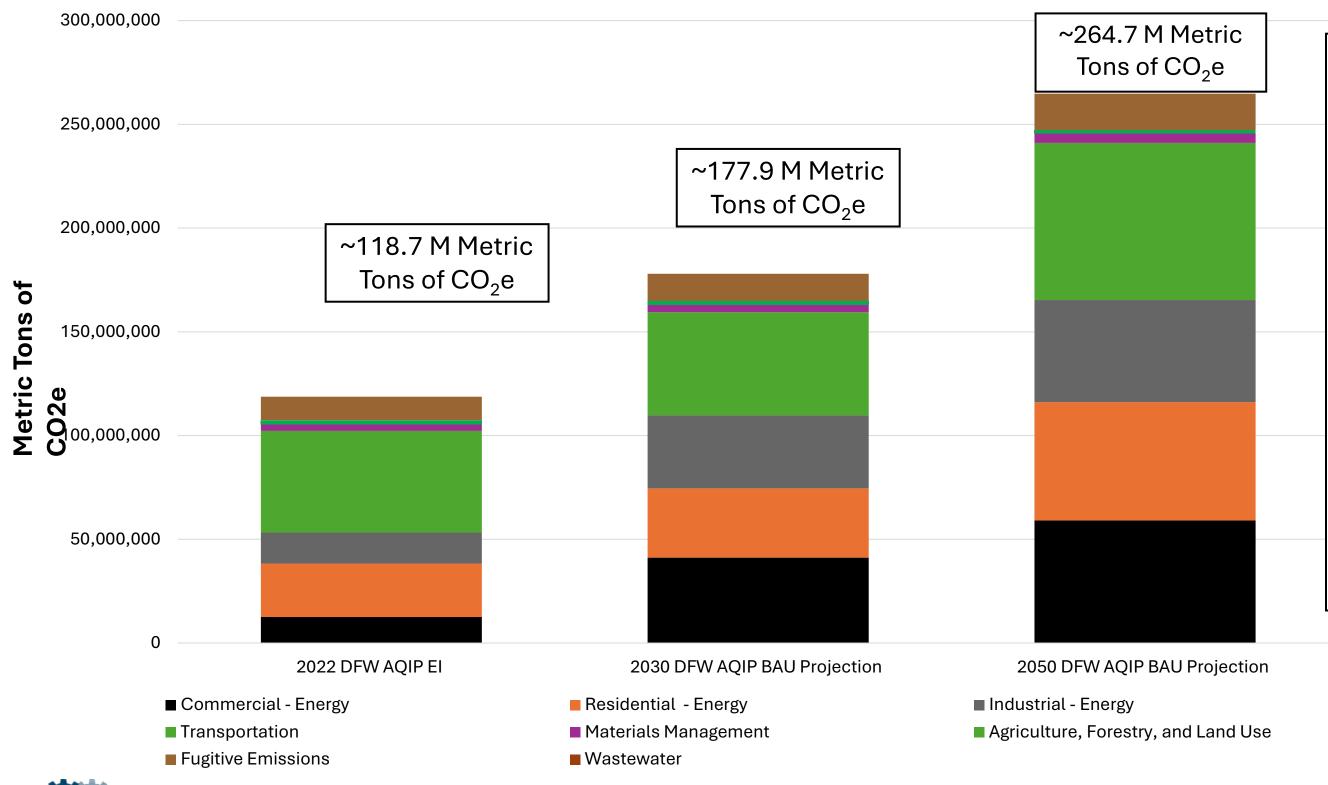
- Develop Plan to Improve Air Quality Through 2030
- Basic Carbon Dioxide Equivalent (CO₂e) Emissions Inventory (EI)
- Measures (i.e. projects, programs, or policies)
- Analysis
- Review of Authority to Implement

Deliverable 2

Comprehensive Action Plan (CAP)-Due December 1, 2025

Requirements:

- Develop Plan to Improve Air Quality Through <u>2050</u>
- All PAP Requirements
- Projections and Targets
- Benefits Analysis
- Funding Analysis
- Workforce Analysis


The DFW AQIP development, including the PAP and CAP, is supported by funding from the Environmental Protection Agency's (EPA) Climate Pollution Reduction Grants (CPRG): Planning Grants

Emissions Inventory and BAU Projections

DRAFT

Draft DFW AQIP: CAP Carbon Dioxide Equivalent CO₂e Inventory and BAU Projections for 16

County NCTCOG Region

Key Takeaways:

Energy Sector (Commercial, Residential, and Industrial) is largest emitter of CO_2e in DFW; **45**% in 2022 and **62**% in 2030

Transportation Sector remains second largest; **41**% in 2022, **28**% in 2030

Growth Due to:

- **4.8M** increase in population by 2050
- **169M** vehicle miles traveled per day increase by 2050
 - 13% Average Annual Growth in ERCOT Annual Energy Forecast from 2024 to 2030 primarily due to addition of large loads*

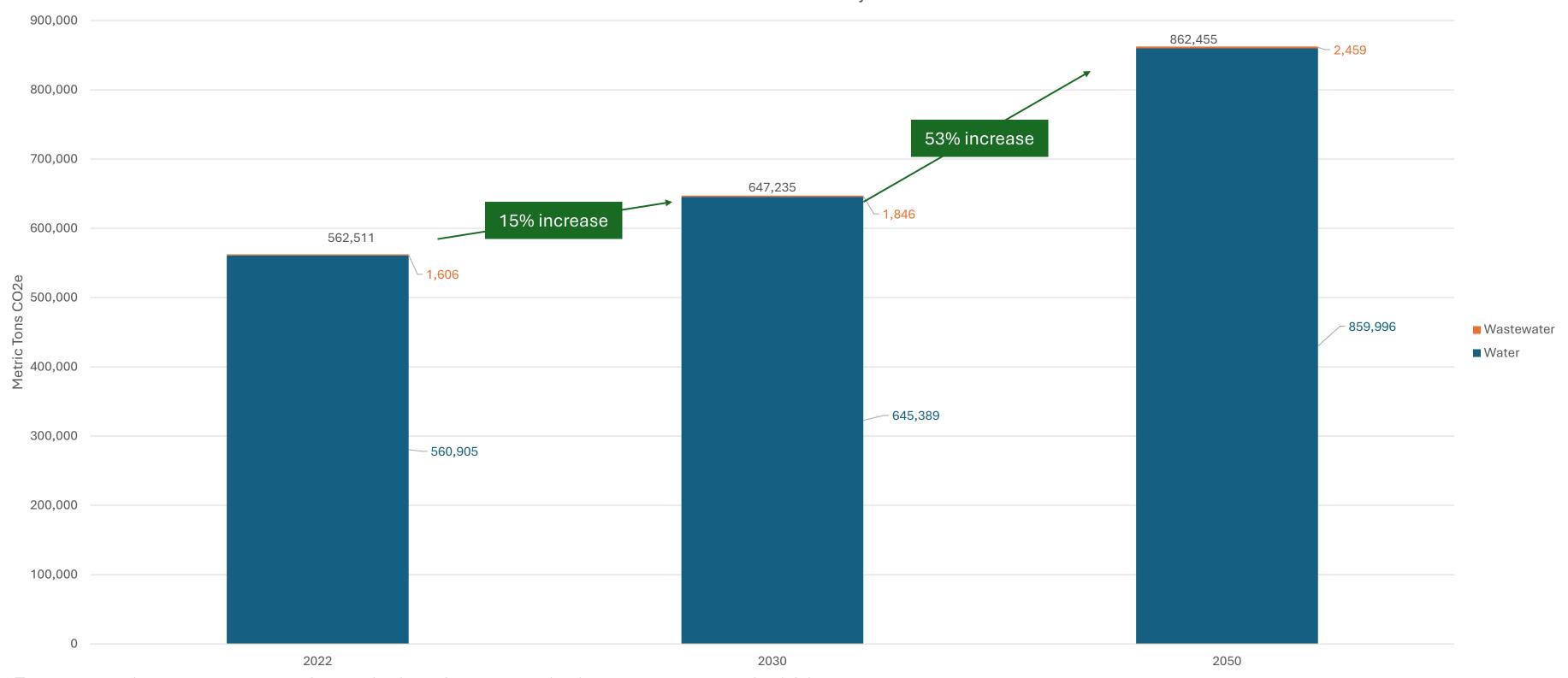
*Source:

