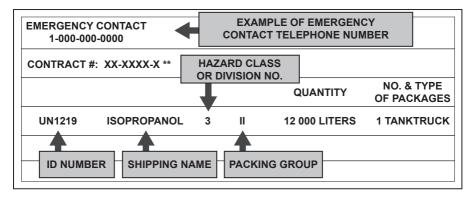
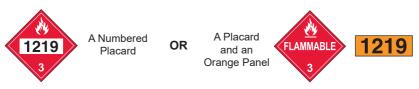

A guidebook intended for use by first responders during the initial phase of a <u>transportation incident</u> involving hazardous materials/dangerous goods

Transport Canada Transports Canada


SHIPPING PAPERS (DOCUMENTS)

For the purpose of this guidebook, shipping documents and shipping papers are synonymous. Shipping papers provide vital information regarding the hazardous materials/dangerous goods to initiate protective actions. A consolidated version of the information found on shipping papers may be found as follows:

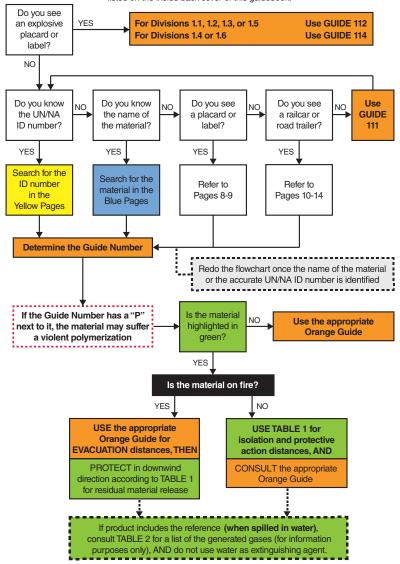
- Road kept in the cab of a motor vehicle
- Rail kept in possession of a crew member
- Aviation kept in possession of the pilot or aircraft employees
- Marine kept in a holder on the bridge of a vessel


Information provided:

- 4-digit identification number, UN or NA (go to yellow pages)
- Proper shipping name (go to blue pages)
- Hazard class or division number of material
- Packing group
- Emergency response telephone number
- Information describing the hazards of the material (entered on or attached to the shipping paper)*

EXAMPLE OF PLACARD AND PANEL WITH ID NUMBER

The 4-digit ID Number may be shown on the diamond-shaped placard or on an adjacent orange panel displayed on the ends and sides of a cargo tank, vehicle or rail car.


^{*} In the United States, this requirement may be satisfied by attaching a guide from the ERG2020 to the shipping paper, or by having the entire guidebook available for reference.

^{*} In the United States, a registration or contract number may be required on a shipping paper.

HOW TO USE THIS GUIDEBOOK

RESIST RUSHING IN! APPROACH INCIDENT FROM UPWIND, AND UPHILL AND/OR UPSTREAM STAY CLEAR OF ALL SPILLS, VAPORS, FUMES, SMOKE, AND POTENTIAL HAZARDS

WARNING: DO NOT USE THIS FLOWCHART if more than one hazardous material/dangerous good is involved. Immediately call the appropriate emergency response agency telephone number listed on the inside back cover of this guidebook.

BEFORE AN EMERGENCY - BECOME FAMILIAR WITH THIS GUIDEBOOK!

First responders must be trained in the use of this guidebook.

LOCAL EMERGENCY TELEPHONE NUMBERS

Please populate this page with emergency telephone numbers for local assistance:

HAZMAT CONTRACTORS		
RAIL COMPANIES		
FEDERAL/STATE/PROVINCIAL AGENCIES		
OTHERS		

TABLE OF CONTENTS

Shipping Papers (Documents)	ont cover
How to Use this Guidebook	1
Local Emergency Telephone Numbers	2
Safety Precautions	4
Notification and Request for Technical Information	5
Hazard Classification System	6
Introduction to the Table of Markings, Labels And Placards	7
Table of Markings, Labels, and Placards and Initial Response Guide to Use On-s	cene8
Rail Car Identification Chart	10
Road Trailer Identification Chart	12
Globally Harmonized System of Classification and Labeling of Chemicals (GHS) .	16
Hazard Identification Numbers Displayed On Some Intermodal Containers	18
Pipeline Transportation	22
ID Number Index (yellow pages)	28
Name of Material Index (blue pages)	92
Guides (orange pages)	
Introduction to Green Tables	286
Protective Actions	
Protective Action Decision Factors to Consider	
Background on Table 1 – Initial Isolation and Protective Action Distances	
Table 1 – Initial Isolation and Protective Action Distances	
Table 2 – Water-Reactive Materials That Produce Toxic Gases	344
Table 3 – Initial Isolation and Protective Action Distances for Large Spills	
for Different Quantities of Six Common TIH (PIH in the US) Gases	
ERG2020 User's Guide	
Protective Clothing	
Decontamination	
Fire and Spill Control	
BLEVE and Heat Induced Tear	
BLEVE – Safety Precautions.	
Criminal or Terrorist Use of Chemical, Biological and Radiological Agents	
Improvised Explosive Device (IED) Safe Stand-Off Distance	
Glossary	
Publication Data	
Canada and United States National Response Centers	
24-Hour Emergency Response Telephone Numbers	392

SAFETY PRECAUTIONS

RESIST RUSHING IN!

APPROACH CAUTIOUSLY FROM UPWIND, UPHILL AND/OR UPSTREAM:

- Stay clear of Vapor, Fumes, Smoke and Spills.
- · Keep vehicle at a safe distance from the scene.

SECURE THE SCENE:

Isolate the area and protect yourself and others.

IDENTIFY THE HAZARDS USING ANY OF THE FOLLOWING:

- Placards
- Container labels
- · Shipping papers
- · Rail Car and Road Trailer Identification Chart
- Safety Data Sheets (SDS)
- Knowledge of persons on scene
- · Consult applicable guide page

ASSESS THE SITUATION:

- Is there a fire, a spill or a leak?
- What are the weather conditions?
- What is the terrain like?
- · Who/what is at risk: people, property or the environment?
- What actions should be taken evacuation, shelter-in-place or dike?
- · What resources (human and equipment) are required?
- · What can be done immediately?

OBTAIN HELP:

 Advise your headquarters to notify responsible agencies and call for assistance from qualified personnel.

RESPOND:

- · Enter only when wearing appropriate protective gear.
- Rescue attempts and protecting property must be weighed against you becoming part of the problem.
- Establish a command post and lines of communication.
- Continually reassess the situation and modify response accordingly.
- · Consider safety of people in the immediate area first, including your own safety.

ABOVE ALL: Do not assume that gases or vapors are harmless because of lack of a smell – odorless gases or vapors may be harmful. Use **CAUTION** when handling empty containers because they may still present hazards until they are cleaned and purged of all residues.

NOTIFICATION AND REQUEST FOR TECHNICAL INFORMATION

Follow the steps outlined in your organization's standard operating procedures and/or local emergency response plan for obtaining qualified assistance. Generally, the notification sequence and requests for technical information beyond what is available in this guidebook should occur in the following order:

1. NOTIFY YOUR ORGANIZATION/AGENCY:

- Based on information provided, this will set in motion a series of events. Actions
 may range from dispatching additional trained personnel to the scene, to activating
 the local emergency response plan.
- · Ensure that local fire and police departments have been notified.

2. CALL THE EMERGENCY RESPONSE TELEPHONE NUMBER ON THE SHIPPING PAPER

 If shipping paper is not available, use guidance under next section "NATIONAL ASSISTANCE".

3. NATIONAL ASSISTANCE

- Contact the appropriate emergency response agency listed on the inside back cover of this guidebook.
- Provide as much information about the hazardous material/dangerous good and the nature of the incident.
- The agency will provide immediate advice on handling the early stages of the incident.
- The agency will also contact the shipper or manufacturer of the material for more detailed information if necessary.
- The agency will request on-scene assistance when necessary.

4. PROVIDE AS MUCH OF THE FOLLOWING INFORMATION AS POSSIBLE:

- Your name, call-back telephone number, fax number
- Location and nature of problem (spill, fire, etc.)
- · Name and identification number of material(s) involved
- · Shipper/consignee/point-of-origin
- · Carrier name, rail car or truck number
- Container type and size
- · Quantity of material transported/released
- Local conditions (weather, terrain)
- Proximity to schools, hospitals, waterways, etc.
- · Injuries and exposures
- · Local emergency services that have been notified

HAZARD CLASSIFICATION SYSTEM

The hazard class of hazardous materials/dangerous goods is indicated either by its class (or division) number or name. Placards are used to identify the class or division of a material. The hazard class or division number must be displayed in the lower corner of a placard and is required for both primary and subsidiary hazard classes and divisions, if applicable. For other than Class 7 placards, text indicating a hazard (for example, "CORROSIVE") is not required. Text is shown only in the U.S. The hazard class or division number and subsidiary hazard classes or division numbers placed in parentheses (when applicable), must appear on the shipping paper after each proper shipping name.

Class 1 -	Explosives				
	Division 1.1	Explosives which have a mass explosion hazard			
	Division 1.2	Explosives which have a projection hazard but not a mass explosion hazard			
	Division 1.3	Explosives which have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but not a mass explosion hazard			
	Division 1.4	Explosives which present no significant hazard			
	Division 1.5	Very insensitive explosives with a mass explosion hazard			
	Division 1.6	Extremely insensitive articles which do not have a mass explosion hazard			
Class 2 -	Gases	·			
	Division 2.1	Flammable gases			
	Division 2.2	Non-flammable, non-toxic* gases			
	Division 2.3	Toxic* gases			
Class 3 -	Flammable liquids (and Combustible liquids [U.S.])				
Class 4 -	Flammable solids; Substances liable to spontaneous combustion; Substances which, on contact with water, emit flammable gases				
	Division 4.1	Flammable solids, self-reactive substances and solid desensitized explosives			
	Division 4.2 Division 4.3	Substances liable to spontaneous combustion Substances which in contact with water emit flammable gases			
Class 5 -	Oxidizing subs	Oxidizing substances and Organic peroxides			
	Division 5.1 Division 5.2	Oxidizing substances Organic peroxides			
Class 6 -	Toxic* substances and Infectious substances Division 6.1 Toxic* substances				

Infectious substances

Miscellaneous hazardous materials/dangerous goods and articles

Division 6.2

Radioactive materials

Corrosive substances

Class 7 -

Class 8 -

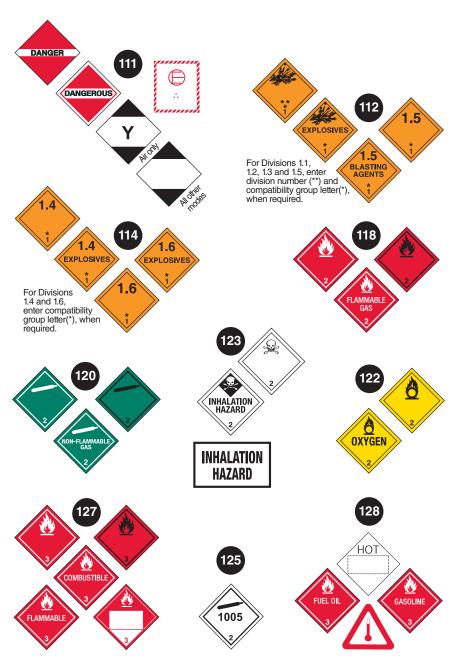
Class 9 -

^{*} The words "poison" or "poisonous" are synonymous with the word "toxic".

INTRODUCTION TO THE TABLE OF MARKINGS, LABELS AND PLACARDS

USE THIS TABLE ONLY WHEN THE ID NUMBER OR PROPER SHIPPING NAME IS NOT AVAILABLE.

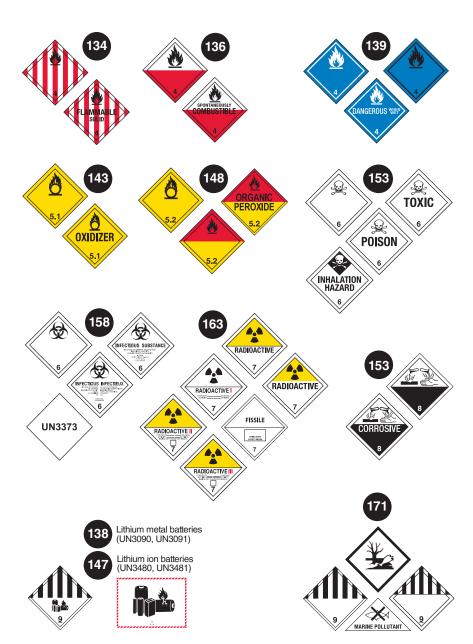
The next two pages display the placards used on transport vehicles carrying hazardous materials/dangerous goods with the applicable reference GUIDE circled. Follow these steps:


- 1. Approach scene from upwind, uphill and/or upstream at a safe distance to safely identify and/or read the placard or orange panel. Use binoculars if available.
- 2. Match the vehicle placard(s) with one of the placards displayed on the next two pages.
- 3. Consult the circled guide number associated with the placard. Use that guide information for now. For example:
 - Use GUIDE 127 for a FLAMMABLE (Class 3) placard
 - Use GUIDE 153 for a CORROSIVE (Class 8) placard
 - Use GUIDE 111 when the DANGER or DANGEROUS placard is displayed or the nature of the spilled, leaking or burning material is not known. Also use this GUIDE when the presence of hazardous materials/dangerous goods is suspected but no placards can be seen.

If multiple placards point to more than one guide, initially use the most conservative guide (i.e., the guide requiring the greatest degree of protective actions).

- Guides associated with the placards provide the most significant risk and/or hazard information.
- When specific information, such as ID number or proper shipping name, becomes available, the more specific Guide recommended for that material must be consulted.
- 6. A single asterisk (*) on orange placards represents an explosive's compatibility group letter. The asterisk must be replaced with the appropriate compatibility group letter. Refer to the Glossary (page 375).
- 7. Double asterisks (**) on orange placards represent the division of the explosive. The double asterisks must be replaced with the appropriate division number.

TABLE OF MARKINGS, LABELS, AND PLACARDS


USE THIS TABLE ONLY IF MATERIALS CANNOT BE SPECIFICALLY IDENTIFIED BY

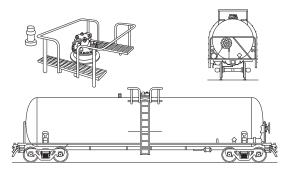
Page 8

AND INITIAL RESPONSE GUIDE TO USE ON-SCENE

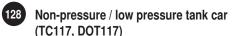
USING THE SHIPPING PAPER, NUMBERED PLACARD, OR ORANGE PANEL NUMBER

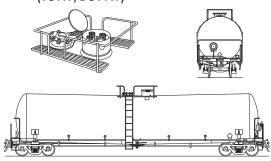
RAIL CAR IDENTIFICATION CHART

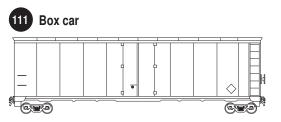
CAUTION: Emergency response personnel must be aware that rail tank cars vary widely in construction, fittings and purpose. Tank cars could transport products that may be solids, liquids or gases. The products may be under pressure. It is essential that products be identified by consulting shipping papers or train consist or contacting dispatch centers before emergency response is initiated. The information stenciled on the sides or ends of tank cars, as illustrated below, may be used to identify the product utilizing:


- a. the commodity name shown;
- b. the other information shown, especially reporting marks and car number which, when supplied to a dispatch center, will facilitate the identification of the product.

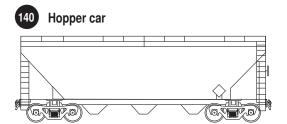
The recommended guides should be considered as last resort if the material cannot be identified by any other means.


- For flammable, non-flammable, toxic and/or liquefied compressed gases
- Protective housing
- No bottom fittings
- · Pressures usually above 40 psi

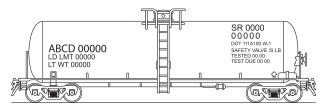

Non-pressure / low pressure tank car


- Known as general service tank car
- For variety of hazardous and non-hazardous materials
- Fittings and valves normally visible at the top of the tank
- Some may have bottom outlet valve
- Pressures usually below 25 psi

RAIL CAR IDENTIFICATION CHART



- For flammable liquids (e.g.,
- Petroleum crude oil, ethanol)
- Protective housing separate from manway
- Bottom outlet valve
- Pressures usually below 25 psi



- For general freight that carry bulk or non-bulk packages
- May transport hazardous materials/dangerous goods in small packages or "tote bins"
- Single or double sliding door

- For bulk commodities and bulk cargo (e.g., coal, ore, cement and solid granular materials)
- Bulk lading discharged by gravity through the hopper bottom doors when doors opened

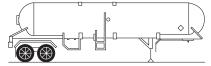
COMMON MARKINGS ON RAIL CARS: reporting marks and car number, load limit (pounds or kilograms), empty weight of car, placard, tank qualification and pressure relief device information, car specification, and commodity name.

ROAD TRAILER IDENTIFICATION CHART

CAUTION: This chart depicts only the most general shapes of road trailers and cargo transport units. Emergency response personnel must be aware that there are many variations of road trailers, not illustrated below, that are used for shipping chemical products. Many intermodal tanks that transport liquids, solids, liquefied compressed gases, and refrigerated liquefied gases have similar silhouettes. The suggested guides are for the most hazardous products that may be transported in these trailer types.

WARNING: Road trailers may be jacketed, the cross-section may look different than shown and external ring stiffeners would be invisible.

NOTE: An emergency shut-off valve is commonly found at the front of the tank, near the driver door.

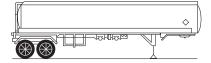

The recommended guides should be considered as last resort if the material cannot be identified by any other means.

MAWP: Maximum Allowable Working Pressure.

MC331, TC331, SCT331

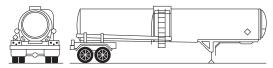
- For liquefied compressed gases (e.g., LPG, ammonia)
- · Rounded heads
- Design pressure between 100-500 psi

MC338, TC338, SCT338, TC341, CGA341



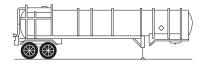
- For refrigerated liquefied gases (cryogenic liquids)
- · Similar to a "giant thermo-bottle"
- Fitting compartments located in a cabinet at the rear of the tank
- MAWP between 25-500 psi

DOT406, TC406, SCT306, MC306, TC306



- For flammable liquids (e.g., gasoline, diesel)
- · Elliptical cross-section
- · Rollover protection at the top
- Bottom outlet valves
- MAWP between 3-15 psi

ROAD TRAILER IDENTIFICATION CHART

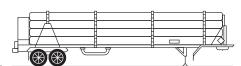

137 DOT407, TC407, SCT307, MC307, TC307

- For toxic, corrosive, and flammable liquids
- · Circular cross-section
- · May have external ring stiffeners
- · MAWP of at least 25 psi

137 DOT412, TC412, SCT312, MC312, TC312

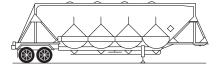
- · Usually for corrosive liquids
- Circular cross-section
- · External ring stiffeners
- · Tank diameter is relatively small
- · MAWP of at least 15 psi

112 TC423

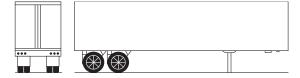


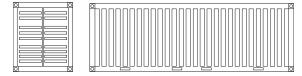
- For emulsion and water-gel explosives
- · Hopper-style configuration
- · MAWP between 5-15 psi

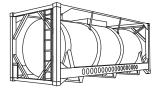
117 Compressed Gas/Tube Trailer




ROAD TRAILER IDENTIFICATION CHART




137 Vacuum Tanker


111 Mixed Cargo

Intermodal Freight Container

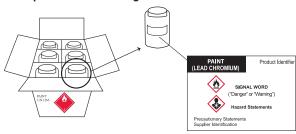
117 Intermodal Tank

NOTES

GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELING OF CHEMICALS (GHS)

(May be found on means of containment during transport)

The Globally Harmonized System of Classification and Labeling of Chemicals (GHS) is an international guideline published by the United Nations. The GHS aims to harmonize the classification and labeling systems for all sectors involved in the life cycle of a chemical (production, storage, transport, workplace use, consumer use and presence in the environment).


