Transit Streets

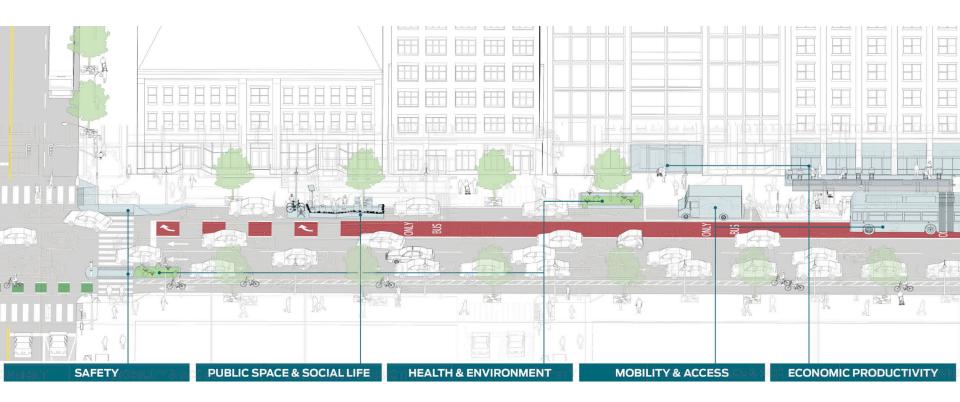
Conor Semler Senior Planner Kittelson & Associates

January 29-30, 2019

Transit Street Principles

Transit Streets are Living Streets Prioritize Transit at Design for Growth Every Scale

Transit Street Principles



Transit Streets are Active Streets Design Changes Demand Near-Term Projects, Long-Term Plans

Design Controls

Design Controls

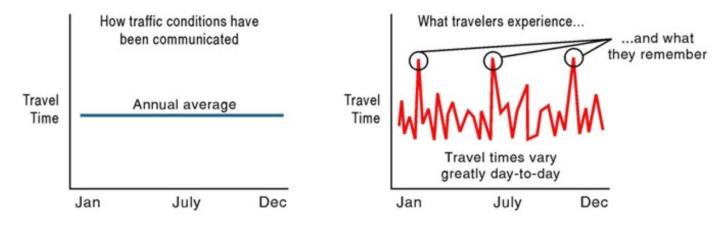
Mobility and Access

- Counting people
- Transit travel time
- Access to the city
- Private motor vehicles

Transit Travel Time

1

AM Peak Passenger Travel Times


Riding , 985,

Access to the City

- Measure the number of destinations reachable within a given timeframe
- More important than distance traveled

Auto Traffic Measures

Safety

- Crash History
- Potential Conflict Analysis

Crash History

- Analyze safety across all modes
- Assess crash history per mile or by user type
 - Highlight crashes involving vulnerable road users

Pedestrian Safety Action Plan Priority Corridors, Intesections, and Areas

Manhattan

	Share of Borough	Borough	% of Borough	Share of Pud KSI	Total Ped KSI	Not Total Ped KSI	% of Total Ped Fatalities
Priority Corridors	17 corridors (56 street miles)	490 milos	3156	815	1,015	50%	51%
Priority intersections.	66 Intersections	3,728 intersections	2%	244	1,615	15%	12%
Prorty Areas	6 sq miles	20 sq miles	20%	807	1,515	50%	41%
Combined Total			-	1,129		70%	67%

"Due to exertipping geographies, the combined total of pedentitian XSI is less than the sum of pedentitian XSI for the Priority Considers, Intersections, and Are

Minimize Conflicts

 Control speeds

10-15 MPH

Driver's peripheral vision

Stopping distance

Crash risk

20-25 MPH

Driver's peripheral vision

Stopping distance

Crash risk

30-35 MPH

Driver's peripheral vision

Stopping distance

Crash risk

40+ MPH

Driver's peripheral vision

Stopping distance

Crash risk

Minimize Conflicts

- Design for desired speed
- 95th Percentile Speeds
- Percent of vehicles exceeding desired speed

Reactive: Operating (85%) → Design → Posted

Proactive: Target → Design → Posted

Minimize Conflicts

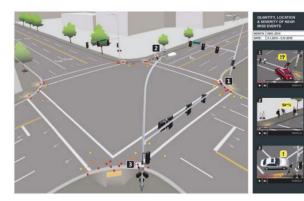

- Control speeds
- Identify conflicts

Figure 1.