www.ercot.com/gridinfo/load/forecast -

>ERCOT 2025 Long-Term Forecast Report

Source: NCTCOG

Emissions Inventory and BAU Projections

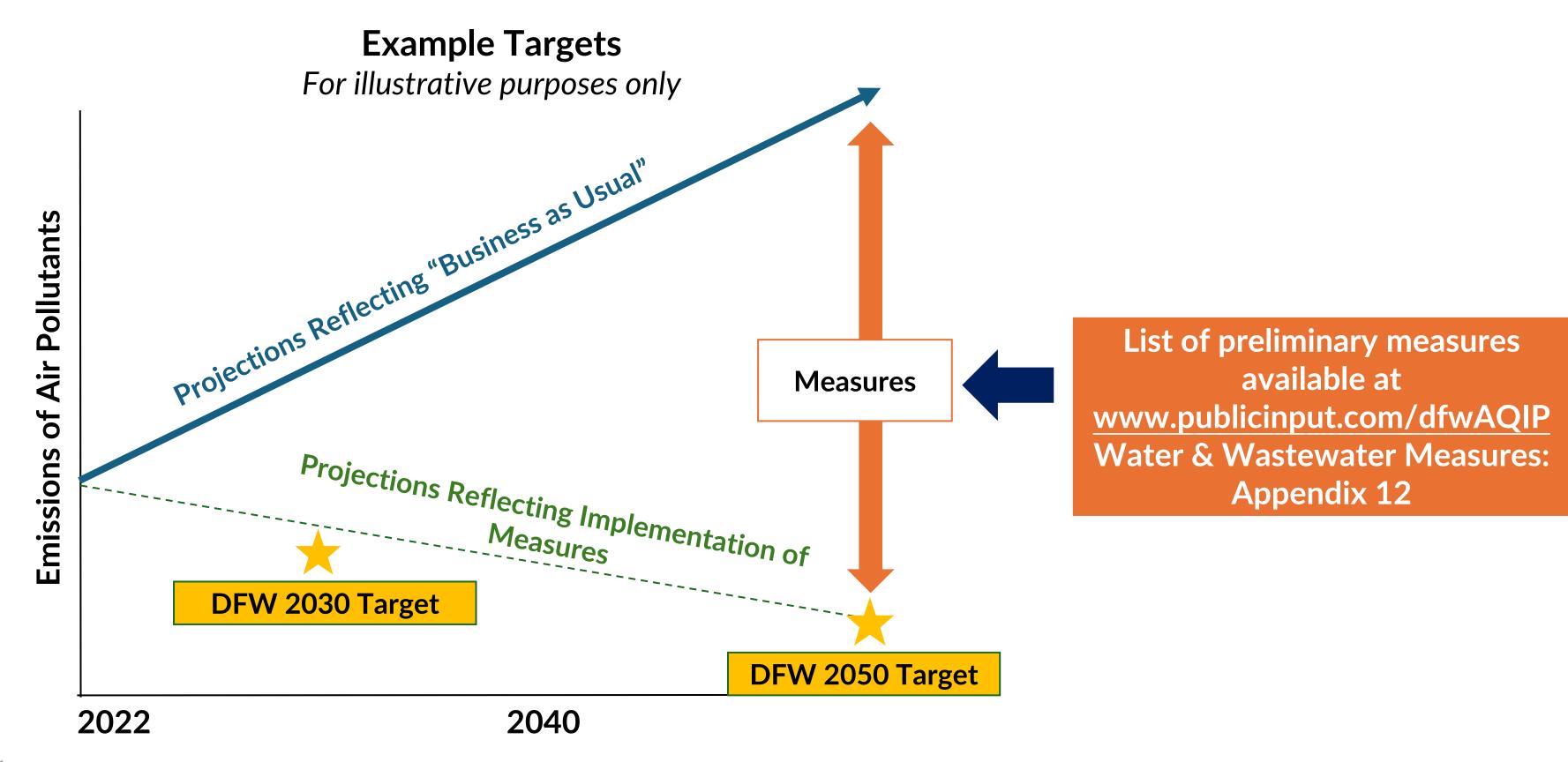

Sector	2022 DFW AQIP EI (Metric Tons of CO ₂ e)	2030 DFW AQIP BAU Projection (Metric Tons of CO ₂ e)	2022- 2030 % Change	2050 DFW AQIP BAU Projection (Metric Tons of CO ₂ e)	2022- 2050 % Change
Commercial- Energy	12,532,114	41,190,542	229%	59,027,365	371%
Residential- Energy	25,777,875	33,381,679	29%	57,078,515	121%
Industrial – Energy	14,974,254	35,119,462	135%	49,228,999	229%
Transportation	48,933,979	49,736,178	2%	75,717,006	55%
Materials Management	3,193,580	3,618,196	13%	4,663,715	46%
Agriculture, Forestry, Land Use	1,903,646	1,778,595	-7%	1,518,868	-20%
Fugitive Emissions	11,379,084	13,092,940	15%	17,446,668	53%
Wastewater	1,606	1,846	15%	2,459	53%

Emissions Inventory and BAU Projections

Water and Wastewater Projections*

^{*}For comparison purposes only; majority of water emissions are captured within energy sector

CAP Measure Requirements


	Timeframe	Quantifiable Emissions Reductions?*	Sectors	Funding Analysis	Cost Estimates	Tracking Metrics	Implementing Agencies	Other Requirements
PAP	2025-2030	Yes	Priority Sectors Only	No	No	Yes	Yes	N/A
CAP	2025-2050	Yes	All Sectors	Yes	Yes	Yes	Yes	Be specific enough to implement and measure Support Targets for CAP**

^{*}Efforts which are necessary to undertake to achieve a measure but do not result in direct emission reductions (ex: workforce development) can be "bundled" with a measure.