The GHS has nine symbols used to convey specific physical, health and environmental hazard information. These symbols are part of a pictogram that is diamond shaped and includes the GHS symbol in black on a white background with a red frame. The pictogram is part of the GHS label, which also includes the following information:

- Signal word
- Hazard statement
- · Precautionary statements
- · Product identifier
- Supplier identification

GHS pictograms are similar in shape to transport labels; however, transport labels have backgrounds of different colors.

The elements of the GHS that address signal words and hazard statements are not expected to be adopted in the transport sector. For substances and mixtures covered by the UN Recommendations on the Transport of Dangerous Goods, Model Regulations, the transport labels for physical hazards will have precedence. In transport, a GHS pictogram for the same (or lesser) hazard as the one reflected by the transport label or placard should not be present, but it could exist on the package.

Examples of GHS labeling:

Outer Packaging: Box with flammable liquid transport label

Inner Packaging: Plastic bottle with GHS hazard warning label

Single Packaging: 200 L (55 US gallons) drum with a flammable liquid transport label combined with GHS hazard warning label In some cases, such as on drums or international bulk containers (IBCs), which must address information for all sectors, the GHS label may be found in addition to the required transport labels and placards. Both types of labels (GHS and transport) will differ in a way that will make them easy to identify during an emergency.

GHS Pictograms	Physical hazards	GHS Pictograms	Health and Environmental hazards
	Explosive;		Skin corrosion;
	Self-reactive;		Serious eye damage
	Organic peroxide		
	Flammable;		Acute toxicity (harmful);
(%)	Pyrophoric;		Skin sensitizer;
	Self-reactive;		Irritant (skin and eye);
	Organic peroxide;		Narcotic effect;
	Self-heating;		Respiratory tract irritant;
	Emits flammable gases when in contact with water		Hazardous to ozone layer (environment)
	Oxidizer		Respiratory sensitizer;
⟨७⟩			Mutagen;
			Carcinogen;
			Reproductive toxicity;
			Target organ toxicity;
			Aspiration hazard
	Gas under pressure	*	Hazardous to aquatic environment
	Corrosive to metals		Acute toxicity (fatal or toxic)

Hazard identification numbers, utilized under European and some South American regulations, may be found in the top half of an orange panel on some intermodal bulk containers. The 4-digit ID number is in the bottom half of the orange panel.

The hazard identification number in the top half of the orange panel consists of two or three digits. In general, the digits indicate the following hazards:

- 2 Emission of gas due to pressure or chemical reaction
- 3 Flammability of liquids (vapors) and gases or self-heating liquid
- 4 Flammability of solids or self-heating solid
- 5 Oxidizing (fire-intensifying) effect
- 6 Toxicity or risk of infection
- 7 Radioactivity
- **8 -** Corrosivity
- 9 Risk of spontaneous violent reaction

NOTE: The risk of spontaneous violent reaction within the meaning of digit 9 includes the possibility, due to the nature of a substance, of a risk of explosion, disintegration and polymerization reaction followed by the release of considerable heat or flammable and/or toxic gases.

- Doubling of a digit indicates an intensification of that particular hazard (i.e., 33, 66, 88).
- Where the hazard associated with a substance can be adequately indicated by a single digit, the digit is followed by a zero (i.e., 30, 40, 50).
- A hazard identification number prefixed by the letter "X" indicates that the substance will react dangerously with water (i.e., X88).

The hazard identification numbers listed below have the following meanings:

20 22 223 225 23 238 239 25 26 263 265 268 28	Asphyxiant gas or gas with no subsidiary hazard Refrigerated liquefied gas, asphyxiant Refrigerated liquefied gas, flammable Refrigerated liquefied gas, oxidizing (fire-intensifying) Flammable gas Gas, flammable corrosive Flammable gas which can spontaneously lead to violent reaction Oxidizing (fire-intensifying) gas Toxic gas Toxic gas, flammable Toxic gas, oxidizing (fire-intensifying) Toxic gas, corrosive Gas, corrosive
30	Flammable liquid (flash-point between 23°C and 60°C, inclusive), or flammable liquid or solid in the molten state with a flash-point above 60°C, heated to a temperature equal to or above its flash point, or self-heating liquid
323 X323 33 333	Flammable liquid which reacts with water, emitting flammable gases Flammable liquid which reacts dangerously with water, emitting flammable gases Highly flammable liquid (flash-point below 23°C) Pyrophoric liquid
X333 336 338	Pyrophoric liquid which reacts dangerously with water Highly flammable liquid, toxic Highly flammable liquid, corrosive
X338 339 36	Highly flammable liquid, corrosive, which reacts dangerously with water Highly flammable liquid which can spontaneously lead to violent reaction Flammable liquid (flash-point between 23°C and 60°C, inclusive), slightly toxic, o self-heating liquid, toxic
362 X362	Flammable liquid, toxic, which reacts with water, emitting flammable gas Flammable liquid, toxic, which reacts dangerously with water, emitting flammable gases
368 38	Flammable liquid, toxic, corrosive Flammable liquid (flash-point between 23°C and 60°C, inclusive), slightly corrosive or self-heating liquid, corrosive
382 X382 39	Flammable liquid, corrosive, which reacts with water, emitting flammable gases Flammable liquid, corrosive, which reacts dangerously with water, emitting flammable gases Flammable liquid, which can spontaneously lead to violent reaction
40	Flammable solid, or self-reactive substance, or self-heating substance, or polymerizing substance

423	Solid which reacts with water, emitting flammable gases, or flammable solid which reacts with water, emitting flammable gases, or self-heating solid which reacts with water, emitting flammable gases
X423	Solid which reacts dangerously with water, emitting flammable gases, or flammable solid which reacts dangerously with water, emitting flammable gases, or self-heating solid which reacts dangerously with water, emitting flammable gases
43	Spontaneously flammable (pyrophoric) solid
X432	Spontaneously flammable (pyrophoric) solid which reacts dangerously with water, emitting flammable gases
44	Flammable solid, in the molten state at an elevated temperature
446	Flammable solid, toxic, in the molten state at an elevated temperature
46	Flammable or self-heating solid, toxic
462	Toxic solid which reacts with water, emitting flammable gases
X462	Solid which reacts dangerously with water, emitting toxic gases
48 482	Flammable or self-heating solid, corrosive Corrosive solid which reacts with water, emitting flammable gases
402 X482	Solid which reacts dangerously with water, emitting corrosive gases
50 539	Oxidizing (fire-intensifying) substance Flammable organic peroxide
55	Strongly oxidizing (fire-intensifying) substance
556	Strongly oxidizing (fire-intensifying) substance, toxic
558	Strongly oxidizing (fire-intensifying) substance, corrosive
559	Strongly oxidizing (fire-intensifying) substance which can spontaneously lead to violent reaction
56	Oxidizing substance (fire-intensifying), toxic
568	Oxidizing substance (fire-intensifying), toxic, corrosive
58	Oxidizing substance (fire-intensifying), corrosive
59	Oxidizing substance (fire-intensifying), which can spontaneously lead to
	violent reaction
60	Toxic or slightly toxic substance
606	Infectious substance
623	Toxic liquid, which reacts with water, emitting flammable gases
63 638	Toxic substance, flammable (flash-point between 23°C and 60°C, inclusive)
639	Toxic substance, flammable, (flash-point between 23°C and 60°C, inclusive), corrosive Toxic substance, flammable, (flash-point not above 60°C) which can spontaneously
003	lead to violent reaction
64	Toxic solid, flammable or self-heating
642	Toxic solid which reacts with water, emitting flammable gases
65	Toxic substance, oxidizing (fire-intensifying)
66	Highly toxic substance

663 664 665 668 X668 669 68	Highly toxic substance, flammable (flash-point not above 60°C) Highly toxic solid, flammable or self-heating Highly toxic substance, oxidizing (fire-intensifying) Highly toxic substance, corrosive Highly toxic substance, corrosive, which reacts dangerously with water Highly toxic substance which can spontaneously lead to violent reaction Toxic substance, corrosive Toxic or slightly toxic substance which can spontaneously lead to violent reaction
70 768 78	Radioactive material Radioactive material, toxic, corrosive Radioactive material, corrosive
80 X80 823 83	Corrosive or slightly corrosive substance Corrosive or slightly corrosive substance which reacts dangerously with water Corrosive liquid which reacts with water, emitting flammable gases Corrosive or slightly corrosive substance, flammable (flash-point between 23°C and 60°C, inclusive)
X83	Corrosive or slightly corrosive substance, flammable (flash-point between 23°C and 60°C, inclusive), which reacts dangerously with water
839	Corrosive or slightly corrosive substance, flammable (flash-point between 23°C and 60°C, inclusive), which can spontaneously lead to violent reaction
X839	Corrosive or slightly corrosive substance, flammable (flash-point between 23°C and 60°C, inclusive), which can spontaneously lead to violent reaction and which reacts dangerously with water
84 842 85 856 86 88	Corrosive solid, flammable or self-heating Corrosive solid which reacts with water, emitting flammable gases Corrosive or slightly corrosive substance, oxidizing (fire-intensifying) Corrosive or slightly corrosive substance, oxidizing (fire-intensifying) and toxic Corrosive or slightly corrosive substance, toxic Highly corrosive substance
X88 883 884 885 886 X886	Highly corrosive substance which reacts dangerously with water Highly corrosive substance, flammable (flash-point between 23°C and 60°C, inclusive) Highly corrosive solid, flammable or self-heating Highly corrosive substance, oxidizing (fire-intensifying) Highly corrosive substance, toxic Highly corrosive substance, toxic, which reacts dangerously with water Corrosive or slightly corrosive substance which can spontaneously lead to violent reaction
90 99	Environmentally hazardous substance; miscellaneous dangerous substances Miscellaneous dangerous substance carried at an elevated temperature

PIPELINE TRANSPORTATION

In North America, hazardous materials/dangerous goods are commonly transported through millions of miles of pipelines and related structures. Products transported include natural gas, natural gas liquids, crude oil, gasoline, diesel fuel, anhydrous ammonia, carbon dioxide, jet fuel, and other commodities. Although most pipelines are buried, often there are aboveground structures and markers indicating the presence of pipelines. First responders should be aware of the pipelines in their jurisdictions, the products they transport, and the operators responsible for those pipelines. Proactive relationships can be beneficial in the safe and effective management of pipeline emergencies.

Types of Pipelines

Natural Gas Pipelines

Natural Gas Transmission Pipelines

Large-diameter, steel pipelines transport flammable natural gas (toxic and non-toxic) at very high pressures ranging from 200 to 1,500 psi*. Natural gas in transmission pipelines is odorless — generally *not odorized* with mercaptan (the "rotten egg" smell); however, natural gas containing hydrogen sulfide (H₂S) will have a distinct "rotten egg" odor.

Natural Gas Distribution Pipelines

Natural gas is delivered directly to customers via distribution pipelines. These pipelines are typically smaller-diameter, lower-pressure pipelines constructed of steel, plastic, or cast iron. Natural gas in distribution pipelines is odorized with mercaptan (the "rotten egg" smell).

Natural Gas-Gathering and Natural Gas Well Production Pipelines

Natural gas-gathering/well production pipelines collect "raw" natural gas from wellheads and transport the product to gas-processing and/or gas-treating plants. These gathering pipelines carry natural gas mixed with some quantity of natural gas liquids, water, and, in some areas, contaminants such as toxic hydrogen sulfide (H₂S). Natural gas in these pipelines is *not odorized* with mercaptan (the "rotten egg" smell); however, natural gas that contains hydrogen sulfide (H₂S) will have a distinct "rotten egg" odor.

Hazardous Liquid and Highly Volatile Liquid Pipelines

Hazardous Liquid Pipelines

Crude oil, refined petroleum products (e.g. gasoline, kerosene, jet fuel or diesel) and hazardous liquids (e.g. anhydrous ammonia or ethanol) are often transported by pipelines.

Many liquid petroleum pipelines transport different types of liquid petroleum in the same pipeline. To do so, the pipeline operator sends different products in "batches." For example, an operator could send gasoline for several hours, and then switch to jet fuels, before switching to diesel fuel.

^{*} Data from http://naturalgas.org/naturalgas/transport/

Highly Volatile Liquid (HVL) Pipelines

HVL pipelines transport hazardous liquids which will form a vapor cloud when released to the atmosphere and which have a vapor pressure exceeding 276 KPa (40 psia) at 37.8°C (100°F). An example of an HVL is liquid propane.

Pipeline Markers

Since pipelines are usually buried underground, pipeline markers are used to indicate their presence in an area along the pipeline route. Of the three types of pipelines typically buried underground — distribution, gathering, and transmission — only transmission pipelines are marked with the following above-ground markers used to indicate their route.

Markers warn that a transmission pipeline is located in the area, identify the product transported in the line, and provide the name and telephone number of the pipeline operator to call. Markers and warning signs are located at frequent intervals along natural gas and liquid transmission pipeline rights-of-way, and are located at prominent points such as where pipelines intersect streets, highways, railways, or waterways.

Pipeline markers only indicate the presence of a pipeline—they do not indicate the exact location of the pipeline. Pipeline locations within a right-of-way may vary along its length and there may be multiple pipelines located in the same right-of-way.

NOTE:

- Markers for pipelines transporting materials containing dangerous levels of hydrogen sulfide (H,S) may have markers that say: "Sour" or "Poison."
- Natural gas distribution pipelines are not marked with above-ground signs.
- Gathering/production pipelines are often not marked with above-ground signs.

Pipeline Structures (Above Ground)

Natural Gas Transmission Pipelines: Compressor stations, valves, metering stations.

Natural Gas Distribution Pipelines: Regulator stations, customer meters and

regulators, valve box covers.

Natural Gas Gathering/Well

Production Pipelines:

Compressor stations, valves, metering stations,

wellheads, piping, manifolds.

Petroleum and Hazardous

Liquids Pipelines:

Storage tanks, valves, pump stations, loading racks.

Indications of Pipeline Leaks and Ruptures

Pipeline releases can range from relatively minor leaks to catastrophic ruptures. It is important to remember that gases and liquids behave differently once they are released from a pipeline. Generally, the following could be indications of a pipeline leak or rupture:

- · Hissing, roaring, or explosive sound
- Flames appearing from the ground or water (perhaps very large flames)
- Vapor cloud/fog/mist
- Dirt/debris/water blowing out of the ground
- Liquids bubbling up from the ground or bubbling in water
- Distinctive, unusually strong odor of rotten eggs, mercaptan (an odorant in some natural gas pipelines), skunk, or petroleum
- Discolored/dead vegetation or discolored snow above a pipeline right-of-way
- Oil slick or sheen on flowing/standing water
- · An area of frozen ground in the summer
- An unusual area of melted snow in the winter.

General Considerations for Responding to a Pipeline Emergency

- Safety First! Your safety and the safety of the community you protect is top priority.
 Remember to approach a pipeline incident from upwind, uphill, and upstream while using air monitoring equipment to detect for the presence of explosive and/or toxic levels of hazardous materials/dangerous goods.
 - Always wear proper personal protective equipment. Be prepared for a flash fire. Use shielding to protect first responders in the event of an explosion. Use respiratory protection.
 - Never operate pipeline valves (except in coordination with the pipeline operator);
 this could make the incident worse and put you and others in danger.
 - Never attempt to extinguish a pipeline fire before supply is shut off; this could result
 in the accumulation of a large flammable/explosive vapor cloud or liquid pool that
 could make the incident worse and put you and others in danger.
 - Do not walk or drive into a vapor cloud in an attempt to identify the product(s) involved.
 - Do not park over manholes or storm drains.
 - Do not approach the scene with vehicles or mechanical equipment until the isolation zones have been established (vehicles are a potential ignition source).
- Secure the site and determine a plan to evacuate or shelter-in-place. Work with other responders to deny entry to an area.
- Identify the product and the operator. If safe to do so, you may be able to identify the product based on its characteristics or other external clues. Look for pipeline markers indicating the product, operator of the pipeline, and their emergency contact information. Pipelines transport many different types of products, including gases, liquids, and highly volatile liquids that are in a liquid state inside the pipeline but in a gaseous state if released from the pipeline. The vapor density of gases determines if they rise or sink in air. Viscosity and specific gravity also are important characteristics of hazardous liquids to consider. Identification of the product also will help you determine the appropriate distance for isolation of the affected area.
- Notify the pipeline operator using the emergency contact information on the pipeline marker or other contact information you may have received from the pipeline operator. The pipeline operator will be a resource to you in the response.
- Establish a command post. Implement the Incident Command Structure, as needed, and be prepared to implement a Unified Command as additional stakeholders and resources arrive.

Other Important Considerations

- If no flames are present, do not introduce ignition sources such as open flames, running vehicles, or electrical equipment (cell phones, pagers, two-way radios, lights, garage door openers, fans, door bells, etc.).
- Abandon any equipment used in or near the area of the pipeline release.
- If there is no risk to your safety or the safety of others, move far enough away from any noise coming from the pipeline to allow for normal conversation.
- Pipelines often are close to other public utilities, railroads, and highways; these can be impacted by pipeline releases or may be potential ignition sources.
- Natural gas can migrate underground from the source of a release to other areas via the
 path of least resistance (including through sewers, water lines, and geologic formations).

Considerations for Establishing Protective Action Distances

- Type of product
 - If you know the material involved, identify the three-digit guide number by looking up
 the name in the alphabetical list (blue-bordered pages), then using the three-digit
 guide number, consult the recommendations in the assigned guide.
- Pressure and diameter of pipe (the pipeline operator can tell you this if you don't already know it)
- Timing of valve closure by the pipeline operator (quickly for automated valves; longer for manually operated valves)
- Dissipation time of the product in the pipeline once valves are closed
- Ability to conduct atmospheric monitoring and/or air sampling
- Weather (wind direction, etc.)
- Local variables such as topography, population density, demographics, and fire suppression methods available
- Nearby building construction material/density
- Natural and man-made barriers (such as highways, railroads, rivers, etc.)

U.S. Pipeline Resources

- <u>U.S. Pipeline Locations:</u> The National Pipeline Mapping System (NPMS) https://www.npms.phmsa.dot.gov indicates the general locations of hazardous liquids and natural gas transmission pipelines found within the U.S. The pipelines depicted in the NPMS are within 500 feet of their actual locations. Emergency responders may apply for an NPMS web viewer account that will allow access to more detailed information than is available to the general public. The NPMS does not contain gathering/production or natural gas distribution pipelines.
- <u>U.S. Pipeline Emergency Response Training:</u> Where appropriate, reference pipeline emergencies training materials produced by the Pipeline and Hazardous Materials Safety Administration. Your state or jurisdiction also may provide training on how to handle the response to a pipeline incident.

Other Resources:

Pipeline Association for Public Awareness https://www.pipelineawareness.org/

U.S. DOT, Pipeline and Hazardous Materials Safety Administration https://www.phmsa.dot.gov/safety-awareness/pipeline/safety-awareness-overview

Pipeline Emergency Responders Initiative (PERI)

https://www.phmsa.dot.gov/pipeline/peri/pipeline-emergency-responders-initiative-peri

Canadian Pipeline Resources

Canadian Pipeline Locations: The Canadian Energy Pipeline Association (CEPA) provides the general locations of natural gas and liquid pipelines found within Canada.

https://www.cepa.com

INTRODUCTION TO YELLOW PAGES

For entries highlighted in green follow these steps:

IF THERE IS NO FIRE:

- Go directly to **Table 1** (green-bordered pages)
- Look up the ID number and name of material
- Identify initial isolation and protective action distances
- Also consult the appropriate Orange Guide

IF A FIRE IS INVOLVED:

- Use the appropriate Orange Guide for **EVACUATION** distances
- Also protect in downwind direction according to Table 1 for residual material release
- Note 1: If the name in Table 1 is shown with (when spilled in water), these materials produce large amounts of Toxic Inhalation Hazard (TIH) (PIH in the US) gases when spilled in water. Some Water Reactive materials are also TIH materials themselves (e.g., UN1746 (Bromine trifluoride), UN1836 (Thionyl chloride)). In these instances, two entries are provided in Table 1 for land-based and water-based spills. If a water-reactive material only has one entry in Table 1 for (when spilled in water) and the product is NOT spilled in water, Table 1 and Table 2 do not apply. You will find safe distances in the appropriate orange-bordered guide.
- **Note 2: Explosives** are not individually listed by their ID number because in an emergency situation, the response will be based only on the division of the explosive, not on the individual explosive.