Figure 2.

Public Space & Social Life

- Stationary Activities
- Sidewalk Comfort

Quality of Public Space

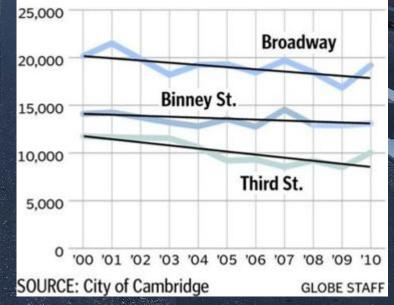
Percent of vehicles exceeding desired speed

Measure social, civic, and market activities

- Number of people engaging in stationary activities
- Quality of space observations/surveys

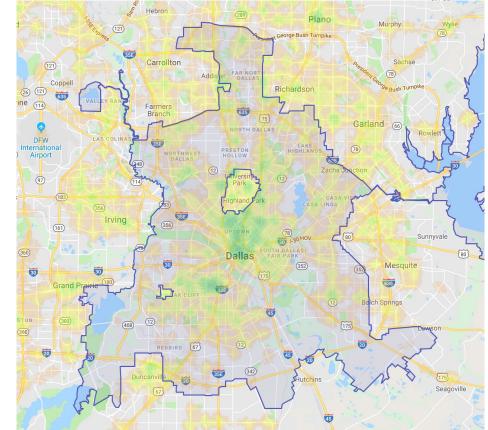
Quality of Public Space

- Sidewalk comfort can encourage/discourage walking
 - Shade
 - Street lighting
 - Active ground floor uses


Health, Sustainability & Environment

- Mode shift
- Physical activity
- Air quality and emissions

Mode Shift


ONLY

KENDALL SQUARE DAILY MOTOR VEHICLE TRAFFIC

Physical Activity

- Strong relationship between obesity and walkability
- People in communities with sidewalks 47% more likely to get physical activity

Air Quality and Emissions

- Particulate emissions linked to cardiac and respiratory disease
- Concentrated around
 high volume roadways

Economic Productivity

- Business Sales
- Cost Savings and Transit Productivity

Business Sales

Combined Sales : Improvement Sites vs. Comparisons Sites - Columbus Avenue

Cost Savings and Transit Productivity

- Transit service efficiency saves costs
- Travel time savings allows fewer buses or better service at same cost

What are the street's vocations?

- Economic activities (e.g. office, retail, residential)?
- ✓ Transit service type?
- ✓ Multi-modal network?

✓ Functional classification / Network role?

What are the culprits of delay?

✓ Curb access / double-parking?

- ✓ Traffic volume & congestion?
- Boardings & dwell time?
- ✓ Signals & intersections?

What are the opportunities? (with & without moving the curb)

- ✓ Cross-section width?
- ✓ Directionality & Operations?
- ✓ Modal Plans & Goals?
- ✓ Service Modifications?