^{**}Targets should be actionable, ambitious, achievable

How: Projections, Targets, and Measures

Measures

Provide Economic Rebates for Green Infrastructure and Water-Efficient Landscaping in Commercial Properties

Increase Acreage of Native Plantings in Riparian Corridor Ecosystems

Construct Stormwater Detention Basins

Update Stormwater & Wastewater Conveyance Infrastructure

Improve Water and Wastewater Treatment Process Efficiency**

Repair Aging or Failing On-site Sewage Facility Systems through Rebate Programs to Property Owners

Measures

Provide Sanitary Sewage Upgrades in Developing Areas with Existing On-Site Sewage Facility Systems

Improve Biosolids Management

Implement Methods for Non-Potable Water Reuse

Implement Building-Scale Rainwater Harvesting for Commercial and Municipal Buildings

Improve Local Water Conservation

Water and Wastewater Sector Target: Reduce 35% of the projected BAU CO2e emissions by 2050 (~300k MT CO2E)

^{**}Emission reductions from 2030 and 2050 implementation will be subtracted from the Energy Sector

Measures	Associated Projects (if applicable)	Implementing Agencies
Provide Economic Rebates for Green Infrastructure and Water-Efficient Landscaping in Commercial Properties	 Update Local Policy, Codes, Drainage Criteria, and Ordinances Update Building Standards for New Developments to Reduce Outdoor Irrigation Requirements Install Smart Controls and Sensors to LID and Green Infrastructure to Analyze and Quantify Stormwater Collection Efforts 	Local Governments & Water Service Providers
Increase Acreage of Native Plantings in Riparian Corridor Ecosystems	• N/A	 Local Governments & Applicable Water Districts
Construct Stormwater Detention Basins	• N/A	 MS4 Permit Holders & Applicable Water Districts
Update Stormwater & Wastewater Conveyance Infrastructure	 Install Smart Manhole Covers Phase Out Traditional Pipe Repair in Favor of Trenchless Pipe Rehabilitation 	 MS4 Permit Holders, Wastewater Service Providers

Projects in Italics will be bundled with other projects, as they do not provide a CO2e reduction benefit on their own.

Measures	Associated Projects (if applicable)	Implement Agencies
Improve Water & Wastewater Treatment Process Efficiency**	 Increase On-Site Renewable Energy on Water/Wastewater Treatment Plant Sites** Update Aging Water/Wastewater Treatment Plant Infrastructure with Energy Efficient Options** Develop Strategic Energy Management and Conservation Plan for Water Utilities Benchmark Utility Energy Consumption Using Energy Star Portfolio Manager or Similar Tools. Implement Bio-Gas Capture & Reuse in Wastewater Treatment Plants 	Water & Wastewater Service Providers
Repair Aging or Failing On-site Sewage Facility Systems	Provide Financial Rebates to Upgrade OSSF	Authorized Permitting Authorities
Provide Sanitary Sewage Upgrades in Developing Areas with Existing On-Site Sewage Facility Systems	• N/A	Wastewater Service Providers
Improve Biosolids Management	 Convert Biosolids from Wastewater Treatment into Biochar Divert Biosolids from Wastewater Treatment into Waste-to-Energy Facilities 	Wastewater Service Providers

Projects in Italics will be bundled with other projects, as they do not provide a CO2e reduction benefit on their own.

^{**}Emission reductions from 2030 and 2050 implementation will be subtracted from the Energy Sector

Measures	Associated Projects (if applicable)	Implementing Agencies
Implement Methods for Non- Potable Water Reuse	• N/A	Wastewater Service Providers
Implement Building-Scale Rainwater Harvesting for Commercial and Municipal Buildings	• N/A	 Commercial and Municipal Property Owners
Improve Local Water Conservation	 Establish Property Water Conservation Audits and Smart Water Rebate Programs Implement Municipal and Commercial Irrigation Repair Programs Utilize Automated Metering Infrastructure to Identify and Repair Potential Sources of Water Loss Develop Aquifer Protection and Land Preservation Efforts Conduct a Study to Determine ASR Regional Feasibility. 	Water Service Provides
		tions includes: Outreach ar

Projects in Italics will be bundled with other projects, as they do not provide a CO2e reduction benefit on their own.

Action Item

Approval of the Dallas - Fort Worth Air Quality Improvement Plan - Comprehensive Action Plan (DFW AQIP-CAP) Water and Wastewater Elements.

- > Questions?
- NCTCOG staff will seek the WRC's approval of the water and wastewater elements of DFW AQIP-CAP.

Discussion

Recognition of WRC Service Milestones

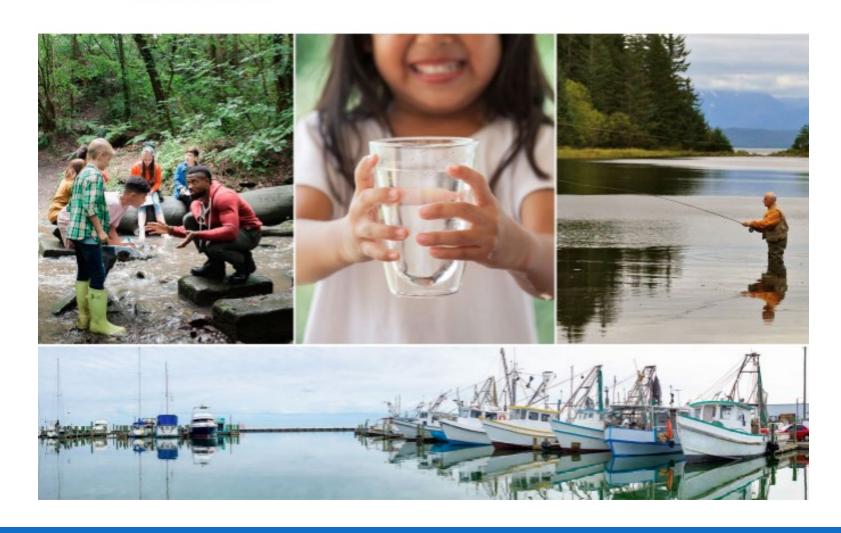
5 years

- Caroline Waggoner
 - Sally Wright

PFAS Roundtable

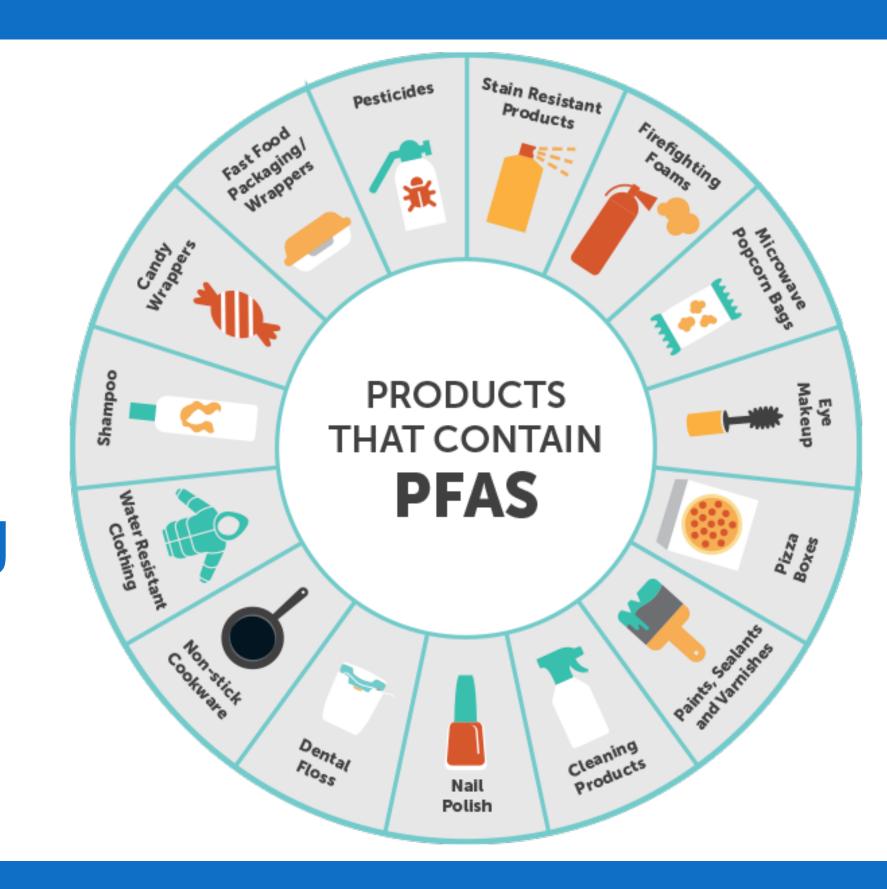
Speaker Presentation

Joseph Fielding, Trinity River Authority


PFAS REGULATIONS AND PLANNING: A PROACTIVE RESPONSE FROM A UTILITY PERSPECTIVE

JUNE 13, 2025

Background


PFAS Strategic Roadmap: EPA's Commitments to Action 2021–2024

- Released in October 2021
 - Outlined the EPA strategy for addressing PFAS
 - Indicated specific action items
 - Identified tentative timelines