For divisions 1.1, 1.2, 1.3 and 1.5, refer to GUIDE 112. For divisions 1.4 and 1.6, refer to GUIDE 114.

Note 3: Chemical warfare agents do not have an assigned ID number because they are not commercially transported. In an emergency situation, the assigned orange guide will provide guidance for the initial response. Also consult "Criminal or Terrorist Use of Chemical, Biological and Radiological Agents", pp. 368 to 372.

ID Guide Name of Material No. No.

ID Guide Name of Material No. No.

117	AC
154	Adamsite
112	Ammonium nitrate-fuel oil mixtures
158	Biological agents
112	Blasting agent, n.o.s.
153	Buzz
153	BZ
159	CA
125	CG
125	CK
153	CN
153	CS
154	CX
151	DA
153	DC
154	DM
125	DP
151	ED
— 112	Explosives, division 1.1, 1.2, 1.3 or 1.5
114	Explosives, division 1.4 or 1.6
153	GA
153	GB
153	GD
153	GF
153	Н
153	HD
153	HL
153	HN-1
153	HN-2
153	HN-3

	153	L (Lewisite)
	153	Lewisite
	152	MD
	153	Mustard
	153	Mustard Lewisite
	152	PD
	119	SA
	153	Sarin
	153	Soman
	153	Tabun
	153	Thickened GD
	153	Toxins
	153	VX
1001	116	Acetylene, dissolved
1002	122	Air, compressed
1003	122	Air, refrigerated liquid (cryogenic liquid)
1005	125	Ammonia, anhydrous
1005	125	Anhydrous ammonia
1006	120	Argon
1006	120	Argon, compressed
1008	125	Boron trifluoride
1008	125	Boron trifluoride, compressed
1009	126	Bromotrifluoromethane
1009	126	Refrigerant gas R-13B1
1010	116P	Butadienes, stabilized
1010	116P	Butadienes and hydrocarbon mixture, stabilized
1010	116P	Hydrocarbon and butadienes mixture, stabilized
1011	115	Butane
1012	115	Butylene

ID Guid No. No.	de Name of Material		Guid No.	de Name of Material
1013 120	Carbon dioxide	1033	115	Dimethyl ether
1013 120	Carbon dioxide, compressed	1035	115	Ethane
1014 122	Carbon dioxide and Oxygen	1035	115	Ethane, compressed
	mixture, compressed	1036	118	Ethylamine
1014 122	Oxygen and Carbon dioxide mixture, compressed	1037	115	Ethyl chloride
1015 126	Carbon dioxide and Nitrous oxide mixture	1038	115	Ethylene, refrigerated liquid (cryogenic liquid)
1015 126	Nitrous oxide and Carbon	1039	115	Ethyl methyl ether
	dioxide mixture	1039	115	Methyl ethyl ether
1016 119	Carbon monoxide	1040	119P	Ethylene oxide
1016 119	Carbon monoxide, compressed	1040	119P	Ethylene oxide with Nitrogen
1017 124	Chlorine	1041	115	Carbon dioxide and Ethylene oxide mixture, with more than
1018 126 1018 126	Chlorodifluoromethane Refrigerant gas R-22			9% but not more than 87% Ethylene oxide
1020 126	Chloropentafluoroethane	1041	115	Ethylene oxide and Carbon
1020 126	Refrigerant gas R-115			dioxide mixture, with more than 9% but not more than 87% Ethylene oxide
1021 126	1-Chloro-1,2,2,2- tetrafluoroethane	1043	125	Fertilizer, ammoniating solution,
1021 126	Refrigerant gas R-124			with free Ammonia
1022 126	Chlorotrifluoromethane	1044	126	Fire extinguishers with compressed or liquefied gas
1022 126	Refrigerant gas R-13	1045	124	Fluorine
1023 119	Coal gas	1045	124	Fluorine, compressed
1023 119	Coal gas, compressed	1046	120	Helium
1026 119	Cyanogen	1046	120	Helium, compressed
1027 115	Cyclopropane	1048	125	Hydrogen bromide, anhydrous
1028 126	Dichlorodifluoromethane	1049	115	Hydrogen
1028 126	Refrigerant gas R-12	1049	115	Hydrogen, compressed
1029 126	Dichlorofluoromethane	1050	125	Hydrogen chloride, anhydrous
1029 126	Refrigerant gas R-21	1051	117P	Hydrogen cyanide, anhydrous,
1030 115	1,1-Difluoroethane	1051	4470	stabilized
1030 115	Refrigerant gas R-152a			Hydrogen cyanide, stabilized
1032 118	Dimethylamine, anhydrous	1052	125	Hydrogen fluoride, anhydrous

	Guid No.	de Name of Material	ID No.	Guid No.	de Name of Material
1053	117	Hydrogen sulfide	1071	119	Oil gas
1053	117	Hydrogen sulphide	1071	119	Oil gas, compressed
1055	115	Isobutylene	1072	122	Oxygen
1056	120	Krypton	1072	122	Oxygen, compressed
1056	120	Krypton, compressed	1073	122	Oxygen, refrigerated liquid
1057	115	Lighter refills containing flammable gas	1075	115	(cryogenic liquid) Butane
1057	115	Lighters containing flammable	1075	115	Butylene
		gas	1075	115	Isobutane
1057	128	Lighters, non-pressurized, containing flammable liquid	1075	115	Isobutylene
1058	120	Liquefied gases, non-	1075	115	Liquefied petroleum gas
		flammable, charged with Nitrogen, Carbon dioxide or	1075	115	LPG
		Air	1075	115	Petroleum gases, liquefied
1060	116P	Methylacetylene and	1075	115	Propane
		Propadiene mixture, stabilized	1075	115	Propylene
1060	116P	Propadiene and	1076	125	Phosgene
		Methylacetylene mixture, stabilized	1077	115	Propylene
1061	118	Methylamine, anhydrous	1078	126	Dispersant gas, n.o.s.
1062	123	Methyl bromide	1078	126	Refrigerant gas, n.o.s.
1063	115	Methyl chloride	1079	125	Sulfur dioxide
1063	115	Refrigerant gas R-40	1079	125	Sulphur dioxide
1064	117	Methyl mercaptan	1080	126	Sulfur hexafluoride
1065	120	Neon	1080	126	Sulphur hexafluoride
1065	120	Neon, compressed	1081	116P	Tetrafluoroethylene, stabilized
1066	120	Nitrogen	1082	119P	Refrigerant gas R-1113
1066	120	Nitrogen, compressed	1082	119P	Trifluorochloroethylene, stabilized
1067		Dinitrogen tetroxide	1083	118	Trimethylamine, anhydrous
1067	124	Nitrogen dioxide	1085	116P	Vinyl bromide, stabilized
1069	125	Nitrosyl chloride	1086	116P	Vinyl chloride, stabilized
1070	122	Nitrous oxide	1087	116P	Vinyl methyl ether, stabilized
1070	122	Nitrous oxide, compressed	1088	127	Acetal

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
1089 129P Acetaldehyde	1131 131 Carbon bisulfide
1090 127 Acetone	1131 131 Carbon bisulphide
1091 127 Acetone oils	1131 131 Carbon disulfide
1092 131P Acrolein, stabilized	1131 131 Carbon disulphide
1093 131P Acrylonitrile, stabilized	1133 128 Adhesives (flammable)
1098 131 Allyl alcohol	1134 130 Chlorobenzene
1099 131P Allyl bromide	1135 131 Ethylene chlorohydrin
1100 131P Allyl chloride	1136 128 Coal tar distillates, flammable
1104 129 Amyl acetates	1139 127 Coating solution
1105 129 Pentanols	1143 131P Crotonaldehyde
1106 132 Amylamine	1143 131P Crotonaldehyde, stabilized
1107 129 Amyl chloride	1144 128 Crotonylene
1108 128 n-Amylene	1145 128 Cyclohexane
1108 128 1-Pentene	1146 128 Cyclopentane
1109 129 Amyl formates	1147 130 Decahydronaphthalene
1110 127 n-Amyl methyl ketone	1148 129 Diacetone alcohol
1110 127 Methyl amyl ketone	1149 128 Butyl ethers
1111 130 Amyl mercaptan	1149 128 Dibutyl ethers
1112 128 Amyl nitrate	1150 130P 1,2-Dichloroethylene
1113 129 Amyl nitrite	1152 130 Dichloropentanes
1114 130 Benzene	1153 127 Ethylene glycol diethyl ether
1120 129 Butanols	1154 132 Diethylamine
1123 129 Butyl acetates	1155 127 Diethyl ether
1125 132 n-Butylamine	1155 127 Ethyl ether
1126 130 1-Bromobutane	1156 127 Diethyl ketone
1126 130 n-Butyl bromide	1157 128 Diisobutyl ketone
1127 130 n-Butyl chloride	1158 132 Diisopropylamine
1127 130 Chlorobutanes	1159 127 Diisopropyl ether
1128 129 n-Butyl formate 1129 129P Butyraldehyde	1160 132 Dimethylamine, aqueous solution
1130 128 Camphor oil	1160 132 Dimethylamine, solution
1100 120 Campior on	1161 129 Dimethyl carbonate
Page 32	

Guide Name of Material ID **Guide Name of Material** ID No. No. No. No. Dimethyldichlorosilane Ethylhexaldehydes 1162 **155** 1191 **129** 1163 **131** Dimethylhydrazine. 1191 **129** Octyl aldehydes unsymmetrical 1192 **129** Ethyl lactate 1164 **130** Dimethyl sulfide Ethyl methyl ketone 1193 **127** 1164 **130** Dimethyl sulphide 1193 **127** Methyl ethyl ketone 1165 **127** Dioxane Ethyl nitrite, solution 1194 **131** 1166 **127** Dioxolane Ethyl propionate 1195 **129** 1167 128P Divinyl ether, stabilized 1196 **155** Ethyltrichlorosilane 1169 **127** Extracts, aromatic, liquid 1197 **127** Extracts, flavoring, liquid 1170 **127** Ethanol 1197 **127** Extracts, flavouring, liquid Ethanol, solution 1170 **127** 1100 122 Formaldehyde solution 1 1 1 1 1 1

1170	127	Ethyl alcohol	1198	132	flammable
1170	127	Ethyl alcohol, solution	1198	132	Formalin (flammable)
1171	127	Ethylene glycol monoethyl ether	1199	153P	Furaldehydes
1172	129	Ethylene glycol monoethyl ether acetate	1201	127	Fusel oil
1173	129	Ethyl acetate	1202	_	Diesel fuel
1175	130	Ethylbenzene	1202	_	Fuel oil
1176		Ethyl borate	1202	128	Gas oil
	-	· '	1202	128	Heating oil, light
1177		2-Ethylbutyl acetate	1203	128	Gasohol
1178		2-Ethylbutyraldehyde	1203	128	Gasoline
1179	127	Ethyl butyl ether	1203	128	Motor spirit
1180	130	Ethyl butyrate	1203	128	Petrol
1181	155	Ethyl chloroacetate	1204	127	Nitroglycerin, solution in
1182		Ethyl chloroformate			alcohol, with not more than 1% Nitroglycerin
1183		Ethyldichlorosilane	1206	128	Heptanes
1184	131	Ethylene dichloride	1207		Hexaldehyde
1185	131P	Ethyleneimine, stabilized	1208		Hexanes
1188	127	Ethylene glycol monomethyl ether	1208	_	Neohexane
4400	400				
1189	129	Ethylene glycol monomethyl ether acetate	1210		Ink, printer's, flammable
1190	129	Ethyl formate	1210	129	Printing ink, flammable
1100	0	Lingi tormato			D 0
					Page 3

ID Gui	de Name of Material		Guid No.	de Name of Material
1210 129	Printing ink related material, flammable	1242	139	Methyldichlorosilane
1210 120		1243		Methyl formate
1212 129	Isobutanol	1244		Methylhydrazine
1212 129	Isobutyl alcohol	1245		Methyl isobutyl ketone
1213 129	Isobutyl acetate			Methyl isopropenyl ketone,
1214 132	Isobutylamine	1240	1271	stabilized
1216 128	Isooctenes	1247	129P	Methyl methacrylate monomer,
1218 130F	Isoprene, stabilized	1040	100	stabilized
1219 129	Isopropanol	1248		Methyl propionate
1219 129	Isopropyl alcohol	1249		Methyl propyl ketone
1220 129	Isopropyl acetate	1250		Methyltrichlorosilane
1221 132	Isopropylamine			Methyl vinyl ketone, stabilized
1222 130	Isopropyl nitrate	1259		Nickel carbonyl
1223 128	Kerosene	1261		Nitromethane
1224 127	Ketones, liquid, n.o.s.	1262	_	Isooctane
1228 131	Mercaptan mixture, liquid,	1262		Octanes
	flammable, poisonous, n.o.s.	1263	_	Paint (flammable)
1228 131	Mercaptan mixture, liquid, flammable, toxic, n.o.s.	1263	128	Paint related material (flammable)
1228 131	Mercaptans, liquid, flammable,	1264	129	Paraldehyde
1000 101	poisonous, n.o.s.	1265	128	Isopentane
1228 131	Mercaptans, liquid, flammable, toxic, n.o.s.	1265	128	Pentanes
1229 129	Mesityl oxide	1266	127	Perfumery products, with flammable solvents
1230 131	Methanol	1267	128	Petroleum crude oil
1230 131	Methyl alcohol	1268	128	Petroleum distillates, n.o.s.
1231 129	Methyl acetate	1268	128	Petroleum products, n.o.s.
1233 130	Methylamyl acetate	1270	128	Oil, petroleum
1234 127	Methylal	1270	128	Petroleum oil
1235 132	Methylamine, aqueous solution	1272	129	Pine oil
1237 129	Methyl butyrate	1274	129	n-Propanol
1238 155	Methyl chloroformate	1274	129	Propyl alcohol, normal
1239 131	Methyl chloromethyl ether	1275	129P	Propionaldehyde

1275 **129P** Propionaldehyde

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
1276 129 n-Propyl acetate	1308 170 Zirconium suspended in a flammable liquid
1277 132 Propylamine 1278 129 1-Chloropropane	1308 170 Zirconium suspended in a liquid (flammable)
1278 129 Propyl chloride	1309 170 Aluminum powder, coated
1279 130 1,2-Dichloropropane 1280 127P Propylene oxide	1310 113 Ammonium picrate, wetted with not less than 10% water
1281 129 Propyl formates	1312 133 Borneol
1282 129 Pyridine	1313 133 Calcium resinate
1286 127 Rosin oil	1314 133 Calcium resinate, fused
1287 127 Rubber solution	1318 133 Cobalt resinate, precipitated
1288 128 Shale oil	1320 113 Dinitrophenol, wetted with not less than 15% water
1289 132 Sodium methylate, solution in alcohol	1321 113 Dinitrophenolates, wetted with not less than 15% water
1292 129 Ethyl silicate 1292 129 Tetraethyl silicate	1322 113 Dinitroresorcinol, wetted with not less than 15% water
1293 127 Tinctures, medicinal	1323 170 Ferrocerium
1294 130 Toluene	1324 133 Films, nitrocellulose base
1295 139 Trichlorosilane	1325 133 Flammable solid, organic, n.o.s.
1296 132 Triethylamine	1325 133 Fusee (railway or highway)
1297 132 Trimethylamine, aqueous solution	1326 170 Hafnium powder, wetted with not less than 25% water
1298 155 Trimethylchlorosilane 1299 128 Turpentine	1327 133 Bhusa, wet, damp or contaminated with oil
1300 128 Turpentine substitute	1327 133 Hay, wet, damp or contaminated with oil
1301 129P Vinyl acetate, stabilized	1327 133 Straw, wet, damp or
1302 127P Vinyl ethyl ether, stabilized	contaminated with oil
1303 130P Vinylidene chloride, stabilized	1328 133 Hexamethylenetetramine
1304 127P Vinyl isobutyl ether, stabilized	1330 133 Manganese resinate
1305 155P Vinyltrichlorosilane	1331 133 Matches, "strike anywhere"
1305 155P Vinyltrichlorosilane, stabilized	1332 133 Metaldehyde
1306 129 Wood preservatives, liquid	1333 170 Cerium, slabs, ingots or rods
1307 130 Xylenes	1334 133 Naphthalene, crude

ID Gui	de Name of Material	ID Gui No. No	
1334 133	Naphthalene, refined	1346 170	Silicon powder, amorphous
1336 113	Nitroguanidine, wetted with not less than 20% water	1347 113	Silver picrate, wetted with not less than 30% water
1336 113	Picrite, wetted with not less than 20% water	1348 113	Sodium dinitro-o-cresolate, wetted with not less than 15% water
1337 113	Nitrostarch, wetted with not less than 20% water	1349 113	Sodium picramate, wetted with
1338 133	Phosphorus, amorphous	4050 400	not less than 20% water
1338 133	Red phosphorus	1350 133	
1339 139	Phosphorus heptasulfide,	1350 133	Sulphur
	free from yellow and white Phosphorus	1352 170	Titanium powder, wetted with not less than 25% water
1339 139	Phosphorus heptasulphide, free from yellow and white Phosphorus	1353 133	Fabrics impregnated with weakly nitrated Nitrocellulose, n.o.s.
1340 139	Phosphorus pentasulfide, free from yellow and white Phosphorus	1353 133	Fibers impregnated with weakly nitrated Nitrocellulose, n.o.s.
1340 139	Phosphorus pentasulphide,	1353 133	Fibres impregnated with weakly nitrated Nitrocellulose, n.o.s.
	free from yellow and white Phosphorus	1354 113	Trinitrobenzene, wetted with not less than 30% water
1341 139	Phosphorus sesquisulfide, free from yellow and white Phosphorus	1355 113	Trinitrobenzoic acid, wetted with not less than 30% water
1341 139	Phosphorus sesquisulphide, free from yellow and white	1356 113	TNT, wetted with not less than 30% water
1343 139	Phosphorus Phosphorus trisulfide, free from	1356 113	Trinitrotoluene, wetted with not less than 30% water
1343 139	yellow and white Phosphorus Phosphorus trisulphide, free	1357 113	Urea nitrate, wetted with not less than 20% water
	from yellow and white Phosphorus	1358 170	Zirconium powder, wetted with not less than 25% water
1344 113	Picric acid, wetted with not less than 30% water	1360 139	Calcium phosphide
1344 113	Trinitrophenol, wetted with not less than 30% water	1361 133	Carbon, animal or vegetable origin
1345 133	Rubber scrap, powdered or	1361 133	Charcoal
	granulated	1362 133	Carbon, activated
1345 133	Rubber shoddy, powdered or	1363 135	Copra
Daga 00	granulated	1364 133	Cotton waste, oily

ID Gui	de Name of Material		Gui No.	de Name of Material
1365 133	Cotton	1382	135	Potassium sulphide, with
1365 133	Cotton, wet			less than 30% water of crystallization
1366 135	Diethylzinc	1383	135	Aluminum powder, pyrophoric
1369 135	p-Nitrosodimethylaniline	1383	135	Pyrophoric alloy, n.o.s.
1370 135	Dimethylzinc	1383	135	Pyrophoric metal, n.o.s.
1372 133	Fibers, animal or vegetable, burnt, wet or damp	1384		Sodium dithionite
1372 133	Fibres, animal or vegetable,	1384		Sodium hydrosulfite
	burnt, wet or damp	1384		Sodium hydrosulphite
1373 133	Fabrics, animal or vegetable or synthetic, n.o.s. with oil	1385		Sodium sulfide, anhydrous
1373 133	Fibers, animal or vegetable or synthetic, n.o.s. with oil	1385	135	Sodium sulfide, with less than 30% water of crystallization
1373 133	Fibres, animal or vegetable or	1385	135	Sodium sulphide, anhydrous
13/3 133	synthetic, n.o.s. with oil	1385	135	Sodium sulphide, with less than 30% water of crystallization
1374 133	Fish meal, unstabilized	1386	135	Seed cake, with more than 1.5%
1374 133	Fish scrap, unstabilized			oil and not more than 11% moisture
1376 135	Iron oxide, spent	1387	133	Wool waste, wet
1376 135	Iron sponge, spent	1389	138	Alkali metal amalgam, liquid
1378 170	Metal catalyst, wetted	1390		Alkali metal amides
1379 133	Paper, unsaturated oil treated	1391		Alkali metal dispersion
1380 135	Pentaborane	1391		Alkaline earth metal dispersion
1381 136	Phosphorus, white, dry or under water or in solution	1392		Alkaline earth metal amalgam,
1381 136	Phosphorus, yellow, dry or under water or in solution	1393	138	Alkaline earth metal alloy, n.o.s.
1381 136	White phosphorus, dry or under	1394	138	Aluminum carbide
1001 100	water or in solution	1395	139	Aluminum ferrosilicon powder
1381 136	Yellow phosphorus, dry or under water or in solution	1396	138	Aluminum powder, uncoated
1382 135	Potassium sulfide, anhydrous	1397	139	Aluminum phosphide
1382 135	Potassium sulfide, with less than 30% water of	1398	138	Aluminum silicon powder, uncoated
	crystallization	1400	138	Barium
1382 135	Potassium sulphide, anhydrous	1401	138	Calcium