Neighborhood Streets

- Main streets, residential streets
- Local access & turnover
- Low speeds, mixed modes

Signal Progression

Seating / Shelters

In-Lane Stops

3640

Bike Channel Mari Jan

30

// //

//

Seattle, WA

NW 23rd Ave, Por<u>tland</u>

Corridor Streets

- Prioritize person throughput
- May have long block / few crossing opportunities

Signal Progression

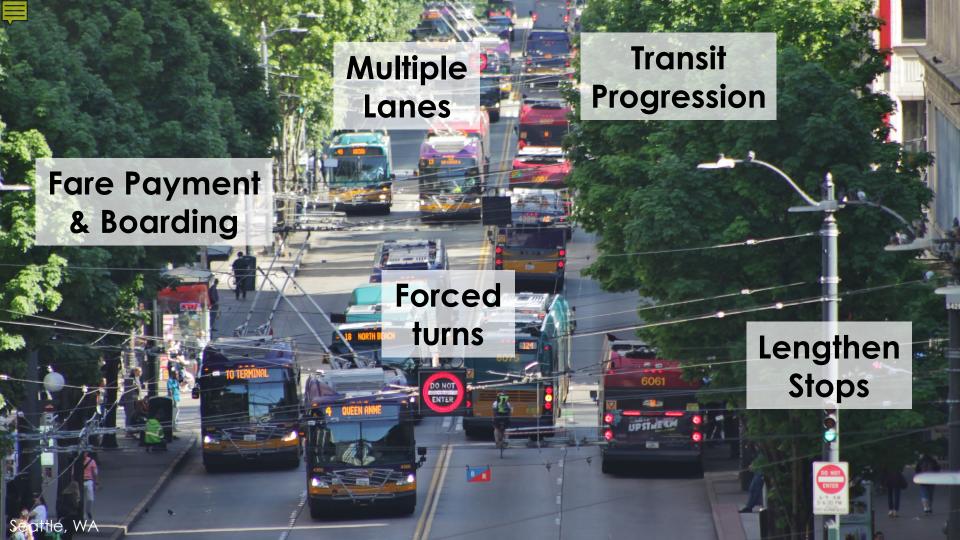
Curb

Management

Mid-Block Crossing

In-Lane Stop

All Ages Bikeway YIELD


TO

Downtown Streets

- High-density, congestion, destination
 access
- Reliability, frequency
- Supporting great public spaces

Branded Fleet

New York City Bus

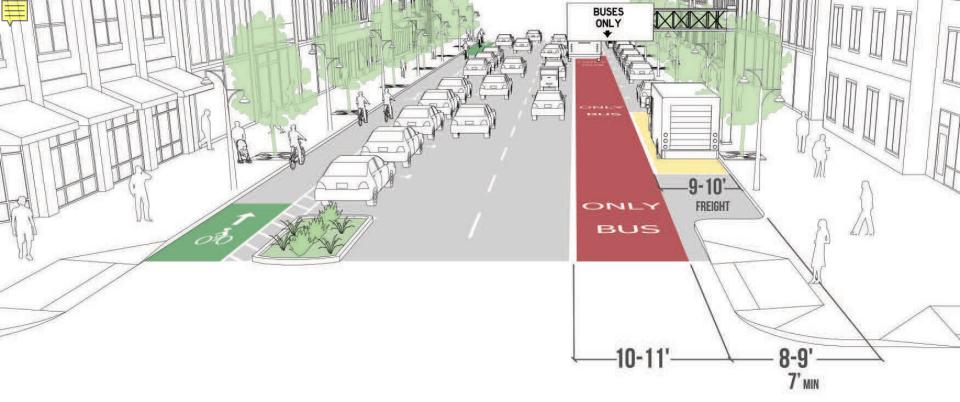
534(

Warning

Transit Lane

S-Shaped Stops

Seating & Fare


Validation

TSP

Brooklyn, NY

Transit Lanes & Transitways

Offset Transit Lane

- Maintains curbside space for other treatments
- Relatively simple & low-cost
- Lacks separation

Offset Transit Lane

Required

- Solid white line along running distance double white line legally prohibits incursion
- BUS ONLY markings and signs
- Enforcement is critical to maintaining integrity

Recommended

- 10–11' desired width provides a comfortable operating environment
- Red or terra cotta color treatment improves compliance
- Boarding bulbs or island enable in-lane stops
- Adjacent parking or loading lanes are 7—9', and should be marked with parking T's.