Background

- Bad Boys of PFAS
 - PFOA and PFOS
- Are there other PFAS compounds of concern?
 - Depends on who is asking
 - Where you are looking at
 - What you are looking in

Background

Concentration Expressions	Abbreviations	Equivalents
Part Per Million	ppm	mg/L or mg/kg or μg/g
Parts Per Billion	ppb	μg/L or μg/kg or ng/g
Parts Per Trillion	ppt	ng/L or ng/kg or pg/g

- How do we measure it?
 - With great difficulty
 - Drinking Water is only "approved" method
 - Wastewater/Solids Method is final but not "approved"

UCMR 3 in May 20126 PFAS Compounds

- UCMR 5 in December 2021
 - 29 PFAS Compounds

UCMR 3 Contaminant List					
Assessment Monitoring (List 1 Contaminants)					
1,2,3-trichloropropane	bromomethane (meth bromide)	yl	chloromethane (methyl chloride)	bromochloromethane (Halon 1011)	
chlorodifluoromethane (HCFC- 22)	1,3-butadiene		1,1-dichloroethane	1,4-dioxane	
vanadium	molybdenum		cobalt	strontium	
chromium ¹	chromium-6²		chlorate	perfluorooctanesulfonic acid (PFOS)	
perfluorooctanoic acid (PFOA)	perfluorobutanesulfor (PFBS)	nic acid	perfluorohexanesulfonic acid (PFHxS)	perfluoroheptanoic acid (PFHpA)	
perfluorononanoic acid (PFNA)					
Screening Survey (List 2 Contaminants)					
17-β-estradiol	estriol		estrone	4-androstene-3,17-dione	
17-α-ethynylestradiol	equilin		testosterone		
Pre-Screen Testing ³ (List 3 Contaminants)					
enteroviruses noroviruses					

- Proposed NPDWR March 2023
- Final NPDWR April 2024
 - Published in the Federal Register on April 26, 2024
 - 5 pollutants with a MCL and Hazard Index MCL
 - Running Annual Average used for determining compliance

Pollutar	nt MCL	PQL	Unit
PFOA	4.0	4.0	ng/L
PFOS	4.0	4.0	ng/L
PFHxS	10.0	3.0	ng/L
PFNA	10.0	4.0	ng/L
HFPO-DA (GenX Chemicals	400	5.0	ng/L
PFBS	N/A	3.0	ng/L
Hazard Inde	1 ex	N/A	Unitle

- Initial Monitoring complete by April 25, 2027
- Compliance Monitoring with reporting after April 25, 2027
- Final Compliance with MCLs by April 25, 2029

Surface Water Systems serving all population sizes

- Quarterly within 12-month period
- Samples collected 2 to 4 months apart.

Groundwater Systems

serving > 10,000 customers

- Quarterly within 12-month period
- Samples collected 2 to 4 months apart.

Groundwater Systems

serving ≤ 10,000 customers

- Twice within 12-month period
- Samples collected 5 to 7 months apart.

Exception to Groundwater would be GUI Systems

- What is TRA doing about the NPDWR?
 - Identified the significant impact of potential impacts of the NPDWR and began an initial monitoring campaign
 - Procured two PFAS testing instruments
 - Obtained TCEQ Accreditation for EPA Methods 533 & 537.1
 - Supporting other utilities by providing local and in-state testing services for Texas Utilities, contact <u>pfastesting@trinityra.org</u>

- What is TRA doing about the NPDWR?
 - Enhanced monitoring campaign to gather additional data sets
 - Raw and Produced water monitoring
 - TCWSP bimonthly sampling
 - HRWSS, LRWSS, TCRWSS quarterly monitoring
 - Developed compliance calculator with automated notifications

- What is TRA doing about the NPDWR?
 - Conducting PFAS Treatability Study
 - Collecting PFAS and Water Quality samples
 - Evaluating potential raw water contamination sources
 - Evaluate potential treatment technology
 - Pilot testing potential treatment solutions

- Lessons Learned
 - Designate a SME for your organization
 - Understand the rule and the impact(s) to the organization
 - Invest in testing services
 - Develop sampling protocols and verify them
 - Plan for data management resources/systems
 - Third-party support for treatment options

Drinking Water — UPDATE

- May 14, 2025 announced changes to the NPDWR forthcoming
 - Keep MCL at 4 ng/L for PFOA & PFOS
 - Rescind all other MCLs and the Hazard Index
 - Extend Final Compliance with MCLs to 2031
 - Proposed Rule Update Fall 2025
 - Final Rule Update Spring 2026
- Enhanced Communication and Outreach
- Holding polluters accountable

Wastewater

- Effluent Guidelines Program Plan 15
 - Pretreatment standards
 - Landfill pretreatment standards in development
 - Conducting additional studies on several other categories

Wastewater

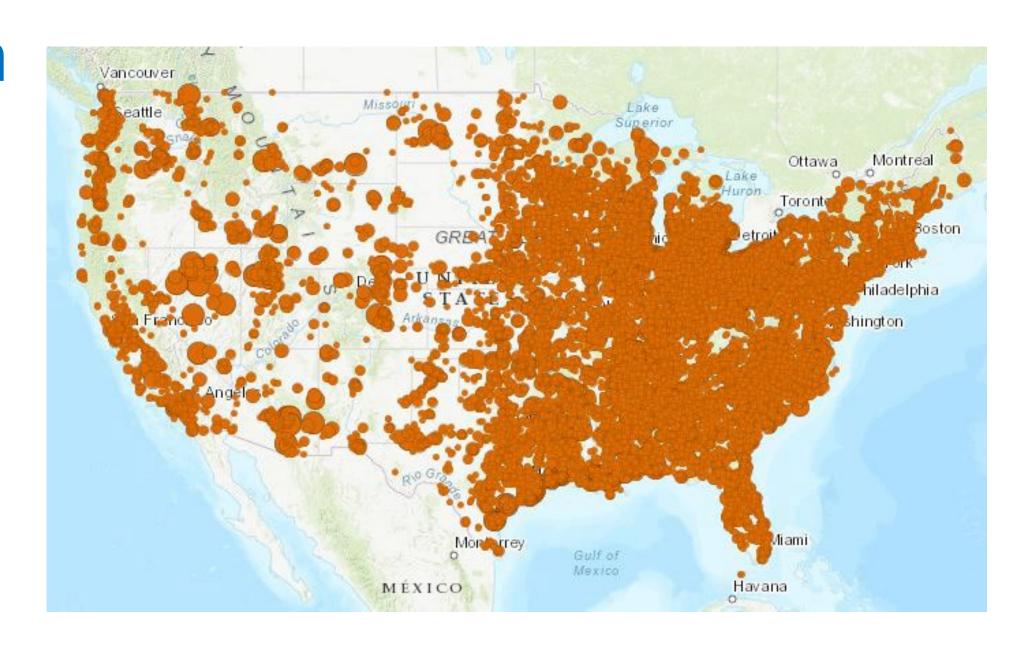
- POTW Influent PFAS Study
 - The data collection is to gather data on sources of PFAS discharges and prioritize industrial categories for potential regulation
 - Mandatory sampling at utility expense
 - •27 Texas POTWs impacted by this