ID Guid No. No.	de Name of Material	ID Gui	de Name of Material
1402 138 1403 138	Calcium carbide Calcium cyanamide, with more	1435 138 1435 138	Zinc dross Zinc residue
1404 138 1405 138 1407 138 1407 138 1408 139 1409 138 1410 138 1411 138	than 0.1% Calcium carbide Calcium hydride Calcium silicide Caesium Cesium Ferrosilicon Metal hydrides, water-reactive, n.o.s. Lithium aluminum hydride Lithium aluminum hydride, ethereal	1435 138 1436 138 1436 138 1437 138 1438 140 1439 141 1442 143 1444 140	Zinc skimmings Zinc dust Zinc powder Zirconium hydride Aluminum nitrate Ammonium dichromate Ammonium perchlorate Ammonium persulfate Ammonium persulphate
1413 138 1414 138 1415 138 1417 138 1418 138 1418 138	Lithium borohydride Lithium hydride Lithium Lithium Lithium silicon Magnesium alloys powder Magnesium powder Magnesium powder	1445 141 1446 141 1447 141 1448 141 1449 141 1450 140	Barium chlorate, solid Barium nitrate Barium perchlorate, solid Barium permanganate Barium peroxide Bromates, inorganic, n.o.s. Caesium nitrate
1420 138 1421 138 1422 138 1422 138 1423 138 1426 138 1427 138 1427 138 1431 138 1431 138	phosphide Potassium, metal alloys, liquid Alkali metal alloy, liquid, n.o.s. Potassium sodium alloys, liquid Sodium potassium alloys, liquid Rubidium Sodium borohydride Sodium hydride Sodium Sodium methylate, dry Sodium phosphide	1451 140 1452 140 1453 140 1454 140 1455 140 1456 140 1457 140 1458 140 1458 140 1459 140	Cesium nitrate Calcium chlorate Calcium chlorite Calcium nitrate Calcium perchlorate Calcium permanganate Calcium peroxide Borate and Chlorate mixture Chlorate and Borate mixture Chlorate and Magnesium chloride mixture, solid Magnesium chloride and
1433 139 1435 138	Stannic phosphides Zinc ashes	1461 140	Chlorate mixture, solid Chlorates, inorganic, n.o.s.

Page 38

ID Gui	de Name of Material	ID No.	Gui No.	de Name of Material
1462 143	Chlorites, inorganic, n.o.s.	1492	140	Potassium persulfate
1463 141	Chromium trioxide, anhydrous	1492		Potassium persulphate
1465 140	Didymium nitrate	1493	140	Silver nitrate
1466 140	Ferric nitrate	1494	140	Sodium bromate
1467 143	Guanidine nitrate	1495	140	Sodium chlorate
1469 141	Lead nitrate	1496	143	Sodium chlorite
1470 141	Lead perchlorate, solid	1498	140	Sodium nitrate
1471 140	Lithium hypochlorite, dry	1499	140	Potassium nitrate and Sodium
1471 140	Lithium hypochlorite mixture			nitrate mixture
1471 140	Lithium hypochlorite mixtures, dry	1499	140	Sodium nitrate and Potassium nitrate mixture
1472 143	Lithium peroxide	1500		Sodium nitrite
1473 140	Magnesium bromate	1502		Sodium perchlorate
1474 140	Magnesium nitrate	1503		Sodium permanganate
1475 140	Magnesium perchlorate	1504		Sodium peroxide
1476 140	Magnesium peroxide	1505		Sodium persulfate
1477 140	Nitrates, inorganic, n.o.s.	1505	140	Sodium persulphate
1479 140	Oxidizing solid, n.o.s.	1506		Strontium chlorate
1481 140	Perchlorates, inorganic, n.o.s.	1507		Strontium nitrate
1482 140	Permanganates, inorganic,	1508	_	Strontium perchlorate
	n.o.s.	1509	_	Strontium peroxide
1483 140	Peroxides, inorganic, n.o.s.	1510		Tetranitromethane
1484 140	Potassium bromate	1511		Urea hydrogen peroxide
1485 140	Potassium chlorate	1512	_	Zinc ammonium nitrite
1486 140	Potassium nitrate	1513		Zinc chlorate
1487 140	Potassium nitrate and Sodium nitrite mixture	1514		Zinc nitrate
1487 140	Sodium nitrite and Potassium	1515	_	Zinc permanganate
	nitrate mixture	1516		Zinc peroxide
1488 140	Potassium nitrite	1517	113	Zirconium picramate, wetted with not less than 20% water
1489 140	Potassium perchlorate	1541	155	Acetone cyanohydrin, stabilized
1490 140	Potassium permanganate	1544	151	Alkaloids, solid, n.o.s.
1491 144	Potassium peroxide			(poisonous)

ID Guid No. No.	de Name of Material	ID Gu No. N	uide Name of Material o.
1544 151	Alkaloid salts, solid, n.o.s. (poisonous)	1574 15	Calcium arsenate and Calcium arsenite mixture, solid
1545 155	Allyl isothiocyanate, stabilized	1574 15	
1546 151	Ammonium arsenate		arsenate mixture, solid
1547 153	Aniline	1575 15	
1548 153	Aniline hydrochloride	1577 15	, 1
1549 157	Antimony compound, inorganic, solid, n.o.s.	1578 15 1579 15	3 4-Chloro-o-toluidine
1550 151	Antimony lactate	1500 15	hydrochloride, solid
1551 151	Antimony potassium tartrate	1580 15	2 2 2 P 2
1553 154	Arsenic acid, liquid	1581 12	3 Chloropicrin and Methyl bromide mixture
1554 154	Arsenic acid, solid	1581 12	
1555 151	Arsenic bromide		mixture
1556 152	Arsenic compound, liquid, n.o.s.	1582 11	9 Chloropicrin and Methyl chloride mixture
1556 152	Methyldichloroarsine	1582 11	- money content and content promi
1557 152	Arsenic compound, solid, n.o.s.		mixture
1558 152	Arsenic	1583 15	•
1559 151	Arsenic pentoxide	1585 15	11
1560 157	Arsenic chloride	1586 15	11
1560 157	Arsenic trichloride	1587 15	-
1561 151	Arsenic trioxide	1588 15	7 Cyanides, inorganic, solid, n.o.s.
1562 152	Arsenical dust	1589 12	5 Cyanogen chloride, stabilized
1564 154	Barium compound, n.o.s.	1590 15	3 Dichloroanilines, liquid
1565 157	Barium cyanide	1591 15	2 o-Dichlorobenzene
1566 154	Beryllium compound, n.o.s.	1593 16	0 Dichloromethane
1567 134	Beryllium powder	1593 16	0 Methylene chloride
1569 131	Bromoacetone	1594 15	2 Diethyl sulfate
1570 152	Brucine	1594 15	2 Diethyl sulphate
1571 113	Barium azide, wetted with not less than 50% water	1595 15	6 Dimethyl sulfate
1572 151	Cacodylic acid	1595 15	6 Dimethyl sulphate
1573 151	Calcium arsenate	1596 15	3 Dinitroanilines

ID Gu No. No	ide Name of Material).	ID Gui No. No	de Name of Material
1597 152	Dinitrobenzenes, liquid	1617 151	Lead arsenates
1598 153	Dinitro-o-cresol	1618 151	Lead arsenites
1599 153	Dinitrophenol, solution	1620 151	Lead cyanide
1600 152	Dinitrotoluenes, molten	1621 151	London purple
1601 151	Disinfectant, solid, poisonous,	1622 151	Magnesium arsenate
1001 454	n.o.s.	1623 151	Mercuric arsenate
1601 151	Disinfectant, solid, toxic, n.o.s.	1624 154	Mercuric chloride
1602 151	Dye, liquid, poisonous, n.o.s.	1625 141	Mercuric nitrate
1602 151	Dye, liquid, toxic, n.o.s.	1626 157	Mercuric potassium cyanide
1602 151	Dye intermediate, liquid, poisonous, n.o.s.	1627 141	Mercurous nitrate
1602 151	Dye intermediate, liquid, toxic,	1629 151	Mercury acetate
	n.o.s.	1630 151	Mercury ammonium chloride
1603 155	Ethyl bromoacetate	1631 154	Mercury benzoate
1604 132	Ethylenediamine	1634 154	Mercury bromides
1605 154	Ethylene dibromide	1636 154	Mercury cyanide
1606 151	Ferric arsenate	1637 151	Mercury gluconate
1607 151	Ferric arsenite	1638 151	Mercury iodide
1608 151	Ferrous arsenate	1639 151	Mercury nucleate
1611 151	Hexaethyl tetraphosphate	1640 151	Mercury oleate
1612 123	Compressed gas and hexaethyl tetraphosphate mixture	1641 151	Mercury oxide
1612 123	Hexaethyl tetraphosphate and compressed gas mixture	1642 151	Mercury oxycyanide, desensitized
1613 154		1643 151	Mercury potassium iodide
	solution, with less than 5% Hydrogen cyanide	1644 151	Mercury salicylate
1613 154	, , ,	1645 151	Mercury sulfate
1010 101	solution, with not more than	1645 151	Mercury sulphate
1613 154	20% Hydrogen cyanide	1646 151	Mercury thiocyanate
1613 154	Hydrogen cyanide, aqueous solution, with not more than 20% Hydrogen cyanide	1647 151	Ethylene dibromide and Methyl bromide mixture, liquid
1614 152	Hydrogen cyanide, stabilized (absorbed)	1647 151	Methyl bromide and Ethylene dibromide mixture, liquid
1616 151	Lead acetate	1648 127	Acetonitrile

ID No.	Guid No.	de Name of Material	ID No.	Guid No.	de Name of Material
1649	152	Motor fuel anti-knock mixture	1680	157	Potassium cyanide, solid
1650	153	beta-Naphthylamine, solid	1683	151	Silver arsenite
1650	153	Naphthylamine (beta), solid	1684	151	Silver cyanide
1651	153	Naphthylthiourea	1685	151	Sodium arsenate
1652	153	Naphthylurea	1686	154	Sodium arsenite, aqueous
1653	151	Nickel cyanide			solution
1654	151	Nicotine	1687	153	Sodium azide
1655	151	Nicotine compound, solid, n.o.s.	1688	152	Sodium cacodylate
1655	151	Nicotine preparation, solid,	1689	157	Sodium cyanide, solid
		n.o.s.	1690	154	Sodium fluoride, solid
1656	151	Nicotine hydrochloride, liquid	1691	151	Strontium arsenite
1656	151	Nicotine hydrochloride, solution	1692	151	Strychnine
1657	151	Nicotine salicylate	1692	151	Strychnine salts
1658	151	Nicotine sulfate, solution	1693	159	Tear gas devices
1658	151	Nicotine sulphate, solution	1693	159	Tear gas substance, liquid, n.o.s.
1659	151	Nicotine tartrate	1694	159	Bromobenzyl cyanides, liquid
1660		Nitric oxide	1695		Chloroacetone, stabilized
1660	124	Nitric oxide, compressed	1697		Chloroacetophenone, solid
1661	153	Nitroanilines	1698		Diphenylamine chloroarsine
1662	152	Nitrobenzene	1699		Diphenylchloroarsine, liquid
1663	153	Nitrophenols	1700		Tear gas candles
1664	152	Nitrotoluenes, liquid	1700		Tear gas grenades
1665	152	Nitroxylenes, liquid	1700		Xylyl bromide, liquid
1669	151	Pentachloroethane	1701		1,1,2,2-Tetrachloroethane
1670	157	Perchloromethyl mercaptan	1702		
1671	153	Phenol, solid	1704		Tetraethyl dithiopyrophosphate
1672	151	Phenylcarbylamine chloride			Thallium compound, n.o.s. Toluidines, liquid
1673	153	Phenylenediamines	1708		•
1674	151	Phenylmercuric acetate	1709		2,4-Toluenediamine, solid
1677	151	Potassium arsenate	1709		2,4-Toluylenediamine, solid
1678	154	Potassium arsenite	1710		Trichloroethylene
1679	157	Potassium cuprocyanide	1711	153	Xylidines, liquid

Page 42

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
1712 151 Zinc arsenate	1737 156 Benzyl bromide
1712 151 Zinc arsenate and Zinc arsenite	1738 156 Benzyl chloride
mixture	1739 137 Benzyl chloroformate
1712 151 Zinc arsenite	1740 154 Hydrogendifluorides, solid,
1712 151 Zinc arsenite and Zinc arsenate mixture	n.o.s.
1713 151 Zinc cyanide	1741 125 Boron trichloride
1714 139 Zinc phosphide	1742 157 Boron trifluoride acetic acid complex, liquid
1715 137 Acetic anhydride	1743 157 Boron trifluoride propionic acid
1716 156 Acetyl bromide	complex, liquid
1717 155 Acetyl chloride	1744 154 Bromine
1718 153 Acid butyl phosphate	1744 154 Bromine, solution
1718 153 Butyl acid phosphate	1744 154 Bromine, solution (Inhalation Hazard Zone A)
1719 154 Caustic alkali liquid, n.o.s.	1744 154 Bromine, solution (Inhalation Hazard Zone B)
1722 155 Allyl chlorocarbonate	1745 144 Bromine pentafluoride
1722 155 Allyl chloroformate	1746 144 Bromine trifluoride
, , , , , , , , , , , , , , , , , , , ,	1747 155 Butyltrichlorosilane
1724 155 Allyltrichlorosilane, stabilized	1748 140 Calcium hypochlorite, dry
1725 137 Aluminum bromide, anhydrous	1748 140 Calcium hypochlorite mixture,
1726 137 Aluminum chloride, anhydrous	dry, with more than 39% available Chlorine (8.8%
	available Oxygen)
1727 154 Ammonium hydrogendifluoride, solid	1749 124 Chlorine trifluoride
1728 155 Amyltrichlorosilane	1750 153 Chloroacetic acid, solution
1729 156 Anisoyl chloride	1751 153 Chloroacetic acid, solid
1730 157 Antimony pentachloride, liquid	1752 156 Chloroacetyl chloride
1731 157 Antimony pentachloride, solution	1753 156 Chlorophenyltrichlorosilane
1732 157 Antimony pentafluoride	1754 137 Chlorosulfonic acid (with or without sulfur trioxide)
1733 157 Antimony trichloride	1754 137 Chlorosulphonic acid (with or without sulphur trioxide)
1733 157 Antimony trichloride, liquid	1755 154 Chromic acid, solution
1733 157 Antimony trichloride, solid	1756 154 Chromic fluoride, solid
1736 137 Benzoyl chloride	-

ID Guid	de Name of Material	ID Gui	de Name of Material
1757 154	Chromic fluoride, solution	1779 153	Formic acid
1758 137	Chromium oxychloride	1779 153	Formic acid, with more than
1759 154	Corrosive solid, n.o.s.	1700 456	85% acid
1759 154	Ferrous chloride, solid	1780 156	Fumaryl chloride
1760 154	Chemical kit	1781 156	Hexadecyltrichlorosilane
1760 154	Compounds, cleaning liquid (corrosive)	1782 154 1783 153	Hexafluorophosphoric acid Hexamethylenediamine, solution
1760 154	Compounds, tree or weed	1784 156	Hexyltrichlorosilane
1760 154	killing, liquid (corrosive) Corrosive liquid, n.o.s.	1786 157	Hydrofluoric acid and Sulfuric acid mixture
1760 154	Ferrous chloride, solution	1786 157	Hydrofluoric acid and Sulphuric
1761 154	Cupriethylenediamine, solution		acid mixture
1762 156	Cyclohexenyltrichlorosilane	1786 157	Sulfuric acid and Hydrofluoric acid mixture
1763 156	Cyclohexyltrichlorosilane	1786 157	Sulphuric acid and Hydrofluoric acid mixture
1764 153	Dichloroacetic acid	1787 154	Hydriodic acid
1765 156	Dichloroacetyl chloride	1788 154	Hydrobromic acid
1766 156	Dichlorophenyltrichlorosilane Dichlorophenyltrichlorosilane	1789 157	Hydrochloric acid
1767 155	Diethyldichlorosilane Diffusion been beginnenid	1789 157	Muriatic acid
1768 154	Difluorophosphoric acid, anhydrous	1790 157	Hydrofluoric acid
1769 156	Diphenyldichlorosilane	1791 154	Hypochlorite solution
1770 153	Diphenylmethyl bromide	1791 154	Sodium hypochlorite
1771 156	Dodecyltrichlorosilane	1792 157	lodine monochloride, solid
1773 157	Ferric chloride, anhydrous	1793 153	Isopropyl acid phosphate
1774 154	Fire extinguisher charges, corrosive liquid	1794 154	Lead sulfate, with more than 3% free acid
1775 154	Fluoroboric acid	1794 154	Lead sulphate, with more than
1776 154	Fluorophosphoric acid,		3% free acid
1777 137	anhydrous Fluorosulfonic acid	1796 157	Nitrating acid mixture with more than 50% nitric acid
1777 137	Fluorosulphonic acid	1796 157	Nitrating acid mixture with not more than 50% nitric acid
1778 154	Fluorosilicic acid	1798 157	Aqua regia
1778 154	Hydrofluorosilicic acid	1798 157	Nitrohydrochloric acid

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
1799 156 Nonyltrichlorosilane	1826 157 Nitrating acid mixture, spent,
1800 156 Octadecyltrichlorosilane	with more than 50% nitric acid
1801 156 Octyltrichlorosilane	1826 157 Nitrating acid mixture, spent,
1802 157 Perchloric acid, with not more than 50% acid	with not more than 50% nitric acid
1803 153 Phenolsulfonic acid, liquid	1827 137 Stannic chloride, anhydrous
1803 153 Phenolsulphonic acid, liquid	1827 137 Tin tetrachloride
1804 156 Phenyltrichlorosilane	1828 137 Sulfur chlorides
1805 154 Phosphoric acid, solution	1828 137 Sulphur chlorides
1806 137 Phosphorus pentachloride	1829 137 Sulfur trioxide, stabilized
1807 137 Phosphorus pentoxide	1829 137 Sulphur trioxide, stabilized
1808 137 Phosphorus tribromide	1830 137 Sulfuric acid
1809 137 Phosphorus trichloride	1830 137 Sulfuric acid, with more than 51% acid
1810 137 Phosphorus oxychloride	1830 137 Sulphuric acid
1811 154 Potassium hydrogen difluoride, solid	1830 137 Sulphuric acid, with more than 51% acid
1812 154 Potassium fluoride, solid	1831 137 Sulfuric acid, fuming
1813 154 Caustic potash, solid	1831 137 Sulphuric acid, fuming
1813 154 Potassium hydroxide, solid	1832 137 Sulfuric acid, spent
1814 154 Caustic potash, solution	1832 137 Sulphuric acid, spent
1814 154 Potassium hydroxide, solution	1833 154 Sulfurous acid
1815 132 Propionyl chloride	1833 154 Sulphurous acid
1816 155 Propyltrichlorosilane	1834 137 Sulfuryl chloride
1817 137 Pyrosulfuryl chloride	1834 137 Sulphuryl chloride
1817 137 Pyrosulphuryl chloride 1818 157 Silicon tetrachloride	1835 153 Tetramethylammonium hydroxide, solution
1819 154 Sodium aluminate, solution	1836 137 Thionyl chloride
1823 154 Caustic soda, solid	1837 157 Thiophosphoryl chloride
1823 154 Sodium hydroxide, solid	1838 137 Titanium tetrachloride
1824 154 Caustic soda, solution	1839 153 Trichloroacetic acid
1824 154 Sodium hydroxide, solution	1840 154 Zinc chloride, solution
1825 157 Sodium monoxide	1841 171 Acetaldehyde ammonia
1020 101 Oddium monoxide	1011 111 Modaldonydd allillidild