Optional

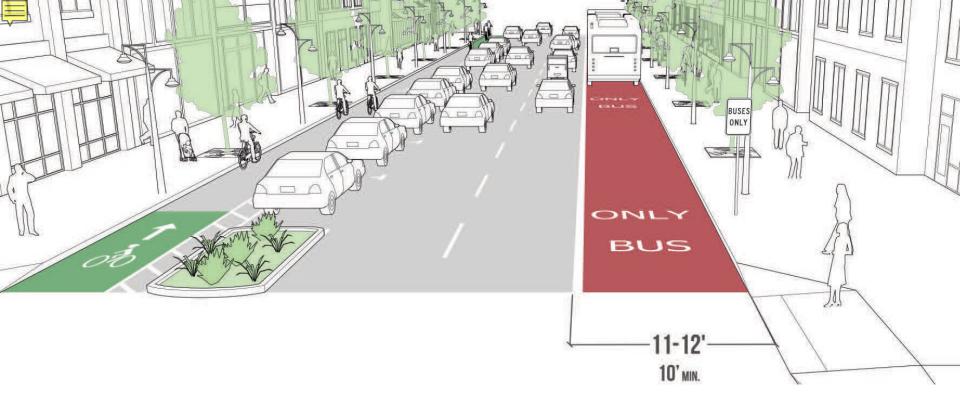
•

Combine with intersection treatments where moderate to heavy turn volumes exist (shared right-turn lane, dropped transit lane, or right-turn pocket)

Offset Transit Lane

MEEKDAYS

(or


New

486,848.8

191166.62

Offset Transit Lane

Chicago,

Curbside Transit Lane

- Prioritizes transit and ensures in-lane stops
- Streets with wide sidewalks
- May be prone to encroachment

Curbside Transit Lane

Required

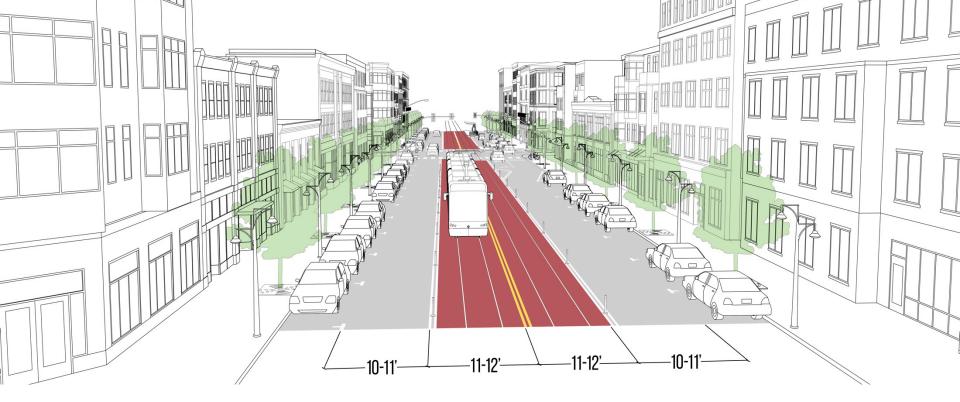
- Solid white line along running distance double white line legally prohibits incursion
- BUS ONLY markings and signs
- Enforcement is critical to maintaining integrity

Recommended

- 11–12' desired width
- Red or terra cotta color treatment improves compliance
- Boarding bulbs or boarding island enable in-lane stops
- Adjacent parking or loading lanes are 7-9', marked with parking T's.