Wastewater & Biosolids

- CERCLA
 - PFOA & PFOS designated hazardous substances effective July 8, 2024
 - Releases of a pound or more in any 24hour period

Plant Effluent Flow (MGD)	Effluent PFOA Result (ng/L)	Mass Load of PFOA in Plant Effluent (ppd)	Effluent PFOS Result (ng/L)	Mass Load of PFOS in Plant Effluent (ppd)
165.89	23	0.03182102	20	0.027670452
171.13	7.8	0.011132349	6.4	0.009134235
135.494	8.6	0.009718172	5.7	0.006441114
144.34	5.9	0.007102394	12	0.014445547

Biosolids


- EPA Draft Sewage Sludge Risk Assessment
 - Risk from use or disposal of sewage sludge by land application
 - Does NOT create any new regulatory requirements or standards
 - Problem
 - Unrealistic conditions
 - 1 ppb for PFOA and PFOS

Biosolids

- National Sewage Sludge Study (NSSS)
 - Data collection intended to establish a national data set of sewage sludge
 - Mandatory sampling at utility expense
 - •27 Texas POTWs impacted by this

Toxic Release Inventory

• Eliminated an exemption allowing facilities to avoid reporting on PFAS when used in small concentrations.

Questions?

Joseph K. Fielding
Manager, Regulatory Services and
Compliance, Northern Region
Trinity River Authority of Texas

fieldingjk@trinityra.org 972-975-4374

PFAS Testing Services at pfastesting@trinityra.org

Speaker Presentation

Jerry Pressley and Casey Nettles, City of Fort Worth

Fort Worth's PFAS Regulatory Initiative

15Oct25

Goals of Presentation

- Explain Fort Worth's strategy to monitor and regulate PFAS
- Share Key Findings
- Share Regulatory Actions

noun / abb :viation

Water Department

Per- and polyfluc alkyl substances (PFAS) re a large and complete up of synthetic "forever chemical. organofluorine che. pi:.ef'eiz

'Is compounds

PFASs) so-called

47

Where is PFAS Commonly Found?

Drinking Water

Drinking contaminated municipal water or private well water

Fish

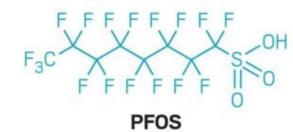
Eating
fish that
was caught
from water
contaminated
by PFAS.
Specifically
with high
levels of
PFOS

Food Packaging

Eating food that was packaged in material that contains PFAS. Such as fast food wrappers, some grease-resistant paper, microwave popcorn bags, pizza boxes, and candy wrappers

Soil + Dust

Accidentally swallowing soil or dust that was contaminated with PFAS, can lead to PFAS exposure.


Coatings + Cleaning

Stain resistant carpeting and water repellant clothing. Cleaning products. Personal care products and cosmetics. Paints, varnishes, and sealants

Source: ATSDR Agency for Toxic Substances and Disease Registry

How did we get here? PFAS Concerns

- PFAS is an "emerging pollutant"
- Human Health and ecological risks
- Regulatory pressures with limited guidance
 - EPA Biosolids Study
 - Michigan and California regulations
 - EPA Drinking Water Standards
 - CERCLA Hazardous Substance Designation
- Litigation

PFAS Strategic Roadmap: EPA's Commitments to Action 2021–2024

"Every level of government—federal, Tribal, state, and local—needs to exercise increased and sustained leadership to accelerate progress to clean up PFAS contamination, prevent new contamination, and make game-changing breakthroughs in the scientific understanding of PFAS. This strategic roadmap represents the Agency's commitment to the American people on what EPA seeks to deliver from 2021 to 2024."

Fort Worth's Approach Sampling Objectives

- Establish background levels for PFAS
 - Residential
 - Wholesale Customer Cities
 - Commercial/Industrial
- Identify areas or industries of concern

Fort Worth's Approach Sampling

- Landfill (direct and indirect discharges) 2022
 - Indirect (hauled) leachate is no longer accepted (Feb 2023)
- Collection System 2023
 - Major trunk lines in collection system
 - Wholesale Customer Cities
 - Points of Interest (Industrial and Commercial Users)
- Industrial Users 2024/2025

Fort Worth's Approach Sampling - Key Findings

- Background levels throughout the collection system were consistent
- Identified Industrial Users of concern
 - Chrome platers
 - Landfills
 - Federal government installations
 - Food processors using plastic packaging

Regulatory Strategy City Code Amendments

- EPA Roadmap
- Added PFAS specific provisions
 - Discharges from Industrial Users above 25ng/L for the PFAS compounds without an approved plan of correction
 - Trucked/hauled waste from Categorical Pretreatment Industrial Users with *detectable* quantities of PFAS

Management Strategy Industrial Users

- Any Industrial User with PFAS levels above 25ng/L
 - Submit a PFAS Source Identification Report
 - Investigate internal PFAS sources
 - Submit a Reduction/Elimination Plan
 - After potential sources are identified
- Best Management Practices
 - Follow EPA PFAS Roadmap guidelines
 - Sector specific
 - Emphasis on pollution prevention and product substitution

City Owned Landfill

Response

Studying and Designing an onsite PFAS treatment facility

- Leachate
- Condensate

Ongoing Monitoring Sampling

- Monthly Sampling
 - Village Creek WRF Biosolids, Influent, and Effluent
 - Landfills
 - Federal government installation
- Wholesale Customer Cities
 - Quarterly Sampling

Next Steps

- Industrial Users
 - Continued sampling and compliance tracking
 - Enforcement for non-cooperative industries
- Commercial Source focus 2025/2026
 - Car washes, carpet cleaners, food service establishments

Regional Collaboration Opportunity

- Coordinate PFAS source identification and solutions
- Share data, BMPs, and regulatory templates
- Explore shared treatment options
 - Landfill leachate treatment

Conclusion

- Fort Worth is taking a proactive, data driven approach to PFAS management
- Address both known industrial sources and emerging commercial sources

Questions?