ID Guid No. No.	de Name of Material	ID Gui	de Name of Material
1843 141	Ammonium dinitro-o-cresolate,	1863 128	Fuel, aviation, turbine engine
1845 120	Carbon dioxide, solid	1865 128	n-Propyl nitrate
	,	1866 127	Resin solution
1845 120	Dry ice	1868 134	Decaborane
1846 151	Carbon tetrachloride	1869 138	Magnesium
1847 153	Potassium sulfide, hydrated, with not less than 30% water of crystallization	1869 138	Magnesium, in pellets, turnings or ribbons
1847 153	Potassium sulphide, hydrated, with not less than 30% water of crystallization	1869 138	Magnesium alloys, with more than 50% Magnesium, in pellets, turnings or ribbons
1848 153	Propionic acid	1870 138	Potassium borohydride
1848 153	Propionic acid, with not less	1871 170	Titanium hydride
	than 10% and less than 90% acid	1872 140	Lead dioxide
1849 153	Sodium sulfide, hydrated, with not less than 30% water	1873 143	Perchloric acid, with more than 50% but not more than 72% acid
1849 153	Sodium sulphide, hydrated, with not less than 30% water	1884 157	Barium oxide
1851 151	Medicine, liquid, poisonous,	1885 153	Benzidine
1001 101	n.o.s.	1886 156	Benzylidene chloride
1851 151	Medicine, liquid, toxic, n.o.s.	1887 160	Bromochloromethane
1854 135	Barium alloys, pyrophoric	1888 151	Chloroform
1855 135	Calcium, pyrophoric	1889 157	Cyanogen bromide
1855 135	Calcium alloys, pyrophoric	1891 131	Ethyl bromide
1856 133	Rags, oily	1892 151	Ethyldichloroarsine
1857 133	Textile waste, wet	1894 151	Phenylmercuric hydroxide
1858 126	Hexafluoropropylene	1895 151	Phenylmercuric nitrate
1858 126	Hexafluoropropylene, compressed	1897 160	Perchloroethylene
1858 126	Refrigerant gas R-1216	1897 160	Tetrachloroethylene
1859 125	Silicon tetrafluoride	1898 156	Acetyl iodide
1859 125	Silicon tetrafluoride,	1902 153	Diisooctyl acid phosphate
, ,	compressed	1903 153	Disinfectant, liquid, corrosive, n.o.s.
	Vinyl fluoride, stabilized	1905 154	Selenic acid
1862 130	Ethyl crotonate	1906 153	Acid, sludge

ID Guid No. No.	de Name of Material	ID No.	Gui No.	de Name of Material
1906 153	Sludge acid	1931	171	Zinc dithionite
1907 154	Soda lime, with more than 4%	1931	171	Zinc hydrosulfite
	Sodium hydroxide	1931	171	Zinc hydrosulphite
1908 154	Chlorite solution	1932	135	Zirconium scrap
1910 157	Calcium oxide	1935	157	Cyanide solution, n.o.s.
1911 119	Diborane	1938	156	Bromoacetic acid, solution
1911 119	Diborane, compressed	1939	137	Phosphorus oxybromide, solid
1911 119	Diborane mixtures	1940	153	Thioglycolic acid
1912 115	Methyl chloride and Methylene chloride mixture	1941	171	Dibromodifluoromethane
1912 115	Methylene chloride and Methyl	1941	171	Refrigerant gas R-12B2
	chloride mixture	1942	140	Ammonium nitrate, with not
1913 120	Neon, refrigerated liquid (cryogenic liquid)			more than 0.2% combustible substances
1914 130	Butyl propionates	1944	133	Matches, safety
1915 127	Cyclohexanone	1945	133	Matches, wax "vesta"
1916 152	2,2'-Dichlorodiethyl ether	1950	126	Aerosols
1916 152	Dichloroethyl ether	1951	120	Argon, refrigerated liquid (cryogenic liquid)
1917 129P	Ethyl acrylate, stabilized	1952	126	Carbon dioxide and Ethylene
1918 130	Cumene			oxide mixtures, with not more than 9% Ethylene oxide
1918 130	Isopropylbenzene	1952	126	Ethylene oxide and Carbon
1919 129P	Methyl acrylate, stabilized	.002		dioxide mixtures, with not more than 9% Ethylene oxide
1920 128	Nonanes	1953	110	·
	Propyleneimine, stabilized	1900	119	Compressed gas, poisonous, flammable, n.o.s.
1922 132	Pyrrolidine	1953	119	Compressed gas, poisonous,
1923 135	Calcium dithionite			flammable, n.o.s. (Inhalation Hazard Zone A)
1923 135	Calcium hydrosulfite	1953	119	Compressed gas, poisonous,
1923 135	Calcium hydrosulphite			flammable, n.o.s. (Inhalation Hazard Zone B)
1928 138	Methyl magnesium bromide in Ethyl ether	1953	119	Compressed gas, poisonous,
1929 135	Potassium dithionite			flammable, n.o.s. (Inhalation Hazard Zone C)
1929 135	Potassium hydrosulfite	1953	119	Compressed gas, poisonous,
1929 135	Potassium hydrosulphite			flammable, n.o.s. (Inhalation Hazard Zone D)

ID Guide Name of Material No. No.

No.	No.	ao mano or maronar
1953	119	Compressed gas, toxic, flammable, n.o.s.
1953	119	Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone A)
1953	119	Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone B)
1953	119	Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone C)
1953	119	Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone D)
1954	115	Compressed gas, flammable, n.o.s.
1954	115	Dispersant gases, n.o.s. (flammable)
1954	115	Refrigerant gases, n.o.s. (flammable)
1955	123	Compressed gas, poisonous, n.o.s.
1955	123	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone A)
1955	123	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone B)
1955	123	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone C)
1955	123	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone D)
1955	123	Compressed gas, toxic, n.o.s.

Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone A)

Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone B)

Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone C)

ID Guide Name of Material No. No.

1955	123	Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone D)
1955	123	Organic phosphate compound mixed with compressed gas
1955	123	Organic phosphate mixed with compressed gas
1955	123	Organic phosphorus compound mixed with compressed gas
1956	126	Compressed gas, n.o.s.
1957	115	Deuterium
1957	115	Deuterium, compressed
1958	126	1,2-Dichloro-1,1,2,2- tetrafluoroethane
1958	126	Refrigerant gas R-114
1959	116P	1,1-Difluoroethylene
1959	116P	Refrigerant gas R-1132a
1961	115	Ethane, refrigerated liquid
1961	115	Ethane-Propane mixture, refrigerated liquid
1961	115	Propane-Ethane mixture, refrigerated liquid
1962	116P	Ethylene
1962	116P	Ethylene, compressed
1963	120	Helium, refrigerated liquid (cryogenic liquid)
1964	115	Hydrocarbon gas mixture, compressed, n.o.s.
1965	115	Hydrocarbon gas mixture, liquefied, n.o.s.
1966	115	Hydrogen, refrigerated liquid (cryogenic liquid)
1967	123	Insecticide gas, poisonous, n.o.s.
1967	123	Insecticide gas, toxic, n.o.s.
1967	123	Parathion and compressed gas mixture

1955 **123**

1955 **123**

1955 **123**

ID G	Guide Name of Material No.		Guid No.	de Name of Material
1968 1	26 Insecticide gas, n.o.s.	1982	126	Refrigerant gas R-14
1969 1	15 Isobutane	1982	126	Refrigerant gas R-14,
1970 1	20 Krypton, refrigerated liquid (cryogenic liquid)	1982	126	compressed Tetrafluoromethane
1971 1		1982		Tetrafluoromethane,
1971 1	15 Methane, compressed			compressed
1971 1	15 Natural gas, compressed	1983		1-Chloro-2,2,2-trifluoroethane
1972 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1983		Refrigerant gas R-133a
1972 1	liquid)	1984		Refrigerant gas R-23 Trifluoromethane
1972 1	- (-) - 3 4 /	1986		Alcohols, flammable, poisonous,
1372 1	(cryogenic liquid)	1900	131	n.o.s.
1972 1	15 Natural gas, refrigerated liquid (cryogenic liquid)	1986	131	Alcohols, flammable, toxic, n.o.s.
1973 1		1987	127	Alcohols, n.o.s.
	Chloropentafluoroethane mixture	1987	127	Denatured alcohol
1973 1	Chlorodifluoromethane	1988	131P	Aldehydes, flammable, poisonous, n.o.s.
1973 1	mixture 26 Refrigerant gas R-502	1988	131P	Aldehydes, flammable, toxic, n.o.s.
1974 1	26 Chlorodifluorobromomethane	1989	129P	Aldehydes, n.o.s.
1974 1	26 Refrigerant gas R-12B1	1990	171	Benzaldehyde
1975 1	3 - 3	1991	131P	Chloroprene, stabilized
1975 1		1992	131	Flammable liquid, poisonous, n.o.s.
	tetroxide mixture	1992	131	Flammable liquid, toxic, n.o.s.
1975 1 :	24 Nitric oxide and Nitrogen dioxide mixture	1993	128	Combustible liquid, n.o.s.
1975 1	24 Nitrogen dioxide and Nitric oxide mixture	1993	128	Compounds, cleaning liquid (flammable)
1976 1	26 Octafluorocyclobutane	1993	128	Compounds, tree or weed killing, liquid (flammable)
1976 1	26 Refrigerant gas RC-318	1993	128	Diesel fuel
1977 1	20 Nitrogen, refrigerated liquid (cryogenic liquid)	1993	128	Flammable liquid, n.o.s.
1978 1		1993	128	Fuel oil
		1994	136	Iron pentacarbonyl

	Guid No.	de Name of Material		Guid No.	de Name of Material
1999	130	Asphalt	2020	153	Chlorophenols, solid
1999	130	Asphalt, cut back	2021	153	Chlorophenols, liquid
1999	130	Tars, liquid	2022	153	Cresylic acid
2000	133	Celluloid, in blocks, rods, rolls,	2023	131P	Epichlorohydrin
		sheets, tubes, etc., except scrap	2024	151	Mercury compound, liquid, n.o.s.
2001	133	Cobalt naphthenates, powder	2025	151	Mercury compound, solid, n.o.s.
2002	135	Celluloid, scrap	2026	151	Phenylmercuric compound,
2004	135	Magnesium diamide			n.o.s.
2005	135	Magnesium diphenyl	2027	151	Sodium arsenite, solid
2006		Plastics, nitrocellulose-based, self-heating, n.o.s.	2028	153	Bombs, smoke, non-explosive, with corrosive liquid, without initiating device
2008		Zirconium powder, dry	2029	132	Hydrazine, anhydrous
2009	135	Zirconium, dry, finished sheets, strips or coiled wire	2030		Hydrazine, aqueous solution,
2010	138	Magnesium hydride			with more than 37% Hydrazine
2011	139	Magnesium phosphide	2031	157	Nitric acid, other than red
2012	139	Potassium phosphide			fuming, with more than 65% nitric acid
2013		Strontium phosphide Hydrogen peroxide, aqueous solution, with not less than	2031	157	Nitric acid, other than red fuming, with not more than 65% nitric acid
		20% but not more than 60% Hydrogen peroxide (stabilized	2032	157	Nitric acid, red fuming
		as necessary)	2033	154	Potassium monoxide
2015	143	Hydrogen peroxide, aqueous solution, stabilized, with more than 60% Hydrogen peroxide	2034	115	Hydrogen and Methane mixture, compressed
2015	143	Hydrogen peroxide, stabilized	2034	115	Methane and Hydrogen mixture, compressed
2016	151	Ammunition, poisonous, non-explosive	2035	115	Refrigerant gas R-143a
2016	151	Ammunition, toxic,	2035	115	1,1,1-Trifluoroethane
2010		non-explosive	2036	120	Xenon
2017	159	Ammunition, tear-producing, non-explosive	2036		Xenon, compressed
2018	152	Chloroanilines, solid	2037		Gas cartridges
2019		Chloroanilines, liquid	2037	115	Receptacles, small, containing gas

ID No.	Guio No.	de Name of Material		Guio No.	de Name of Material
2038	152	Dinitrotoluenes, liquid	2079	154	Diethylenetriamine
2044	115	2,2-Dimethylpropane	2186	125	Hydrogen chloride, refrigerated
2045	130	Isobutyl aldehyde	0.4.0.7	100	liquid
2045	130	Isobutyraldehyde	2187	120	Carbon dioxide, refrigerated liquid
2046	130	Cymenes	2188	119	Arsine
2047	129	Dichloropropenes	2189	119	Dichlorosilane
2048	130P	Dicyclopentadiene	2190	124	Oxygen difluoride
2049	130	Diethylbenzene	2190	124	Oxygen difluoride, compressed
2050	128	Diisobutylene, isomeric compounds	2191	123	Sulfuryl fluoride
2051	122	2-Dimethylaminoethanol	2191	123	Sulphuryl fluoride
2052		Dipentene	2192	119	Germane
2052	-	Methylamyl alcohol	2193	126	Hexafluoroethane
2053	-	Methyl isobutyl carbinol	2193	126	Hexafluoroethane, compressed
2054	-	Morpholine	2193	126	Refrigerant gas R-116
		Styrene monomer, stabilized	2193	126	Refrigerant gas R-116, compressed
2056		Tetrahydrofuran	2194	125	Selenium hexafluoride
2057	128	Tripropylene	2195		Tellurium hexafluoride
2058	129	Valeraldehyde	2196		Tungsten hexafluoride
2059	127	Nitrocellulose, solution,	2197		Hydrogen iodide, anhydrous
-		flammable	2198	125	Phosphorus pentafluoride
2067		Ammonium nitrate based fertilizer	2198	125	Phosphorus pentafluoride, compressed
2071	140	Ammonium nitrate based fertilizer	2199	119	Phosphine
2073	125	Ammonia, solution, with more	2200	116P	Propadiene, stabilized
		than 35% but not more than 50% Ammonia	2201	122	Nitrous oxide, refrigerated liquid
2074	153P	Acrylamide, solid	2202	117	Hydrogen selenide, anhydrous
2075	153	Chloral, anhydrous, stabilized	2203	116	Silane
2076	153	Cresols, liquid	2203	116	Silane, compressed
2077	153	alpha-Naphthylamine	2204	119	Carbonyl sulfide
2077	153	Naphthylamine (alpha)	2204	119	Carbonyl sulphide
2078	156	Toluene diisocyanate	2205	153	Adiponitrile
					Paga 51

		Guic No.	de Name of Material	ID No.	Guid No.	de Name of Material
2	206	155	Isocyanate solution, poisonous,	2222	128	Anisole
			n.o.s.	2224	152	Benzonitrile
2	206	155	Isocyanate solution, toxic, n.o.s.	2225	156	Benzenesulfonyl chloride
2	206	155	Isocyanates, poisonous, n.o.s.	2225	156	Benzenesulphonyl chloride
2	206	155	Isocyanates, toxic, n.o.s.	2226	156	Benzotrichloride
2	208	140	Bleaching powder	2227	130P	n-Butyl methacrylate, stabilized
2	208	140	Calcium hypochlorite mixture,	2232	153	Chloroacetaldehyde
			dry, with more than 10% but not more than 39% available	2232	153	2-Chloroethanal
			Chlorine	2233	152	Chloroanisidines
2	209	153	Formaldehyde, solution	2234	130	Chlorobenzotrifluorides
2	200	150	(corrosive)	2235	153	Chlorobenzyl chlorides, liquid
		153 135	Formalin (corrosive) Maneb	2236	156	3-Chloro-4-methylphenyl isocyanate, liquid
		135	Maneb preparation, with not	2237	153	Chloronitroanilines
Ī			less than 60% Maneb	2238		Chlorotoluenes
2	211	171	Polymeric beads, expandable	2239	-	Chlorotoluidines, solid
2	212	171	Asbestos	2240		Chromosulfuric acid
2	212	171	Asbestos, amphibole	2240	_	Chromosulphuric acid
2	212	171	Asbestos, blue	2241		Cycloheptane
2	212	171	Asbestos, brown	2242	_	Cycloheptene
2	212	171	Blue asbestos	2243	_	Cyclohexyl acetate
2	212	171	Brown asbestos	2244		Cyclopentanol
2	213	133	Paraformaldehyde	2245		Cyclopentanone
2	214	156	Phthalic anhydride	2246		Cyclopentene
2	215	156	Maleic anhydride	2247		n-Decane
2	215	156	Maleic anhydride, molten	2248		Di-n-butylamine
2	216	171	Fish meal, stabilized			•
2	216	171	Fish scrap, stabilized	2249	131	Dichlorodimethyl ether, symmetrical
2	217	135	Seed cake, with not more than	2250	156	Dichlorophenyl isocyanates
			1.5% oil and not more than 11% moisture	2251	128P	Bicyclo[2.2.1]hepta-2,5-diene, stabilized
2	218	132P	Acrylic acid, stabilized	2251	128P	2,5-Norbornadiene, stabilized
2	219	129	Allyl glycidyl ether		• ·	_,
Pá	age S	52				

ID Guid No. No.	de Name of Material	ID No.	Guid No.	de Name of Material
2252 127	1,2-Dimethoxyethane	2282	129	Hexanols
2253 153	N,N-Dimethylaniline	2283	130P	Isobutyl methacrylate, stabilized
2254 133	Matches, fusee	2284	131	Isobutyronitrile
2256 130	Cyclohexene	2285	156	Isocyanatobenzotrifluorides
2257 138	Potassium	2286	128	Pentamethylheptane
2258 132	1,2-Propylenediamine	2287	128	Isoheptenes
2259 153	Triethylenetetramine	2288	128	Isohexenes
2260 132	Tripropylamine	2289	153	Isophoronediamine
2261 153	Xylenols, solid	2290	156	Isophorone diisocyanate
2262 156	Dimethylcarbamoyl chloride	2291	151	Lead compound, soluble, n.o.s.
2263 128 2264 132	Dimethylcyclohexanes N,N-Dimethylcyclohexylamine	2293	128	4-Methoxy-4-methylpentan-2- one
2264 132		2294	153	N-Methylaniline
2265 129	Dimethylcyclohexylamine N.N. Dimethylformamide	2295	155	Methyl chloroacetate
2266 132	N,N-Dimethylformamide Dimethyl-N-propylamine	2296	128	Methylcyclohexane
2267 156	Dimethyl thiophosphoryl	2297	128	Methylcyclohexanone
2207 130	chloride	2298	128	Methylcyclopentane
2269 153	3,3'-Iminodipropylamine	2299	155	Methyl dichloroacetate
2270 132	Ethylamine, aqueous solution,	2300	153	2-Methyl-5-ethylpyridine
	with not less than 50% but not more than 70%	2301	128	2-Methylfuran
	Ethylamine	2302	127	5-Methylhexan-2-one
2271 128	Ethyl amyl ketone	2303	128	Isopropenylbenzene
2272 153	N-Ethylaniline	2304	133	Naphthalene, molten
2273 153	2-Ethylaniline	2305	153	Nitrobenzenesulfonic acid
2274 153	N-Ethyl-N-benzylaniline	2305	153	Nitrobenzenesulphonic acid
2275 129	2-Ethylbutanol	2306	152	Nitrobenzotrifluorides, liquid
2276 132	2-Ethylhexylamine	2307	152	3-Nitro-4-chlorobenzotrifluoride
2277 130P	Ethyl methacrylate, stabilized	2308	157	Nitrosylsulfuric acid, liquid
2278 128	n-Heptene	2308	157	Nitrosylsulphuric acid, liquid
2279 151	Hexachlorobutadiene	2309	128P	Octadiene
2280 153	Hexamethylenediamine, solid	2310	131	Pentane-2,4-dione
2281 156	Hexamethylene diisocyanate	2311	153	Phenetidines Page 53