Optional

•


Combine with intersection treatments where moderate to heavy turn volumes exist (shared right-turn lane, dropped transit lane, or right-turn pocket)

Curbside Transit Lane

-

Center Transit Lane

- Applicable to both bus and rail
- Delay caused by congestion
- Can serve very high capacity

Center Transit Lane

Required

- Solid white or doublewhite line separate from adjacent travel lane
- BUS ONLY, TRANSIT ONLY, or LRT ONLY pavement markings
- Boarding islands must be used to create accessible boarding conditions

Recommended

- Designate with red or terra cotta color to improve compliance
- Should be 11–12' when placed alongside opposing transit lane
- Left turns should be prohibited, and must be phase-separated

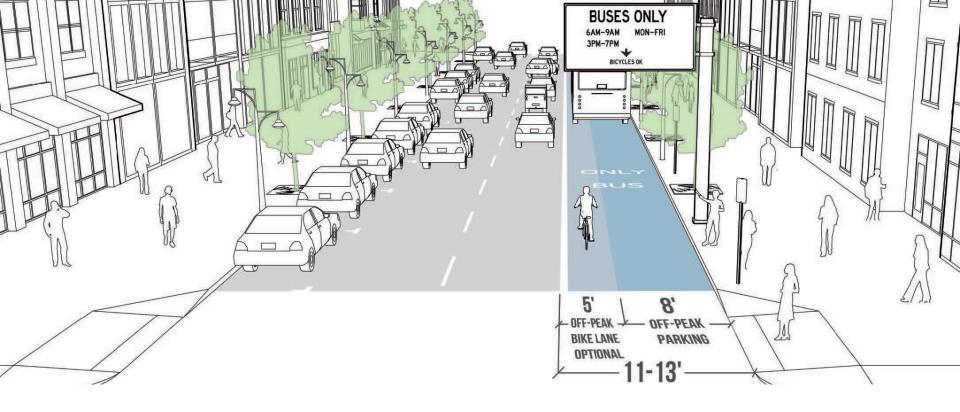
Optional

Vertical barriers can be either "soft" (e.g. rumble strips) or "hard (e.g. conrete curbs, rounded domes)

•

Center Transit Lane

5 50×


ACANC

WEEKDAYS EVER 10-15 MINUTES.

San Bernardino, CA

Center Transit Lane

San Francisco, CA

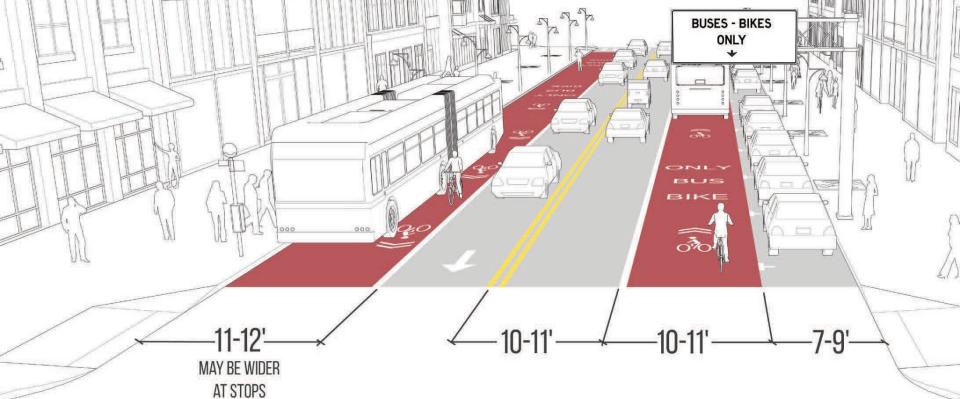
Peak-Only Transit Lane

Peak-Only Transit Lane

Required

- Solid white or doublewhite line separate from adjacent travel lane
- BUS ONLY, TRANSIT ONLY, or LRT ONLY pavement markings
- Boarding islands must be used to create accessible boarding conditions

Recommended


- Designate with red or terra cotta color to improve compliance
- Should be 11–12' when placed alongside opposing transit lane
- Left turns should be prohibited, and must be phase-separated

Optional

Vertical barriers can be either "soft" (e.g. rumble strips) or "hard (e.g. conrete curbs, rounded domes)