- Jerry Pressley jerry.pressley@fortworthtexas.gov
- Casey Nettles casey.nettles@fortworthtexas.gov

Speaker Presentation

Brian Neal, Trinity River Authority

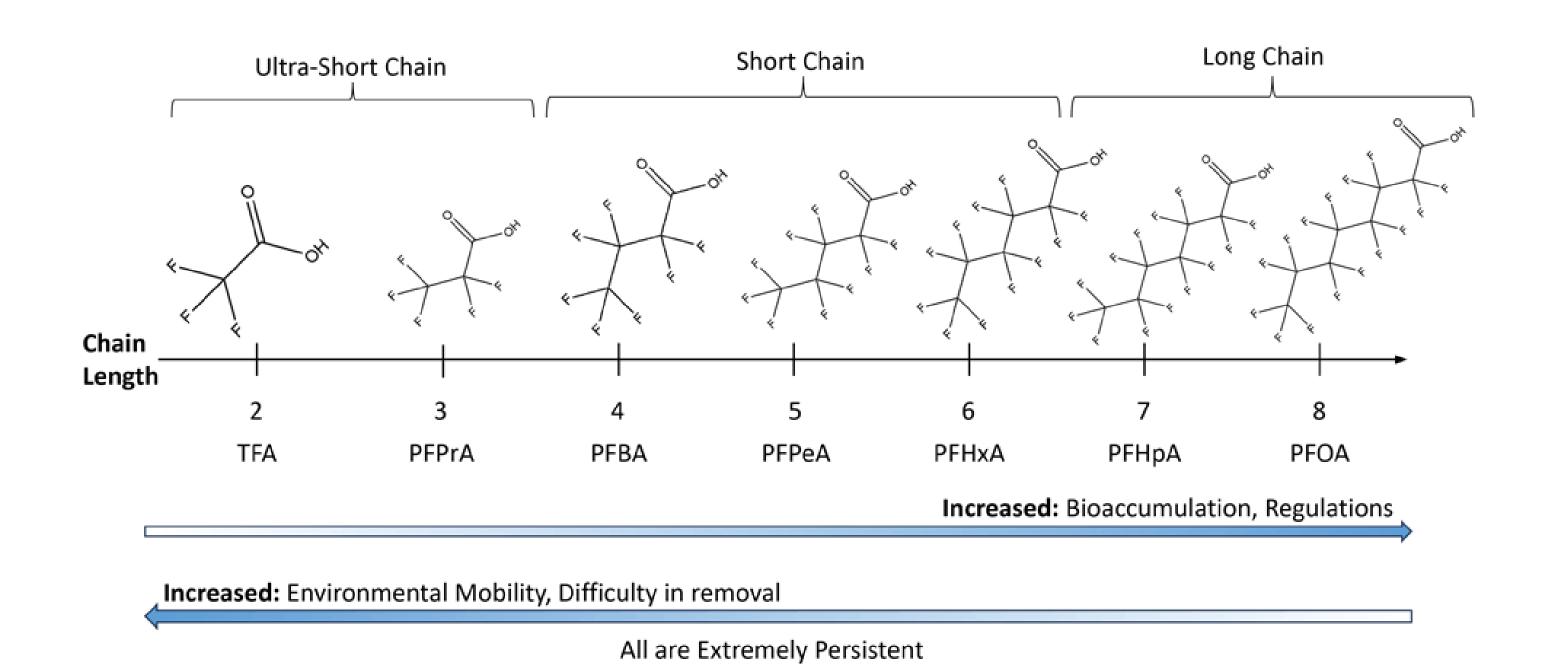
PRETTY FUN AWESOME SUBSTANCES –

DEVELOPING A LABORATORY PROGRAM FOR PFAS

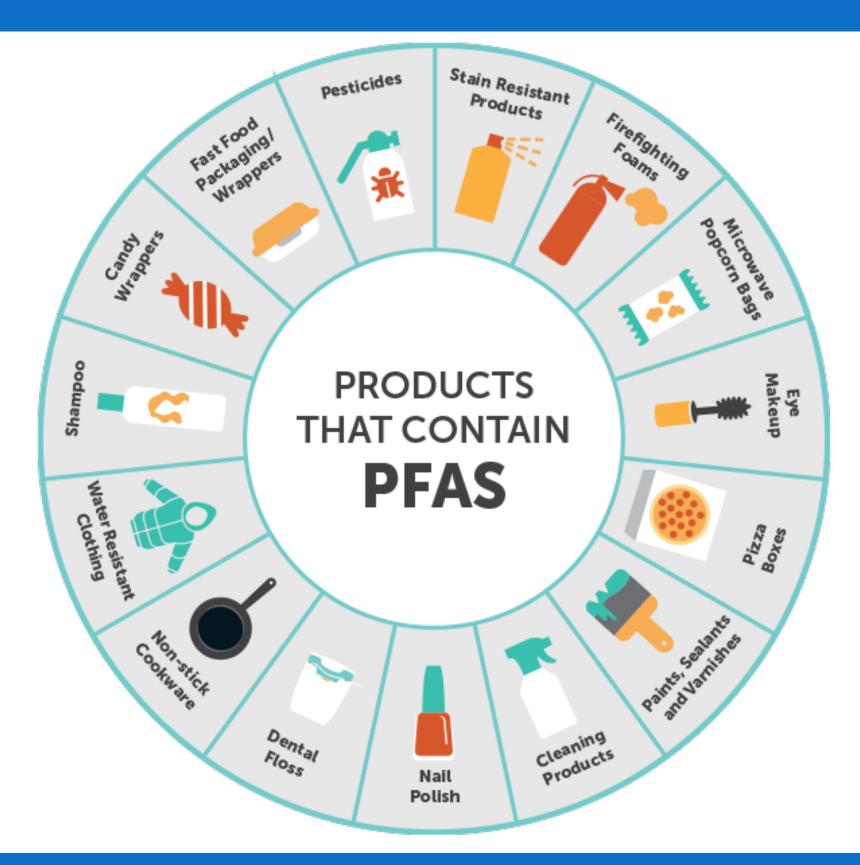
OCTOBER 15, 2025

Trinity River Authority of Texas

Enriching the Trinity basin as a resource for Texans


What is PFAS?

Unfortunately it *does not* stand for Particularly Fun Awesome Substances


Per- and polyfluoroalkyl substances

- Takes thousands of years to degrade naturally
- Some classified as carcinogenic
- Found all over the world
- Primarily categorized as long chain and short chain compounds

What is PFAS?

Where do we find PFAS?

Collecting PFAS

Collecting PFAS

How do we measure PFAS?

Instrumentation!

These instruments are so sensitive, measuring in parts per trillion (ppt or ng/L) is roughly the equivalent of:

- Identifying a drop of blood in an Olympic-sized swimming pool
- Measuring thirty seconds out of every million years
- Finding a hat against the state of Texas
- The width of a strand of hair compared to the distance to the moon