ID No.	Guid No.	de Name of Material	ID No.	Guid No.	de Name of Material
2312	153	Phenol, molten	2337	131	Phenyl mercaptan
2313	129	Picolines	2338	127	Benzotrifluoride
2315	171	Articles containing	2339	130	2-Bromobutane
		Polychlorinated biphenyls (PCB)	2340	130	2-Bromoethyl ethyl ether
2315	171	PCB	2341	130	1-Bromo-3-methylbutane
2315	171	Polychlorinated biphenyls, liquid	2342	130	Bromomethylpropanes
2316	157	Sodium cuprocyanide, solid	2343	130	2-Bromopentane
2317	157	Sodium cuprocyanide, solution	2344	129	Bromopropanes
2318	135	Sodium hydrosulfide, with	2345	130	3-Bromopropyne
		less than 25% water of crystallization	2346	127	Butanedione
2318	135	Sodium hydrosulphide, with	2346	127	Diacetyl
		less than 25% water of crystallization	2347	130	Butyl mercaptan
2319	128	Terpene hydrocarbons, n.o.s.	2348	129P	Butyl acrylates, stabilized
2320	_	Tetraethylenepentamine	2350	127	Butyl methyl ether
2321		Trichlorobenzenes, liquid	2351	129	Butyl nitrites
2322		Trichlorobutene			Butyl vinyl ether, stabilized
2323	130	Triethyl phosphite	2353	-	Butyryl chloride
2324	128	Triisobutylene	2354		Chloromethyl ethyl ether
2325	129	1,3,5-Trimethylbenzene	2356		2-Chloropropane
2326	153	Trimethylcyclohexylamine	2357	_	Cyclohexylamine
2327	153	Trimethylhexamethylenediamines			Cyclooctatetraene
2328	156	Trimethylhexamethylene	2359		Diallylamine
		diisocyanate			Diallyl ether
2329		Trimethyl phosphite	2361	_	Diisobutylamine
2330		Undecane			1,1-Dichloroethane
2331	-	Zinc chloride, anhydrous	2363		Ethyl mercaptan n-Propyl benzene
2332	-	Acetaldehyde oxime	2364 2366		
2333		Allyl acetate	2367		Diethyl carbonate
2334		Allylamine	2367		alpha-Methylvaleraldehyde
2335	-	Allyl ethyl ether	2368		Methyl valeraldehyde (alpha) alpha-Pinene
2336	131	Allyl formate	2300	120	aipiia-i illelle

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
2368 128 Pinene (alpha)	2398 127 Methyl tert-butyl ether
2370 128 1-Hexene	2399 132 1-Methylpiperidine
2371 128 Isopentenes	2400 130 Methyl isovalerate
2372 129 1,2-Di-(dimethylamino)ethane	2401 132 Piperidine
2373 127 Diethoxymethane	2402 130 Propanethiols
2374 127 3,3-Diethoxypropene	2403 129P Isopropenyl acetate
2375 129 Diethyl sulfide	2404 131 Propionitrile
2375 129 Diethyl sulphide	2405 129 Isopropyl butyrate
2376 127 2,3-Dihydropyran	2406 127 Isopropyl isobutyrate
2377 127 1,1-Dimethoxyethane	2407 155 Isopropyl chloroformate
2378 131 2-Dimethylaminoacetonitrile	2409 129 Isopropyl propionate
2379 132 1,3-Dimethylbutylamine	2410 129 1,2,3,6-Tetrahydropyridine
2380 127 Dimethyldiethoxysilane	2411 131 Butyronitrile
2381 131 Dimethyl disulfide	2412 130 Tetrahydrothiophene
2381 131 Dimethyl disulphide	2413 128 Tetrapropyl orthotitanate
2382 131 Dimethylhydrazine, symmetrical	2414 130 Thiophene
2383 132 Dipropylamine	2416 129 Trimethyl borate
2384 127 Di-n-propyl ether	2417 125 Carbonyl fluoride
2385 129 Ethyl isobutyrate	2417 125 Carbonyl fluoride, compressed
2386 132 1-Ethylpiperidine	2418 125 Sulfur tetrafluoride
2387 130 Fluorobenzene	2418 125 Sulphur tetrafluoride
2388 130 Fluorotoluenes	2419 116 Bromotrifluoroethylene
2389 128 Furan	2420 125 Hexafluoroacetone
2390 129 2-lodobutane	2421 124 Nitrogen trioxide
2391 129 lodomethylpropanes	2422 126 Octafluorobut-2-ene
2392 129 lodopropanes	2422 126 Refrigerant gas R-1318
2393 129 Isobutyl formate	2424 126 Octafluoropropane
2394 129 Isobutyl propionate	2424 126 Refrigerant gas R-218
2395 132 Isobutyryl chloride	2426 140 Ammonium nitrate, liquid (hot concentrated solution)
2396 131P Methacrylaldehyde, stabilized 2397 127 3-Methylbutan-2-one	2427 140 Potassium chlorate, aqueous solution
	Solution

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
2428 140 Sodium chlorate, aqueous	2453 115 Ethyl fluoride
solution	2453 115 Refrigerant gas R-161
2429 140 Calcium chlorate, aqueous solution	2454 115 Methyl fluoride
2430 153 Alkylphenols, solid, n.o.s.	2454 115 Refrigerant gas R-41
(including C2-C12 homologues)	2455 116 Methyl nitrite
2431 153 Anisidines	2456 130P 2-Chloropropene
2432 153 N,N-Diethylaniline	2457 128 2,3-Dimethylbutane
2433 152 Chloronitrotoluenes, liquid	2458 130 Hexadiene
2434 156 Dibenzyldichlorosilane	2459 128 2-Methyl-1-butene
2435 156 Ethylphenyldichlorosilane	2460 128 2-Methyl-2-butene
2436 129 Thioacetic acid	2461 128 Methylpentadiene
2437 156 Methylphenyldichlorosilane	2463 138 Aluminum hydride
2438 131 Trimethylacetyl chloride	2464 141 Beryllium nitrate
2439 154 Sodium hydrogendifluoride	2465 140 Dichloroisocyanuric acid, dry
2440 154 Stannic chloride, pentahydrate	2465 140 Dichloroisocyanuric acid salts
2441 135 Titanium trichloride, pyrophoric	2465 140 Sodium dichloroisocyanurate
2441 135 Titanium trichloride mixture,	2465 140 Sodium dichloro-s-triazinetrione
pyrophoric	2466 143 Potassium superoxide
2442 156 Trichloroacetyl chloride	2468 140 Trichloroisocyanuric acid, dry
2443 137 Vanadium oxytrichloride	2469 140 Zinc bromate
2444 137 Vanadium tetrachloride	2470 152 Phenylacetonitrile, liquid
2446 153 Nitrocresols, solid	2471 154 Osmium tetroxide
2447 136 Phosphorus, white, molten	2473 154 Sodium arsanilate
2447 136 White phosphorus, molten	2474 157 Thiophosgene
2448 133 Molten sulfur	2475 157 Vanadium trichloride
2448 133 Molten sulphur	2477 131 Methyl isothiocyanate
2448 133 Sulfur, molten	2478 155 Isocyanate solution, flammable, poisonous, n.o.s.
2448 133 Sulphur, molten	2478 155 Isocyanate solution, flammable,
2451 122 Nitrogen trifluoride	toxic, n.o.s.
2451 122 Nitrogen trifluoride, compressed	2478 155 Isocyanates, flammable, poisonous, n.o.s.
2452 116P Ethylacetylene, stabilized	poisonious, n.o.s.

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
2478 155 Isocyanates, flammable, toxic, n.o.s.	2511 153 2-Chloropropionic acid 2512 152 Aminophenols
2480 155P Methyl isocyanate	2513 156 Bromoacetyl bromide
2481 155 Ethyl isocyanate	2514 130 Bromobenzene
2482 155P n-Propyl isocyanate	2515 159 Bromoform
2483 155P Isopropyl isocyanate	2516 151 Carbon tetrabromide
2484 155 tert-Butyl isocyanate	2517 115 1-Chloro-1,1-difluoroethane
2485 155P n-Butyl isocyanate	2517 115 Difluorochloroethanes
2486 155P Isobutyl isocyanate	2517 115 Refrigerant gas R-142b
2487 155 Phenyl isocyanate	2518 153 1,5,9-Cyclododecatriene
2488 155 Cyclohexyl isocyanate	2520 130P Cyclooctadienes
2490 153 Dichloroisopropyl ether	2521 131P Diketene, stabilized
2491 153 Ethanolamine	2522 153P 2-Dimethylaminoethyl
2491 153 Ethanolamine, solution	methacrylate
2491 153 Monoethanolamine	2524 129 Ethyl orthoformate
2493 132 Hexamethyleneimine	2525 156 Ethyl oxalate
2495 144 lodine pentafluoride	2526 132 Furfurylamine
2496 156 Propionic anhydride	2527 129P Isobutyl acrylate, stabilized
2498 129 1,2,3,6-Tetrahydrobenzaldehyde	2528 130 Isobutyl isobutyrate
2501 152 Tris-(1-aziridinyl)phosphine oxide, solution	2529 132 Isobutyric acid
2502 132 Valeryl chloride	2531 153P Methacrylic acid, stabilized
2503 137 Zirconium tetrachloride	2533 156 Methyl trichloroacetate
2504 159 Acetylene tetrabromide	2534 119 Methylchlorosilane
2504 159 Tetrabromoethane	2535 132 4-Methylmorpholine
2505 154 Ammonium fluoride	2535 132 N-Methylmorpholine
2506 154 Ammonium hydrogen sulfate	2536 127 Methyltetrahydrofuran
2506 154 Ammonium hydrogen sulphate	2538 133 Nitronaphthalene
2507 154 Chloroplatinic acid, solid	2541 128 Terpinolene
2508 156 Molybdenum pentachloride	2542 153 Tributylamine
2509 154 Potassium hydrogen sulfate	2545 135 Hafnium powder, dry
2509 154 Potassium hydrogen sulphate	2546 135 Titanium powder, dry
	2547 143 Sodium superoxide

ID Guide Name of Material No. No.

ID Guide Name of Material No. No.

2548	124	Chlorine pentafluoride	2582	154	Ferric chloride, solution
2552	151	Hexafluoroacetone hydrate, liquid	2583	153	Alkyl sulfonic acids, solid, with more than 5% free Sulfuric acid
2554	130P	Methylallyl chloride	0500	450	
2555	113	Nitrocellulose with water, not less than 25% water	2583	153	Alkyl sulphonic acids, solid, with more than 5% free Sulphuric acid
2556	113	Nitrocellulose with alcohol, not less than 25% alcohol	2583	153	Aryl sulfonic acids, solid, with more than 5% free Sulfuric
2557	133	Nitrocellulose mixture, without pigment	2583	153	acid Aryl sulphonic acids, solid, with
2557	133	Nitrocellulose mixture, without plasticizer			more than 5% free Sulphuric acid
2557	133	Nitrocellulose mixture, with pigment	2584	153	Alkyl sulfonic acids, liquid, with more than 5% free Sulfuric acid
2557	133	Nitrocellulose mixture, with plasticizer	2584	153	Alkyl sulphonic acids, liquid, with more than 5% free
2558	131	Epibromohydrin			Sulphuric acid
2560	129	2-Methylpentan-2-ol	2584	153	Aryl sulfonic acids, liquid, with more than 5% free Sulfuric
2561	128	3-Methyl-1-butene			acid
2564	153	Trichloroacetic acid, solution	2584	153	Aryl sulphonic acids, liquid, with
2565	153	Dicyclohexylamine			more than 5% free Sulphuric acid
2567	154	Sodium pentachlorophenate	2585	153	Alkyl sulfonic acids, solid,
2570	154	Cadmium compound			with not more than 5% free Sulfuric acid
2571	156	Alkylsulfuric acids	2585	153	Alkyl sulphonic acids, solid,
2571	156	Alkylsulphuric acids	2000		with not more than 5% free
2572	153	Phenylhydrazine	0505	450	Sulphuric acid
2573	141	Thallium chlorate	2585	153	Aryl sulfonic acids, solid, with not more than 5% free
2574	151	Tricresyl phosphate			Sulfuric acid
2576	137	Phosphorus oxybromide, molten	2585	153	Aryl sulphonic acids, solid, with not more than 5% free
2577	156	Phenylacetyl chloride			Sulphuric acid
2578	157	Phosphorus trioxide	2586	153	Alkyl sulfonic acids, liquid, with not more than 5% free
2579	153	Piperazine			Sulfuric acid
2580	154	Aluminum bromide, solution	2586	153	Alkyl sulphonic acids, liquid,
2581	154	Aluminum chloride, solution			with not more than 5% free Sulphuric acid

ID Gui No. No	de Name of Material	ID No.	Guid No.	de Name of Material
2586 153	Aryl sulfonic acids, liquid,	2605	155	Methoxymethyl isocyanate
	with not more than 5% free Sulfuric acid	2606		Methyl orthosilicate
2586 153	Aryl sulphonic acids, liquid,	2607	129P	Acrolein dimer, stabilized
	with not more than 5% free Sulphuric acid	2608	129	Nitropropanes
2587 153	Benzoquinone	2609	156	Triallyl borate
2588 151	Pesticide, solid, poisonous,	2610	132	Triallylamine
2000	n.o.s.	2611	131	Propylene chlorohydrin
2588 151	Pesticide, solid, toxic, n.o.s.	2612	127	Methyl propyl ether
2589 155	Vinyl chloroacetate	2614	129	Methallyl alcohol
2590 171	Asbestos, chrysotile	2615	127	Ethyl propyl ether
2590 171	Asbestos, white	2616	129	Triisopropyl borate
2590 171	White asbestos	2617	129	Methylcyclohexanols
2591 120	Xenon, refrigerated liquid	2618	130P	VinyItoluenes, stabilized
0500 400	(cryogenic liquid)	2619	132	Benzyldimethylamine
2599 126	Chlorotrifluoromethane and Trifluoromethane azeotropic	2620	130	Amyl butyrates
	mixture with approximately 60% Chlorotrifluoromethane	2621	127	Acetyl methyl carbinol
2599 126	Refrigerant gas R-503	2622	131P	Glycidaldehyde
2599 126	Trifluoromethane and Chlorotrifluoromethane	2623	133	Firelighters, solid, with flammable liquid
	azeotropic mixture with approximately 60%	2624	138	Magnesium silicide
2601 115	Chlorotrifluoromethane Cyclobutane	2626	140	Chloric acid, aqueous solution, with not more than 10% Chloric acid
2602 126	Dichlorodifluoromethane and	2627	140	Nitrites, inorganic, n.o.s.
	Difluoroethane azeotropic mixture with approximately	2628	151	Potassium fluoroacetate
	74% Dichlorodifluoromethane	2629	151	Sodium fluoroacetate
2602 126	Difluoroethane and Dichlorodifluoromethane	2630	151	Selenates
	azeotropic mixture with	2630	151	Selenites
	approximately 74% Dichlorodifluoromethane	2642	154	Fluoroacetic acid
2602 126	Refrigerant gas R-500	2643	155	Methyl bromoacetate
2603 131	Cycloheptatriene	2644	151	Methyl iodide
2604 132	Boron trifluoride diethyl etherate	2645	153	Phenacyl bromide

ID Guide Name of Material No. No.

	Guic No.	le No	ame	of	Mate	rial
0670	15/	Lithium	hydro	vido	colution	2

2646	151	Hexachlorocyclopentadiene	2679	154	Lithium hydroxide, solution
2647	153	Malononitrile	2680	154	Lithium hydroxide
2648	154	1,2-Dibromobutan-3-one	2681	154	Caesium hydroxide, solution
2649	153	1,3-Dichloroacetone	2681	154	Cesium hydroxide, solution
2650	153	1,1-Dichloro-1-nitroethane	2682	157	Caesium hydroxide
2651	153	4,4'-Diaminodiphenylmethane	2682	157	Cesium hydroxide
2653	156	Benzyl iodide	2683	132	Ammonium sulfide, solution
2655	151	Potassium fluorosilicate	2683	132	Ammonium sulphide, solution
2656	154	Quinoline	2684	132	3-Diethylaminopropylamine
2657	153	Selenium disulfide	2685	132	N,N-Diethylethylenediamine
2657	153	Selenium disulphide	2686	132	2-Diethylaminoethanol
2659	151	Sodium chloroacetate	2687	133	Dicyclohexylammonium nitrite
2660	153	Mononitrotoluidines	2688	159	1-Bromo-3-chloropropane
2660		Nitrotoluidines (mono)	2689	153	Glycerol alpha- monochlorohydrin
2661		Hexachloroacetone	2690	152	N,n-Butylimidazole
2664		Dibromomethane	2691	137	Phosphorus pentabromide
2667	152	Butyltoluenes			Phosphorus pentabromide Boron tribromide
	152		2692	157	Boron tribromide
2667	152 131	Butyltoluenes		157	
2667 2668	152 131 152	Butyltoluenes Chloroacetonitrile	2692	157 154	Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution,
2667 2668 2669	152 131 152 157	Butyltoluenes Chloroacetonitrile Chlorocresols, solution	269226932693	157 154 154	Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s.
2667 2668 2669 2670	152 131 152 157 153	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more	2692269326932698	157 154 154 156	Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides
2667 2668 2669 2670 2671	152 131 152 157 153	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines	26922693269326982699	157 154 154 156 154	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid
2667 2668 2669 2670 2671	152 131 152 157 153 154	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more than 10% but not more than	2692 2693 2693 2698 2699 2705	157 154 154 156 154 153P	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid 1-Pentol
2667 2668 2669 2670 2671 2672	152 131 152 157 153 154	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more than 10% but not more than 35% Ammonia Ammonium hydroxide Ammonium hydroxide, with more	2692 2693 2693 2698 2699 2705 2707	157 154 154 156 154 153P 127	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid 1-Pentol Dimethyldioxanes
2667 2668 2669 2670 2671 2672	152 131 152 157 153 154	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more than 10% but not more than 35% Ammonia Ammonium hydroxide Ammonium hydroxide, with more than 10% but not more than	2692 2693 2693 2698 2699 2705	157 154 154 156 154 153P 127	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid 1-Pentol
2667 2668 2669 2670 2671 2672 2672	152 131 152 157 153 154 154	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more than 10% but not more than 35% Ammonia Ammonium hydroxide Ammonium hydroxide, with more than 10% but not more than 35% Ammonia	2692 2693 2693 2698 2699 2705 2707 2709 2710	157 154 154 156 154 153P 127 128 128	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid 1-Pentol Dimethyldioxanes Butylbenzenes Dipropyl ketone
2667 2668 2669 2670 2671 2672	152 131 152 157 153 154 154 154	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more than 10% but not more than 35% Ammonia Ammonium hydroxide Ammonium hydroxide, with more than 10% but not more than	2692 2693 2693 2698 2699 2705 2707 2709 2710 2713	157 154 154 156 154 153P 127 128 128 153	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid 1-Pentol Dimethyldioxanes Butylbenzenes Dipropyl ketone Acridine
2667 2668 2669 2670 2671 2672 2672 2672 2673 2674	152 131 152 157 153 154 154 154 151 154	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more than 10% but not more than 35% Ammonia Ammonium hydroxide Ammonium hydroxide, with more than 10% but not more than 35% Ammonia 2-Amino-4-chlorophenol	2692 2693 2693 2698 2699 2705 2707 2709 2710 2713 2714	157 154 154 156 154 153P 127 128 128 153 133	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid 1-Pentol Dimethyldioxanes Butylbenzenes Dipropyl ketone Acridine Zinc resinate
2667 2668 2669 2670 2671 2672 2672 2672 2673 2674 2676	152 131 152 157 153 154 154 154 151 154 119	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more than 10% but not more than 35% Ammonia Ammonium hydroxide Ammonium hydroxide, with more than 10% but not more than 35% Ammonia 2-Amino-4-chlorophenol Sodium fluorosilicate Stibine	2692 2693 2693 2698 2699 2705 2707 2709 2710 2713 2714 2715	157 154 154 156 154 153P 127 128 128 153 133 133	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid 1-Pentol Dimethyldioxanes Butylbenzenes Dipropyl ketone Acridine Zinc resinate Aluminum resinate
2667 2668 2669 2670 2671 2672 2672 2672 2673 2674	152 131 152 157 153 154 154 154 154 151 154 119	Butyltoluenes Chloroacetonitrile Chlorocresols, solution Cyanuric chloride Aminopyridines Ammonia, solution, with more than 10% but not more than 35% Ammonia Ammonium hydroxide Ammonium hydroxide, with more than 10% but not more than 35% Ammonia 2-Amino-4-chlorophenol Sodium fluorosilicate	2692 2693 2693 2698 2699 2705 2707 2709 2710 2713 2714	157 154 154 156 154 153P 127 128 128 153 133 133	Boron tribromide Bisulfites, aqueous solution, n.o.s. Bisulphites, aqueous solution, n.o.s. Tetrahydrophthalic anhydrides Trifluoroacetic acid 1-Pentol Dimethyldioxanes Butylbenzenes Dipropyl ketone Acridine Zinc resinate