•

Shared Bus-Bike Lane

- Where local bike access is demanded and space is constrained
- Low bus speeds and moderate headways

Shared Bus-Bike Lane

Required

- Bikes must be allowed
 across entire road surface
- Buses must operate all the way to the right side of the lane
- Pavement markings must allow both users, either "BIKE BUS ONLY" or "BUS ONLY" with bike icon
- Signs must name both users, preferably overhead

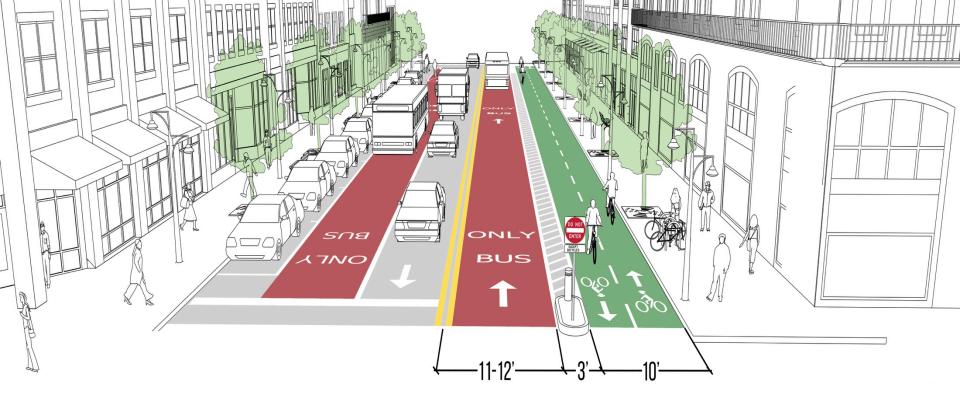
Recommended

- 10–11' for an offset and up to 12' for a curbside configuration
- 13–15' lanes should be <u>avoided</u> in most cases; if 15' width is available, the bike facility should be upgraded
- Transit lanes may be narrower (9') at stops; use bicycle sharrow markings to direct bikes to the left at stops.

Optional

٠

Channelize passing movements; if space is available at stops, route bikes behind the boarding area to limit conflicts with moving vehicles


Shared Bus-Bike Lane

SL5

Boston, MA

Shared Bus-Bike Lane

Philadelphia, PA

Contraflow Transit Lane

- Can simplify routing and eliminate difficult turns
- Shorten travel times
- May merit additional safety considerations

Contraflow Transit Lane

Required

- Double-yellow centerline to prohibit encroachment
- Gateway treatments
 clearly communicate
 prohibited entry
- At signalized intersections, use transit-specific signal heads facing the contraflow direction

Recommended

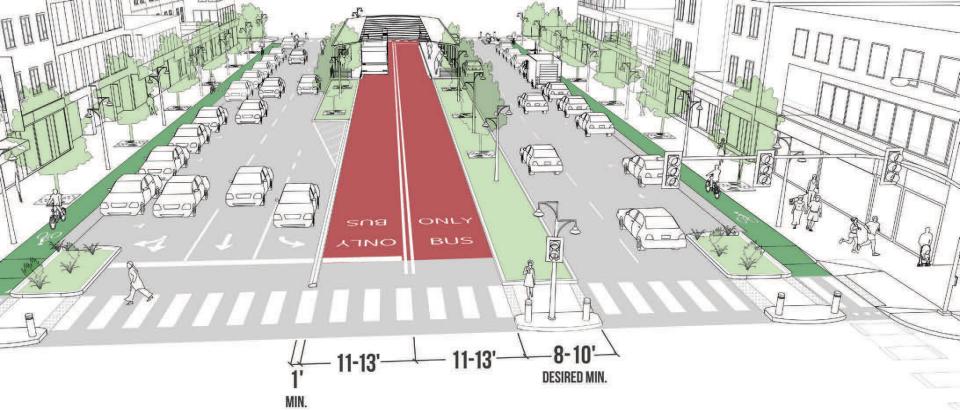
- 11–12' width preferred where adjacent to opposing travel lane
- Red or terra cotta
 color treatment
- Traffic signal coordination to reflect two-way flow
- Intersection turn management