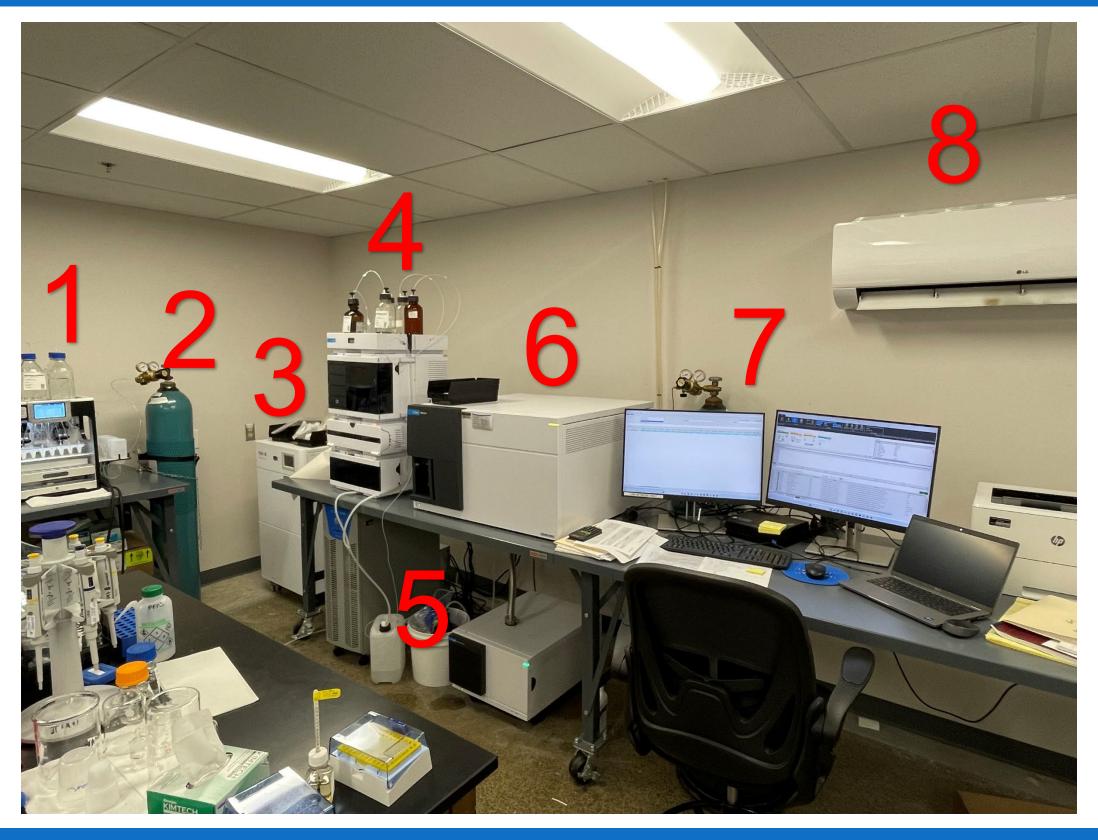
PFAS Levels

Concentration Expressions	Abbreviations	Equivalents
Part Per Million	ppm	mg/L or mg/kg or µg/g
Parts Per Billion	ppb	μg/L or μg/kg or ng/g
Parts Per Trillion	ppt	ng/L or ng/kg or pg/g

PFAS Instrumentation

There are three main components:

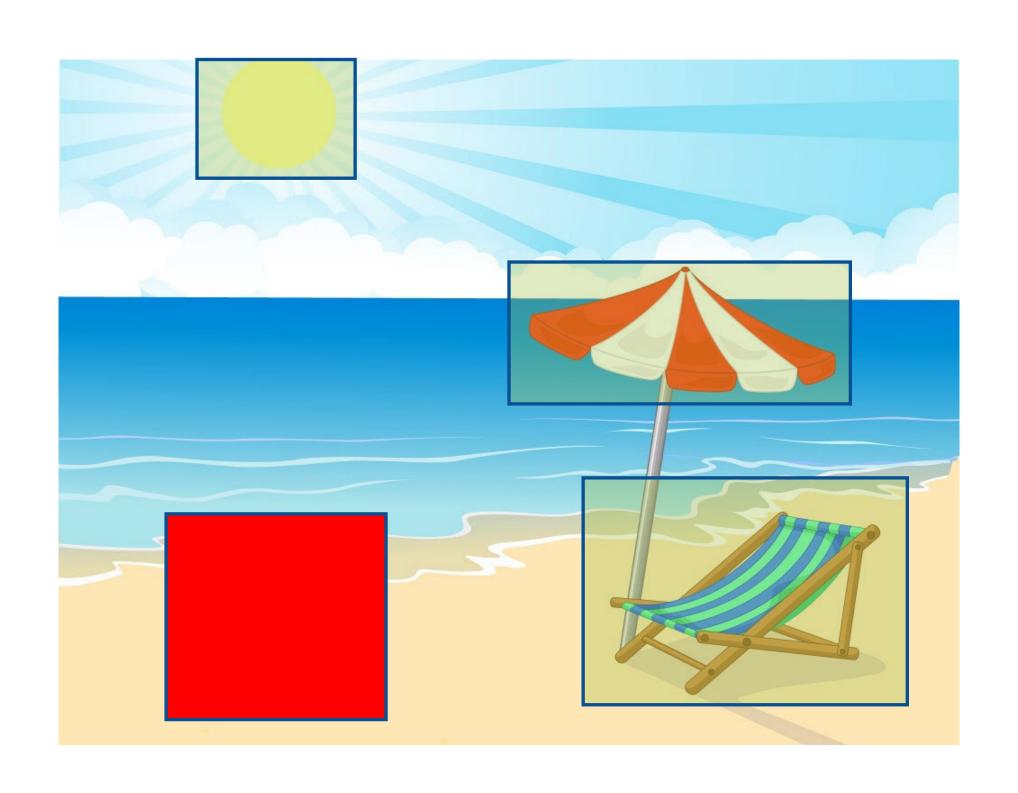
Extraction unit for SPE/clean-up (Solid Phase Extraction) **Evaporation unit** for concentration


LC-MS/MS

- Liquid Chromatography
- **Tandem Mass Spectrometer**



PFAS Instrumentation


What does an LC-MS/MS do?

- ¾ cup granulated sugar
- ³/₄ cup brown sugar
- 2 eggs
- 2 tsp vanilla
- 2 1/4 cup flour
- 1 tsp baking soda
- ½ tsp salt
- 2 cups chocolate chips

The Magic of MRM

PFAS Methodology

What methods are commonly used for measuring PFAS?

- EPA 537.1 and EPA 533
- EPA 1633
- •EPA 1621
- •ASTM D8421

EPA 537.1

- Emphasis on long-chain PFAS compounds
- Originally written in 2008, 537.1 was release in 2018 with v2.0 was released in 2020
 - The update included four "replacement" PFAS compounds that had replaced PFOA and PFOS in many manufacturing processes
- Uses internal standard technique to measure concentration
- Uses surrogates to monitor extraction efficiency and matrix interferences

EPA 533

- Emphasis on short-chain PFAS
- Published in 2019 as part of the EPA's PFAS Action Plan
- Uses isotope dilution technique to measure concentration
- This method is an evolution of EPA 537.1
- Measures 25 compounds
- Included 7 more compounds than 537.1 due to their increased usage in manufacturing processes
- Does not cover four compounds found in 537.1 due to these compounds were dropped by manufacturers in favor of others found in this method

537.1 vs 533

Analyte	Abbreviation	CASRN	Method 533	Method 537.1
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11CI-PF3OUdS	763051-92-9	X	Х
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acd	9CI-PF3ONS	756426-58-1	X	х
4,8-Dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4	X	X
Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6	X	X
Perfluorobutanesulfonic acid	PFBS	375-73-5	X	X
Perfluorodecanoic acid	PFDA	335-76-2	X	X
Perfluorododecanoic acid	PFDoA	307-55-1	X	Х
Perfluoroheptanoic acid	PFHpA	375-85-9	X	Х
Perfluorohexanoic acid	PFHxA	307-24-4	X	Х
Perfluorohexanesulfonic acid	PFHxS	355-46-4	X	X
Perfluorononanoic acid	PFNA	375-95-1	X	Х
Perfluorooctanoic acid	PFOA	335-67-1	X	X
Perfluorooctanesulfonic acid	PFOS	1763-23-1	X	X
Perfluoroundecanoic acid	PFUnA	2058-94-8	X	Х
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	4:2FTS	757124-72-4	X	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	6:2FTS	27619-97-2	X	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	8:2FTS	39108-34-4	X	
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6	X	
Perfluorobutanoic acid	PFBA	375-22-4	X	
Perfluoro(2-ethoxyethane)sulfonic acid	PFEESA	113507-82-7	X	
Perfluoroheptanesulfonic acid	PFHpS	375-92-8	X	
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5	X	
Perfluoro-3-methoxypropanoic acid	PFMPA	377-73-1	X	
Perfluoropentanoic acid	PFPeA	2706-90-3	X	
Perfluoropentanesulfonic acid	PFPeS	2706-91-4	X	
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6		Х
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9		Х
Perfluorotetradecanoic acid	PFTA	376-06-7		Х
Perfluorotridecanoic acid	PFTrDA	72629-94-8		Х