Page 60

ID Gui	de Name of Material	ID No.	Gui No	
2717 133 2719 141	Camphor, synthetic Barium bromate	2742	155	Chloroformates, toxic, corrosive, flammable, n.o.s.
2720 141	Chromium nitrate	2742	155	Isobutyl chloroformate
2721 140	Copper chlorate	2743	155	n-Butyl chloroformate
2722 140	Lithium nitrate	2744	155	Cyclobutyl chloroformate
2723 140	Magnesium chlorate	2745	157	Chloromethyl chloroformate
2724 140	Manganese nitrate	2746	156	Phenyl chloroformate
2725 140	Nickel nitrate	2747	156	tert-Butylcyclohexyl chloroformate
2726 140	Nickel nitrite	2748	156	2-Ethylhexyl chloroformate
2727 141	Thallium nitrate	2749	130	Tetramethylsilane
2728 140	Zirconium nitrate	2750	153	1,3-Dichloropropanol-2
2729 152	Hexachlorobenzene	2751	155	Diethylthiophosphoryl chloride
2730 152	Nitroanisoles, liquid	2752	127	1,2-Epoxy-3-ethoxypropane
2732 152	Nitrobromobenzenes, liquid	2753	153	N-Ethylbenzyltoluidines, liquid
2733 132	Amines, flammable, corrosive, n.o.s.	2754	153	N-Ethyltoluidines
2733 132	Polyamines, flammable, corrosive, n.o.s.	2757	151	Carbamate pesticide, solid, poisonous
2734 132	Amines, liquid, corrosive, flammable, n.o.s.	2757	151	Carbamate pesticide, solid, toxic
2734 132	Polyamines, liquid, corrosive, flammable, n.o.s.	2758	131	Carbamate pesticide, liquid, flammable, poisonous
2735 153	Amines, liquid, corrosive, n.o.s.	2758	131	Carbamate pesticide, liquid, flammable, toxic
2735 153	Polyamines, liquid, corrosive, n.o.s.	2759	151	Arsenical pesticide, solid, poisonous
2738 153	N-Butylaniline	2759	151	Arsenical pesticide, solid, toxic
2739 156	Butyric anhydride	2760	131	Arsenical pesticide, liquid,
2740 155	n-Propyl chloroformate	2760	101	flammable, poisonous
2741 141	Barium hypochlorite, with more than 22% available Chlorine			Arsenical pesticide, liquid, flammable, toxic
2742 155	sec-Butyl chloroformate	2761	151	Organochlorine pesticide, solid, poisonous
2742 155	Chloroformates, poisonous, corrosive, flammable, n.o.s.	2761	151	Organochlorine pesticide, solid, toxic
				5

ID Guid No. No.	de Name of Material	ID Guid No. No.	
2762 131	Organochlorine pesticide, liquid, flammable, poisonous	2780 131	Substituted nitrophenol pesticide, liquid, flammable, poisonous
2762 131	Organochlorine pesticide, liquid, flammable, toxic	2780 131	Substituted nitrophenol pesticide, liquid, flammable,
2763 151	Triazine pesticide, solid, poisonous	0704 454	toxic
2763 151	Triazine pesticide, solid, toxic	2781 151	Bipyridilium pesticide, solid, poisonous
2764 131	Triazine pesticide, liquid, flammable, poisonous	2781 151	Bipyridilium pesticide, solid, toxic
2764 131	Triazine pesticide, liquid, flammable, toxic	2782 131	Bipyridilium pesticide, liquid, flammable, poisonous
2771 151	Thiocarbamate pesticide, solid, poisonous	2782 131	Bipyridilium pesticide, liquid, flammable, toxic
2771 151	Thiocarbamate pesticide, solid, toxic	2783 152	Organophosphorus pesticide, solid, poisonous
2772 131	Thiocarbamate pesticide, liquid, flammable, poisonous	2783 152	Organophosphorus pesticide, solid, toxic
2772 131	Thiocarbamate pesticide, liquid, flammable, toxic	2784 131	Organophosphorus pesticide, liquid, flammable, poisonous
2775 151	Copper based pesticide, solid, poisonous	2784 131	Organophosphorus pesticide, liquid, flammable, toxic
2775 151	Copper based pesticide, solid, toxic	2785 152	4-Thiapentanal
2776 131	Copper based pesticide, liquid, flammable, poisonous	2786 153	Organotin pesticide, solid, poisonous
2776 131	Copper based pesticide, liquid,	2786 153	Organotin pesticide, solid, toxic
0777 454	flammable, toxic	2787 131	Organotin pesticide, liquid, flammable, poisonous
2777 151	Mercury based pesticide, solid, poisonous	2787 131	Organotin pesticide, liquid, flammable, toxic
2777 151	Mercury based pesticide, solid, toxic	2788 153	Organotin compound, liquid,
2778 131	Mercury based pesticide, liquid, flammable, poisonous	2789 132	Acetic acid, glacial
2778 131	Mercury based pesticide, liquid, flammable, toxic	2789 132	Acetic acid, solution, more than 80% acid
2779 153	Substituted nitrophenol pesticide, solid, poisonous	2790 153	Acetic acid, solution, more than 10% but not more than 80%
2779 153	Substituted nitrophenol pesticide, solid, toxic		acid

ID Gui			Guid No.	de Name of Material
2793 170	Ferrous metal borings, shavings, turnings or cuttings	2814	158	Infectious substance, affecting humans
2794 154	Batteries, wet, filled with acid	2815	153	N-Aminoethylpiperazine
2795 154	Batteries, wet, filled with alkali	2817	154	Ammonium bifluoride, solution
2796 157	Battery fluid, acid	2817	154	Ammonium hydrogendifluoride, solution
2796 157	Sulfuric acid, with not more than 51% acid	2818	154	Ammonium polysulfide, solution
2796 157	Sulphuric acid, with not more than 51% acid	2818	154	Ammonium polysulphide, solution
2797 154	Battery fluid, alkali	2819	153	Amyl acid phosphate
2798 137	Benzene phosphorus dichloride	2820	153	Butyric acid
2798 137	Phenylphosphorus dichloride	2821	153	Phenol solution
2799 137	Benzene phosphorus	2822	153	2-Chloropyridine
0700 407	thiodichloride	2823	153	Crotonic acid, solid
2799 137	Phenylphosphorus thiodichloride	2826	155	Ethyl chlorothioformate
2800 154	Batteries, wet, non-spillable	2829	153	Caproic acid
2801 154	Dye, liquid, corrosive, n.o.s.	2829	153	Hexanoic acid
2801 154	Dye intermediate, liquid,	2830	139	Lithium ferrosilicon
	corrosive, n.o.s.	2831	160	1,1,1-Trichloroethane
2802 154	Copper chloride	2834	154	Phosphorous acid
2803 172	Gallium	2835	138	Sodium aluminum hydride
2805 138	Lithium hydride, fused solid	2837	154	Bisulfates, aqueous solution
2806 139	Lithium nitride	2837	154	Bisulphates, aqueous solution
2807 171	Magnetized material	2837	154	Sodium bisulfate, solution
2809 172	Mercury	2837	154	Sodium bisulphate, solution
2810 153	Compounds, tree or weed killing, liquid (toxic)	2838	129P	Vinyl butyrate, stabilized
2810 153	Poisonous liquid, organic, n.o.s.	2839	153	Aldol
2810 153	Toxic liquid, organic, n.o.s.	2840	129	Butyraldoxime
2811 154	Poisonous solid, organic, n.o.s.	2841	131	Di-n-amylamine
2811 154	Toxic solid, organic, n.o.s.	2842	129	Nitroethane
2812 154	Sodium aluminate, solid	2844	138	Calcium manganese silicon
2813 138	Water-reactive solid, n.o.s.	2845	135	Ethyl phosphonous dichloride, anhydrous

ID Guide Name of Material No. No. No.

No.	No.		No.	No.	
2845	135	Methyl phosphonous dichloride	2869	157	Titanium trichloride mixture
2845	135	Pyrophoric liquid, organic,	2870	135	Aluminum borohydride
2846	135	n.o.s. Pyrophoric solid, organic, n.o.s.	2870	135	Aluminum borohydride in devices
2849	153	3-Chloropropanol-1	2871	170	Antimony powder
2850	128	Propylene tetramer	2872	159	Dibromochloropropanes
2851	157	Boron trifluoride, dihydrate	2873	153	Dibutylaminoethanol
2852	113	Dipicryl sulfide, wetted with not less than 10% water	2874		Furfuryl alcohol
2852	113	Dipicryl sulphide, wetted with	2875		Hexachlorophene
		not less than 10% water	2876		Resorcinol
2853	151	Magnesium fluorosilicate	2878		Titanium sponge granules
2854	151	Ammonium fluorosilicate	2878	_	Titanium sponge powders
2854	151	Ammonium silicofluoride	2879	157	Selenium oxychloride
2855	151	Zinc fluorosilicate	2880	140	Calcium hypochlorite, hydrated, with not less than 5.5% but
2855	151	Zinc silicofluoride			not more than 16% water
2856	151	Fluorosilicates, n.o.s.	2880	140	Calcium hypochlorite, hydrated mixture, with not less than
2857	126	Refrigerating machines, containing Ammonia solutions (UN2672)			5.5% but not more than 16% water
2857	126	Refrigerating machines,	2881	135	Metal catalyst, dry
2001	120	containing non-flammable,	2881	135	Nickel catalyst, dry
2857	126	non-poisonous gases Refrigerating machines,	2900	158	Infectious substance, affecting animals only
		containing non-flammable, non-toxic gases	2901	124	Bromine chloride
2858	170	Zirconium, dry, coiled wire, finished metal sheets or strip	2902	151	Pesticide, liquid, poisonous, n.o.s.
2859	154	Ammonium metavanadate	2902	151	Pesticide, liquid, toxic, n.o.s.
2861	151	Ammonium polyvanadate	2903	131	Pesticide, liquid, poisonous, flammable, n.o.s.
2862	151	Vanadium pentoxide	2903	131	Pesticide, liquid, toxic,
2863	154	Sodium ammonium vanadate			flammable, n.o.s.
2864	151	Potassium metavanadate	2904	154	Chlorophenolates, liquid
2865	154	Hydroxylamine sulfate	2904	154	Phenolates, liquid
2865	154	Hydroxylamine sulphate	2905	154	Chlorophenolates, solid

ID G	uide Name of Material lo.	ID No.	Guid No.	de Name of Material
2905 1 2907 1 2908 1	33 Isosorbide dinitrate mixture	2919	163	Radioactive material, transported under special arrangement, non fissile or fissile-excepted
2900 1	package, empty packaging	2920	132	Corrosive liquid, flammable, n.o.s.
	excepted package, articles manufactured from depleted Uranium	2921	134	Corrosive solid, flammable, n.o.s.
2909 1	excepted package, articles	2922		Corrosive liquid, poisonous, n.o.s.
	manufactured from natural Thorium	2922	-	Corrosive liquid, toxic, n.o.s.
2909 1	61 Radioactive material, excepted package, articles	2923		Corrosive solid, poisonous, n.o.s.
	manufactured from natural Uranium	2923		Corrosive solid, toxic, n.o.s.
2910 1	61 Radioactive material, excepted	2924	132	Flammable liquid, corrosive, n.o.s
	package, limited quantity of material	2925	134	Flammable solid, corrosive, organic, n.o.s.
2911 1	61 Radioactive material, excepted package, articles	2926	134	Flammable solid, poisonous, organic, n.o.s.
2911 1	61 Radioactive material, excepted package, instruments	2926	134	Flammable solid, toxic, organic, n.o.s.
2912 1	62 Radioactive material, low specific activity (LSA-I), non fissile or fissile-excepted	2927	154	Ethyl phosphonothioic dichloride, anhydrous
2913 1		2927	154	Ethyl phosphorodichloridate
	contaminated objects (SCO-I), non fissile or fissile- excepted	2927	154	Poisonous liquid, corrosive, organic, n.o.s.
2913 1	•	2927	154	Toxic liquid, corrosive, organic, n.o.s.
	II), non fissile or fissile- excepted	2928	154	Poisonous solid, corrosive, organic, n.o.s.
2915 1	package, non-special form,	2928	154	Toxic solid, corrosive, organic, n.o.s.
2916 1	non fissile or fissile-excepted Radioactive material, Type B(U)	2929	131	Poisonous liquid, flammable, organic, n.o.s.
	package, non fissile or fissile-excepted	2929	131	Toxic liquid, flammable, organic, n.o.s.
2917 1	63 Radioactive material, Type B(M) package, non fissile or fissile-excepted	2930	134	Poisonous solid, flammable, organic, n.o.s.

ID Guid	de Name of Material		Guid No.	de Name of Material
2930 134	Toxic solid, flammable, organic,	2956	149	Musk xylene
2931 151	n.o.s. Vanadyl sulfate	2965	139	Boron trifluoride dimethyl etherate
2931 151	Vanadyl sulphate	2966	153	Thioglycol
2933 129	Methyl 2-chloropropionate	2967	154	Sulfamic acid
2934 129	Isopropyl 2-chloropropionate	2967	154	Sulphamic acid
2935 129	Ethyl 2-chloropropionate	2968	135	Maneb, stabilized
2936 153	Thiolactic acid	2968	135	Maneb preparation, stabilized
2937 153	alpha-Methylbenzyl alcohol, liquid	2969	171	Castor beans, meal, pomace or flake
2937 153	Methylbenzyl (alpha) alcohol, liquid	2977	166	Radioactive material, Uranium hexafluoride, fissile
2940 135	Cyclooctadiene phosphines	2977	166	Uranium hexafluoride,
2940 135	9-Phosphabicyclononanes	0070	100	radioactive material, fissile
2941 153 2942 153	Fluoroanilines 2-Trifluoromethylaniline	2978	166	Radioactive material, Uranium hexafluoride, non fissile or fissile-excepted
2943 129	Tetrahydrofurfurylamine	2978	166	Uranium hexafluoride,
2945 132	N-Methylbutylamine			radioactive material, non fissile or fissile-excepted
2946 153	2-Amino-5-diethylaminopentane	2983	131P	Ethylene oxide and Propylene
2947 155	Isopropyl chloroacetate			oxide mixture, with not more than 30% Ethylene oxide
2948 153	3-Trifluoromethylaniline	2983	131P	Propylene oxide and Ethylene
2949 154	Sodium hydrosulfide, hydrated, with not less than 25% water			oxide mixture, with not more than 30% Ethylene oxide
	of crystallization	2984	140	Hydrogen peroxide, aqueous solution, with not less
2949 154	Sodium hydrosulfide, with not less than 25% water of crystallization	1		than 8% but less than 20% Hydrogen peroxide
2949 154	Sodium hydrosulphide, hydrated, with not less than	2985	155	Chlorosilanes, flammable, corrosive, n.o.s.
	25% water of crystallization	2986	155	Chlorosilanes, corrosive, flammable, n.o.s.
2949 154	Sodium hydrosulphide, with not less than 25% water of crystallization	2987	156	Chlorosilanes, corrosive, n.o.s.
2950 138	Magnesium granules, coated	2988	139	Chlorosilanes, water-reactive, flammable, corrosive, n.o.s.
2956 149	5-tert-Butyl-2,4,6-trinitro- m-xylene	2989	133	Lead phosphite, dibasic

ID Gui No. No	de Name of Material	ID Gui No. No	ide Name of Material
2990 171	Life-saving appliances, self- inflating	3005 131	Thiocarbamate pesticide, liquid, toxic, flammable
2991 131	Carbamate pesticide, liquid, poisonous, flammable	3006 151	Thiocarbamate pesticide, liquid, poisonous
2991 131	Carbamate pesticide, liquid, toxic, flammable	3006 151	Thiocarbamate pesticide, liquid, toxic
2992 151	Carbamate pesticide, liquid, poisonous	3009 131	Copper based pesticide, liquid, poisonous, flammable
2992 151	Carbamate pesticide, liquid, toxic	3009 131	Copper based pesticide, liquid, toxic, flammable
2993 131	Arsenical pesticide, liquid, poisonous, flammable	3010 151	Copper based pesticide, liquid, poisonous
2993 131	Arsenical pesticide, liquid, toxic, flammable	3010 151	Copper based pesticide, liquid, toxic
2994 151	Arsenical pesticide, liquid, poisonous	3011 131	Mercury based pesticide, liquid, poisonous, flammable
2994 151	Arsenical pesticide, liquid, toxic	3011 131	Mercury based pesticide, liquid, toxic, flammable
2995 131	Organochlorine pesticide, liquid, poisonous, flammable	3012 151	Mercury based pesticide, liquid, poisonous
2995 131	Organochlorine pesticide, liquid, toxic, flammable	3012 151	Mercury based pesticide, liquid, toxic
2996 151	Organochlorine pesticide, liquid, poisonous	3013 131	Substituted nitrophenol
2996 151	Organochlorine pesticide, liquid, toxic		pesticide, liquid, poisonous, flammable
2997 131	Triazine pesticide, liquid, poisonous, flammable	3013 131	Substituted nitrophenol pesticide, liquid, toxic, flammable
2997 131	Triazine pesticide, liquid, toxic, flammable	3014 153	Substituted nitrophenol pesticide, liquid, poisonous
2998 151	Triazine pesticide, liquid, poisonous	3014 153	Substituted nitrophenol pesticide, liquid, toxic
2998 151	Triazine pesticide, liquid, toxic	3015 131	Bipyridilium pesticide, liquid,
3002 151	Phenyl urea pesticide, liquid, poisonous	3015 131	poisonous, flammable Bipyridilium pesticide, liquid,
3002 151	Phenyl urea pesticide, liquid,		toxic, flammable
3005 131	toxic Thiocarbamate pesticide, liquid,	3016 151	Bipyridilium pesticide, liquid, poisonous
	poisonous, flammable	3016 151	Bipyridilium pesticide, liquid, toxic

ID Guid No. No.	de Name of Material		Guid No.	de Name of Material
3017 131	Organophosphorus pesticide,	3048	157	Aluminum phosphide pesticide
	liquid, poisonous, flammable	3051	135	Aluminum alkyls
3017 131	Organophosphorus pesticide, liquid, toxic, flammable	3053	135	Magnesium alkyls
3018 152	Organophosphorus pesticide, liquid, poisonous	3054	-	Cyclohexanethiol
3018 152	Organophosphorus pesticide,	3054	-	Cyclohexyl mercaptan
	liquid, toxic	3055 3056		2-(2-Aminoethoxy)ethanol n-Heptaldehyde
3019 131	Organotin pesticide, liquid, poisonous, flammable	3057		Trifluoroacetyl chloride
3019 131	Organotin pesticide, liquid, toxic, flammable	3064	127	Nitroglycerin, solution in alcohol, with more than
3020 153	Organotin pesticide, liquid, poisonous			1% but not more than 5% Nitroglycerin
3020 153	Organotin pesticide, liquid, toxic	3065	127	Alcoholic beverages
3021 131	Pesticide, liquid, flammable,	3066	153	Paint (corrosive)
0021 101	poisonous, n.o.s.	3066	153	Paint related material (corrosive)
3021 131	Pesticide, liquid, flammable, toxic, n.o.s.	3070	126	Dichlorodifluoromethane and
3022 127P	1,2-Butylene oxide, stabilized			Ethylene oxide mixture, with not more than 12.5%
3023 131	2-Methyl-2-heptanethiol			Ethylene oxide
3024 131	Coumarin derivative pesticide, liquid, flammable, poisonous	3070	126	Ethylene oxide and Dichlorodifluoromethane mixture, with not more than
3024 131	Coumarin derivative pesticide, liquid, flammable, toxic			12.5% Ethylene oxide
3025 131	Coumarin derivative pesticide,	3071	131	Mercaptan mixture, liquid, poisonous, flammable, n.o.s.
2005 121	liquid, poisonous, flammable	3071	131	Mercaptan mixture, liquid, toxic,
3025 131	Coumarin derivative pesticide, liquid, toxic, flammable	3071	131	flammable, n.o.s. Mercaptans, liquid, poisonous,
3026 151	Coumarin derivative pesticide, liquid, poisonous			flammable, n.o.s.
3026 151	Coumarin derivative pesticide,	3071	131	Mercaptans, liquid, toxic, flammable, n.o.s.
3027 151	liquid, toxic Coumarin derivative pesticide,	3072	171	Life-saving appliances, not self- inflating
0007 454	solid, poisonous	3073	131P	Vinylpyridines, stabilized
3027 151	Coumarin derivative pesticide, solid, toxic	3076	138	Aluminum alkyl hydrides
3028 154	Batteries, dry, containing Potassium hydroxide solid	3077	171	Environmentally hazardous substance, solid, n.o.s.
Page 68				