Optional

Restricted turns enable protected bikeways

•

٠


٠

- "Soft" or "hard" physical separation elements
- Pedestrian refuges with cues to alert pedestrians of opposing travel direction

Contraflow Transit Lane

San Francisco C/

Center Transitway

- Dramatically expand transit capacity, reliability, and priority
- Most applicable with LRT and BRT

Center Transitway

Required

- Median boarding islands are required, and must be compatible with transit vehicles
- Transitway is physically separated from general traffic
- Safe crossings across transitway and to stations are critical
- Transit signal heads reduce confusion

Recommended

- Prohibit or separate turning movements across the transitway
- Implement with rapid transit elements, like offboard fare payment, alldoor boarding, level or near-level platforms
- Active TSP or Transitfriendly signal progressions further speed transit

Optional

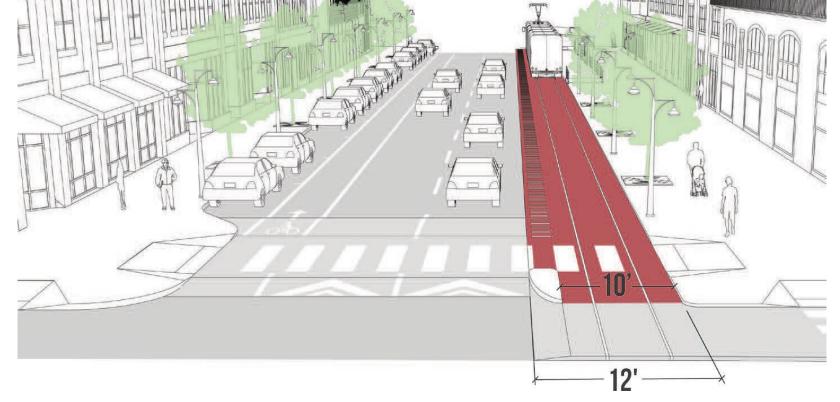
Concrete performs better where buses frequently operate and reduces maintenance costs

٠

٠

Median configurations can include periodic passing opportunities to provide tiered (local & rapid) service

Center Transitway


Phoenix, <u>AZ</u>

Washington, DC

Center Transitway

Minneapolis, MN

- May be uni- or bi-directional
- Enhanced capacity and priority
- Passengers may board from the sidewalk

Required

- Physically separated by vertical barrier or grade difference
- All crossings must be signalized, and turns must be separated.
- Place signs, markings, and design elements like curb radii to prevent turning vehicles entering the transitway

Recommended

- Highlight transitway path at intersections
- Apply color, especially at intersections
- Use audible or visual warnings to alert users when approaching
- Complementary treatments (e.g. all-door boarding, TSP, level boarding) magnify service improvements

Optional


• Crossings may be raised to the transitway grade

MUT IN

Pavement Materials

Asphalt

Concrete

Pavers

Color Treatments

Asphalt

Thermoplastic

Methyl Methacrylate

Embedded Color

Color Treatments

Red Lanes pilot, Church Street, SF

- Reduced corridor travel times 14%, and decreased variability 27%
- Negligible impact of general travel times

Life Cycle Evaluations, New York

- Thermoplastic typically lasts longer than red paint
- Longest lifetime when applied to new pavement
- Shot-blasting/pre-cleaning can extend lifetime