Drinking Water

	Pollutant	MCL	PQL	Unit
	PFOA	4.0	4.0	ng/L
	PFOS	4.0	4.0	ng/L
	PFHxS	10.0	3.0	ng/L
	PFNA	10.0	4.0	ng/L
	HFPO-DA (GenX Chemicals)	10.0	5.0	ng/L
	PFBS	N/A	3.0	ng/L
Т	Hazard Index	1	N/A	Unitle

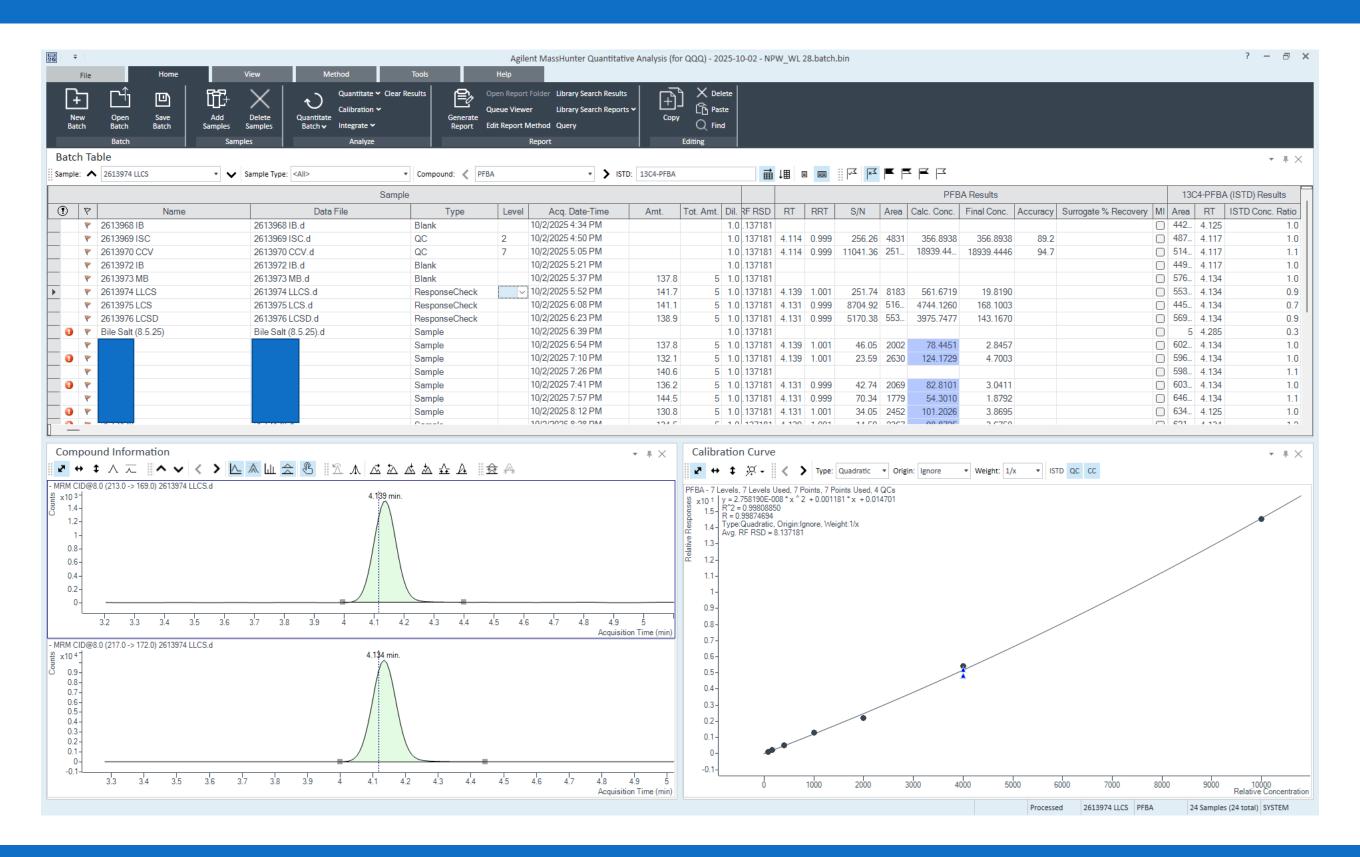
TRINITY RIVER AUTHORITY OF T

EPA 1633

- Introduced in 2021, this method covers all non-potable waters, soils, biosolids, and tissues; a catch-all method
- A combination of both prior methods, uses both internal standard technique and isotope dilution technique
- Measures 40 compounds (24 via ID and 16 via IS)
- Finalized in 2024

EPA 1621

A screening method to identify total organofluorine compounds



ASTM D8421

No initial SPE clean-up, more of a direct injection

- 1.1:1 ratio of sample and methanol
- 2. Filter
- 3. Measure

Data

NCTCOG Updates

NCTCOG Webinar: Let's Grow! Ensuring Success for Water-Wise Landscapes

- Thursday, November 13, 2025; 10:00 a.m.
- Virtual, via Microsoft Teams
- Register <u>here</u>

NCTCOG Updates

Holiday Grease Roundup

- November 1, 2025 January 31, 2026
- Email Hannah Ordonez at Hordonez@nctcog.org to sign up.

NCTCOG Updates

Roundtable for Local and Regional Data Center Impacts

- October 27, 2025 10:00 a.m.- 11:30 a.m.
- Location: Virtual, via Microsoft Teams
- Email Chris Northup at dnorthup@nctcog.org to register.

Model Development and Floodplain Ordinances Workshop

<u>Purpose:</u> To receive feedback on elements such as green stormwater infrastructure and nature-base d solutions to incorporate into a model development code and model floodplain ordinance for flood prevention and mitigation.

<u>Intended Audience:</u> Anyone with technical expertise, experience, or interest in the areas of flood prevention or mitigation using development or floodplain regulatory tools.

Thursday, January 29, 2026, 10:00 am-12:00 pm

NCTCOG, 616 Six Flags Drive, Centerpoint II, Arlington, Transportation Council Room

Hybrid meeting format

For more info, visit http://www.nctcog.org/TSI

This effort is part of the Upper Trinity River Transportation and Stormwater Infrastructure (TSI) Project that seeks to reduce future flood risk through the integration of transportation, environmental, and stormwater planning.

Future Agenda Items

 The WRC can present future agenda items & discuss the priority and format of previously requested items.

Roundtable

The WRC is invited to share what is happening in their communities.

Next Meeting

Wednesday, January 14, 2026

- > 10:30 AM 12:30 PM
- > Virtual, via Microsoft Teams
- > Add to Calendar

Staff Contacts

> Alyssa Knox

Environment and Development Planner III

AKnox@nctcog.org

817-695-9221

Susan Alvarez

Environment and Development Director

SAlvarez@nctcog.org

817-704-2549