Green Transitways

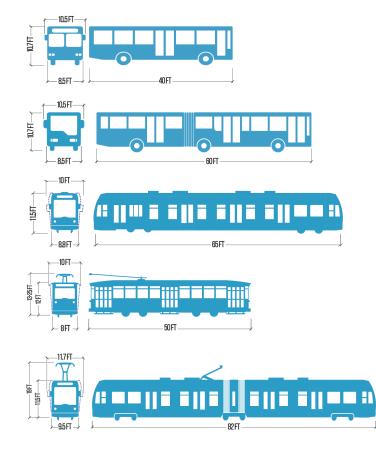
- Integrate with stormwater management
- Increase permeable surface
- Improve waiting experience
- Dampen noise
- Can incorporate climate-appropriate plantings and xeriscape

Separation Elements

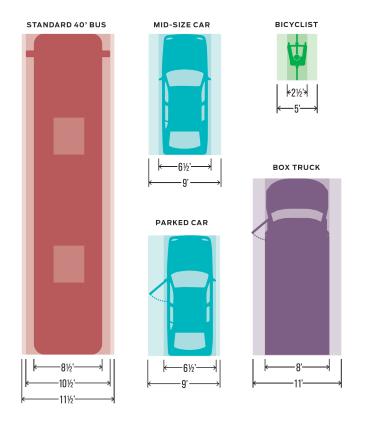
Hard Curb

Mountable Curb

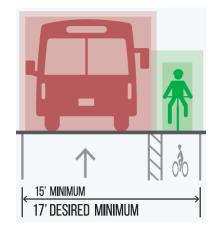
Rumble Strip

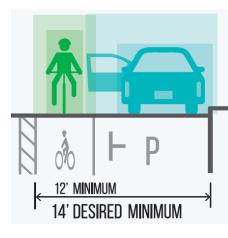

Separation Elements

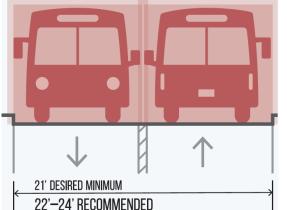
Bollards

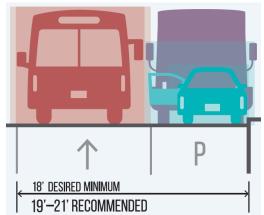

Low Vertical Elements

Full Lane Treatments

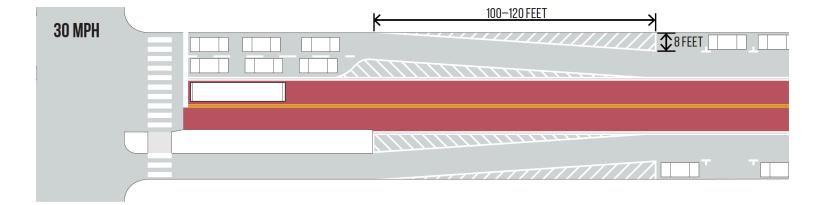

Design Vehicles

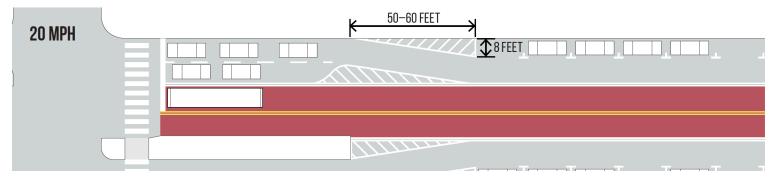

- Select vehicles for capacity and context (speed, throughput, rightof-way width, and block length)
- Transit vehicles should not exceed 25mph in urban contexts; curve radii may assume 10-15mph vehicle speed
- Design for dynamic vehicle envelopes
- Design with the most compact possible geometry without degrading transit's ability to operate




- 10–11' can be a comfortable for a bus adjacent to parking or a bike lane
- As speeds increase, operating envelope increases
- Mirror clearance may be more important for rail vehicles than buses.

Design Vehicles





- Design adjacent lane widths in context, accounting for friction and user comfort
- Buffer envelopes may overlap infrequently or at very low speeds

Adjacent User Envelopes

Design Speed

- As speed increases, additional space is consumed for lateral movements
- Reducing speed dispersion makes transit
 and traffic flow more predictable