ID Gu No. No	ide Name of Material o.	ID Gui No. No	de Name of Material
3077 17 1	,,	3091 138	Lithium batteries packed with equipment
3078 138	solid, n.o.s.	3091 138	Lithium metal batteries contained in equipment (including lithium alloy batteries)
3079 13 1	P Methacrylonitrile, stabilized	3091 138	Lithium metal batteries packed
3080 155	Isocyanate solution, poisonous, flammable, n.o.s.		with equipment (including lithium alloy batteries)
3080 15 5		3092 129	1-Methoxy-2-propanol
3080 15 5	flammable, n.o.s. Isocyanates, poisonous,	3093 157	Corrosive liquid, oxidizing, n.o.s.
3080 15 5	flammable, n.o.s.	3094 138	Corrosive liquid, water-reactive, n.o.s.
3000 130	n.o.s.	3095 136	Corrosive solid, self-heating,
3082 17 1	Environmentally hazardous substance, liquid, n.o.s.	3096 138	n.o.s. Corrosive solid, water-reactive,
3082 17 1	Hazardous waste, liquid, n.o.s.		n.o.s.
3082 17 1	Other regulated substances, liquid, n.o.s.	3097 140	Flammable solid, oxidizing, n.o.s.
3083 12 4	Perchloryl fluoride	3098 140	Oxidizing liquid, corrosive, n.o.s.
3084 157 3085 140	g,	3099 142	Oxidizing liquid, poisonous, n.o.s.
3086 141	-	3099 142	Oxidizing liquid, toxic, n.o.s.
3086 14 1	n.o.s.	3100 135	Oxidizing solid, self-heating,
3087 141	3,	3101 146	Organic peroxide type B, liquid
0007 141	n.o.s.	3102 146	Organic peroxide type B, solid
3087 14 1	Oxidizing solid, toxic, n.o.s.	3103 146	Organic peroxide type C, liquid
3088 13 5	Self-heating solid, organic, n.o.s.	3104 146	Organic peroxide type C, solid
3089 170	Metal powder, flammable, n.o.s.	3105 145	Organic peroxide type D, liquid
3090 138		3106 145	Organic peroxide type D, solid
3090 138	138 Lithium metal batteries (including lithium alloy batteries)	3107 145	Organic peroxide type E, liquid
		3108 145	Organic peroxide type E, solid
3091 13 8	B Lithium batteries contained in equipment	3109 145 3110 145	Organic peroxide type F, liquid Organic peroxide type F, solid

No. No.	de Name of Material	ID Gui No. No	ide Name of Material
3111 148	Organic peroxide type B, liquid, temperature controlled	3127 135	Self-heating solid, oxidizing, n.o.s.
3112 148	Organic peroxide type B, solid, temperature controlled	3128 136	Self-heating solid, poisonous, organic, n.o.s.
3113 148	Organic peroxide type C, liquid, temperature controlled	3128 136	Self-heating solid, toxic, organic, n.o.s.
3114 148	Organic peroxide type C, solid, temperature controlled	3129 138	Water-reactive liquid, corrosive, n.o.s.
3115 148	Organic peroxide type D, liquid, temperature controlled	3130 139	Water-reactive liquid, poisonous, n.o.s.
3116 148	Organic peroxide type D, solid, temperature controlled	3130 139	Water-reactive liquid, toxic, n.o.s.
3117 148	Organic peroxide type E, liquid, temperature controlled	3131 138	Water-reactive solid, corrosive, n.o.s.
3118 148	Organic peroxide type E, solid, temperature controlled	3132 138	Water-reactive solid, flammable, n.o.s.
3119 148	Organic peroxide type F, liquid, temperature controlled	3133 138	Water-reactive solid, oxidizing, n.o.s.
3120 148	Organic peroxide type F, solid, temperature controlled	3134 139	Water-reactive solid, poisonous, n.o.s.
3121 144	Oxidizing solid, water-reactive, n.o.s.	3134 139	Water-reactive solid, toxic, n.o.s.
3122 142	Poisonous liquid, oxidizing, n.o.s.	3135 138	Water-reactive solid, self- heating, n.o.s.
3122 142	Toxic liquid, oxidizing, n.o.s.	3136 120	Trifluoromethane, refrigerated liquid
3123 139	Poisonous liquid, water- reactive, n.o.s.	3137 140	Oxidizing solid, flammable, n.o.s.
3123 139	Toxic liquid, water-reactive, n.o.s.	3138 115	
3124 136	Poisonous solid, self-heating, n.o.s.		Propylene in mixture, refrigerated liquid containing at least 71.5% Ethylene with not more than 22.5% Acetylene and not more than
3124 136	Toxic solid, self-heating, n.o.s.		
3125 139	Poisonous solid, water-reactive, n.o.s.	0400 445	6% Propylene
3125 139	Toxic solid, water-reactive, n.o.s.	3138 115 Ethylene, Acetylene and Propylene in mixture, refrigerated liquid containing at least 71.5% Ethylene with not more than 22.5% Acetylene and not more than 6% Propylene	
3126 136	Self-heating solid, corrosive, organic, n.o.s.		with not more than 22.5% Acetylene and not more than

ID No.	Guid No.	de Name of Material	ID No.	Guio No.	
3138	115	Propylene, Ethylene and Acetylene in mixture, refrigerated liquid containing at least 71.5% Ethylene with not more than 22.5% Acetylene and not more than 6% Propylene	3149 3149		Hydrogen peroxide and Peroxyacetic acid mixture, with acid(s), water and not more than 5% Peroxyacetic acid, stabilized Peroxyacetic acid and hydrogen peroxide mixture, with
3139 3140		Oxidizing liquid, n.o.s. Alkaloids, liquid, n.o.s.			acid(s), water and not more than 5% Peroxyacetic acid,
		(poisonous)	3150	115	stabilized Devices, small, hydrocarbon gas
3140	151	Alkaloid salts, liquid, n.o.s. (poisonous)	0150	115	powered, with release device
3141	157	Antimony compound, inorganic, liquid, n.o.s.	3150	113	Hydrocarbon gas refills for small devices, with release device
3142		Disinfectant, liquid, poisonous, n.o.s.	3151	171	Halogenated monomethyldiphenylmethanes, liquid
3142 3143		Disinfectant, liquid, toxic, n.o.s.	3151	171	Polyhalogenated biphenyls,
3143	-	Dye, solid, poisonous, n.o.s. Dye, solid, toxic, n.o.s.			liquid
3143	-	Dye intermediate, solid, poisonous, n.o.s.	3151	171	Polyhalogenated terphenyls, liquid
3143	151	Dye intermediate, solid, toxic, n.o.s.	3152	171	Halogenated monomethyldiphenylmethanes, solid
3144	151	Nicotine compound, liquid, n.o.s.	3152	171	Polyhalogenated biphenyls, solid
3144	151	Nicotine preparation, liquid, n.o.s.	3152	171	Polyhalogenated terphenyls, solid
3145	153	Alkylphenols, liquid, n.o.s.	3153	115	Perfluoro(methyl vinyl ether)
		(including C2-C12 homologues)	3154	115	Perfluoro(ethyl vinyl ether)
3146	153	Organotin compound, solid,	3155	154	Pentachlorophenol
0147	15/	n.o.s.	3156	122	Compressed gas, oxidizing, n.o.s.
3147 3147	-	Dye, solid, corrosive, n.o.s.	3157	122	Liquefied gas, oxidizing, n.o.s.
3147	134	Dye intermediate, solid, corrosive, n.o.s.	3158	120	Gas, refrigerated liquid, n.o.s.
3148	138	Water-reactive liquid, n.o.s.	3159	126	Refrigerant gas R-134a
			3159	126	1,1,1,2-Tetrafluoroethane
			3160	119	Liquefied gas, poisonous, flammable, n.o.s.

ID Gui No. No	de Name of Material	ID Gui	de Name of Material
3160 119	Liquefied gas, poisonous, flammable, n.o.s. (Inhalation	3162 123	Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone C)
3160 119	Hazard Zone A) Liquefied gas, poisonous, flammable, n.o.s. (Inhalation	3162 123	Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone D)
3160 119	Hazard Zone B) Liquefied gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone C)	3163 126 3164 126	Liquefied gas, n.o.s. Articles, pressurized, hydraulic (containing non-flammable gas)
3160 119	Liquefied gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone D)	3164 126	Articles, pressurized, pneumatic (containing non-flammable gas)
3160 119	Liquefied gas, toxic, flammable, n.o.s.	3165 131	Aircraft hydraulic power unit fuel tank
3160 119	Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard	3166 115	Engine, fuel cell, flammable gas powered
3160 119	Zone A) Liquefied gas, toxic, flammable,	3166 128	Engine, fuel cell, flammable liquid powered
	n.o.s. (Inhalation Hazard Zone B)	3166 128	Engine, internal combustion
3160 119	Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard	3166 115	Engines, internal combustion, flammable gas powered
3160 119	Zone C)	3166 128	Engines, internal combustion, flammable liquid powered
3160 119	Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone D)	3166 115	Vehicle, flammable gas powered
3161 115	Liquefied gas, flammable, n.o.s.	3166 128	Vehicle, flammable liquid powered
3162 123	Liquefied gas, poisonous, n.o.s.	3166 115	Vehicle, fuel cell, flammable gas powered
3162 123	Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone A)	3166 128	Vehicle, fuel cell, flammable
3162 123	Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone B)	3167 115	liquid powered Gas sample, non-pressurized,

stion, ed stion. red powered d able able rized. flammable, n.o.s., not 3162 **123** Liquefied gas, poisonous, n.o.s. refrigerated liquid (Inhalation Hazard Zone C) 3168 119 Gas sample, non-pressurized, 3162 **123** Liquefied gas, poisonous, n.o.s. poisonous, flammable, n.o.s., (Inhalation Hazard Zone D) not refrigerated liquid 3162 **123** Liquefied gas, toxic, n.o.s. 3168 **119** Gas sample, non-pressurized, toxic, flammable, n.o.s., not 3162 **123** Liquefied gas, toxic, n.o.s. refrigerated liquid (Inhalation Hazard Zone A) 3162 **123** Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone B) Page 72

ID Gui No. No	de Name of Material	ID (No.		de Name of Material
3169 123	Gas sample, non-pressurized, poisonous, n.o.s., not refrigerated liquid	3179	134	Flammable solid, toxic, inorganic, n.o.s.
3169 123	Gas sample, non-pressurized.	3180	134	Flammable solid, corrosive, inorganic, n.o.s.
	toxic, n.o.s., not refrigerated liquid	3181	133	Metal salts of organic compounds, flammable,
3170 138	Aluminum dross			n.o.s.
3170 138	Aluminum remelting by-products	3182	170	Metal hydrides, flammable, n.o.s.
3170 138	Aluminum smelting by-products	3183	135	Self-heating liquid, organic,
3171 154	Battery-powered equipment (wet battery)	0100	100	n.o.s.
3171 147	Battery-powered equipment (with lithium ion batteries)	3184	136	Self-heating liquid, poisonous, organic, n.o.s.
3171 138	Battery-powered equipment (with lithium metal batteries)	3184	136	Self-heating liquid, toxic, organic, n.o.s.
3171 138	Battery-powered equipment (with sodium batteries)	3185	136	Self-heating liquid, corrosive, organic, n.o.s.
3171 154	Battery-powered vehicle (wet battery)	3186	135	Self-heating liquid, inorganic, n.o.s.
3171 147	Battery-powered vehicle (with lithium ion batteries)	3187	136	Self-heating liquid, poisonous, inorganic, n.o.s.
3171 138	Battery-powered vehicle (with sodium batteries)	3187	136	Self-heating liquid, toxic, inorganic, n.o.s.
3171 154	Wheelchair, electric, with batteries	3188	136	Self-heating liquid, corrosive, inorganic, n.o.s.
3172 153	Toxins, extracted from living sources, liquid, n.o.s.	3189	135	Metal powder, self-heating, n.o.s.
3174 135	Titanium disulfide	3190	135	Self-heating solid, inorganic, n.o.s.
3174 135	Titanium disulphide	3191	136	Self-heating solid, poisonous,
3175 133	Solids containing flammable liquid, n.o.s.	3191	136	inorganic, n.o.s. Self-heating solid, toxic,
3176 133	Flammable solid, organic, molten, n.o.s.	3192	136	inorganic, n.o.s. Self-heating solid, corrosive,
3178 133	Flammable solid, inorganic,			inorganic, n.o.s.
3178 133	n.o.s. Smokeless powder for small	3194	135	Pyrophoric liquid, inorganic, n.o.s.
	arms	3200	135	Pyrophoric solid, inorganic,
3179 134	Flammable solid, poisonous, inorganic, n.o.s.			n.o.s.
				Dago 72

ID Gui	de Name of Material	ID Guid No. No.	
3205 135	Alkaline earth metal	3228 149	Self-reactive solid type E
0000 400	alcoholates, n.o.s.	3229 149	Self-reactive liquid type F
3206 136	Alkali metal alcoholates, self- heating, corrosive, n.o.s.	3230 149	Self-reactive solid type F
3208 138	Metallic substance, water- reactive, n.o.s.	3231 150	Self-reactive liquid type B, temperature controlled
3209 138	Metallic substance, water- reactive, self-heating, n.o.s.	3232 150	Self-reactive solid type B, temperature controlled
3210 140	Chlorates, inorganic, aqueous solution, n.o.s.	3233 150	Self-reactive liquid type C, temperature controlled
3211 140	Perchlorates, inorganic, aqueous solution, n.o.s.	3234 150	Self-reactive solid type C, temperature controlled
3212 140	Hypochlorites, inorganic, n.o.s.	3235 150	Self-reactive liquid type D, temperature controlled
3213 140	Bromates, inorganic, aqueous solution, n.o.s.	3236 150	Self-reactive solid type D, temperature controlled
3214 140	Permanganates, inorganic, aqueous solution, n.o.s.	3237 150	Self-reactive liquid type E, temperature controlled
3215 140	Persulfates, inorganic, n.o.s.	3238 150	Self-reactive solid type E,
3215 140	Persulphates, inorganic, n.o.s.		temperature controlled
3216 140	Persulfates, inorganic, aqueous solution, n.o.s.	3239 150	Self-reactive liquid type F, temperature controlled
3216 140	Persulphates, inorganic, aqueous solution, n.o.s.	3240 150	Self-reactive solid type F, temperature controlled
3218 140	Nitrates, inorganic, aqueous solution, n.o.s.	3241 133	2-Bromo-2-nitropropane-1, 3-diol
3219 140	Nitrites, inorganic, aqueous	3242 149	Azodicarbonamide
3220 126	solution, n.o.s. Pentafluoroethane	3243 151	Solids containing poisonous liquid, n.o.s.
3220 126	Refrigerant gas R-125	3243 151	Solids containing toxic liquid,
3220 120	Self-reactive liquid type B	3243 131	n.o.s.
3222 149	Self-reactive solid type B	3244 154	Solids containing corrosive
3223 149	Self-reactive liquid type C	3245 171	liquid, n.o.s. Genetically modified micro-
3224 149	Self-reactive solid type C	3243 171	organisms
3225 149	Self-reactive liquid type D	3245 171	Genetically modified organisms
3226 149	Self-reactive solid type D	3246 156	Methanesulfonyl chloride
3227 149	Self-reactive liquid type E	3246 156	Methanesulphonyl chloride

ID Gui	de Name of Material	ID No.	Gui No.	de Name of Material
3247 140	Sodium peroxoborate, anhydrous	3262	154	Corrosive solid, basic, inorganic, n.o.s.
3248 131	Medicine, liquid, flammable, poisonous, n.o.s.	3263	154	Corrosive solid, basic, organic, n.o.s.
3248 131	Medicine, liquid, flammable, toxic, n.o.s.	3264	154	Corrosive liquid, acidic, inorganic, n.o.s.
3249 151	Medicine, solid, poisonous, n.o.s.	3265	153	Corrosive liquid, acidic, organic, n.o.s.
3249 151	Medicine, solid, toxic, n.o.s.	3266	154	Corrosive liquid, basic, inorganic, n.o.s.
3250 153 3251 133	Chloroacetic acid, molten Isosorbide-5-mononitrate	3267	153	Corrosive liquid, basic, organic, n.o.s.
3252 115	Difluoromethane	3268	171	Air bag inflators
3252 115	Refrigerant gas R-32	3268	171	Air bag modules
3253 154	Disodium trioxosilicate	3268	171	Safety devices
3254 135	Tributylphosphane	3268	171	Seat-belt pre-tensioners
3255 135 3256 128	tert-Butyl hypochlorite Elevated temperature liquid,	3269	128	Polyester resin kit, liquid base material
	flammable, n.o.s., with flash point above 37.8°C (100°F),	3270	133	Nitrocellulose membrane filters
	at or above its flash point	3271	127	Ethers, n.o.s.
3256 128	Elevated temperature liquid,	3272	127	Esters, n.o.s.
	flammable, n.o.s., with flash point above 60°C (140°F), at or above its flash point	3273	131	Nitriles, flammable, poisonous, n.o.s.
3257 171	Elevated temperature liquid,	3273	131	Nitriles, flammable, toxic, n.o.s.
	n.o.s., at or above 100°C (212°F), and below its flash point	3274	132	Alcoholates solution, n.o.s., in alcohol
3258 171	Elevated temperature solid, n.o.s., at or above 240°C	3275	131	Nitriles, poisonous, flammable, n.o.s.
	(464°F)	3275	131	Nitriles, toxic, flammable, n.o.s.
3259 154	Amines, solid, corrosive, n.o.s.	3276	151	Nitriles, liquid, poisonous, n.o.s.
3259 154	Polyamines, solid, corrosive, n.o.s.	3276	151	Nitriles, liquid, toxic, n.o.s.
3260 154	Corrosive solid, acidic, inorganic, n.o.s.	3276	151	Nitriles, poisonous, liquid, n.o.s.
3261 154	Corrosive solid, acidic, organic,	3276	151	Nitriles, toxic, liquid, n.o.s.
0201 134	n.o.s.	3277	154	Chloroformates, poisonous, corrosive, n.o.s.

ID Gui No. No		ID G	÷uic No.	de Name of Material
3277 154	Chloroformates, toxic, corrosive, n.o.s.	3288 1 3289 1		Toxic solid, inorganic, n.o.s. Poisonous liquid, corrosive,
3278 151	Organophosphorus compound, liquid, poisonous, n.o.s.	3209 1	134	inorganic, n.o.s.
3278 151	Organophosphorus compound,	3289 1	154	Toxic liquid, corrosive, inorganic, n.o.s.
3278 151	liquid, toxic, n.o.s. Organophosphorus compound, poisonous, liquid, n.o.s.	3290 1	154	Poisonous solid, corrosive, inorganic, n.o.s.
3278 151	Organophosphorus compound,	3290 1	154	Toxic solid, corrosive, inorganic, n.o.s.
0070 404	toxic, liquid, n.o.s.	3291 1	158	(Bio)Medical waste, n.o.s.
3279 131	Organophosphorus compound, poisonous, flammable, n.o.s.	3291 1	158	Clinical waste, unspecified, n.o.s.
3279 131	Organophosphorus compound, toxic, flammable, n.o.s.	3291 1	158	Medical waste, n.o.s.
3280 151	Organoarsenic compound,	3291 1	158	Regulated medical waste, n.o.s.
	liquid, n.o.s.	3292 1	138	Batteries, containing Sodium
3281 151	Metal carbonyls, liquid, n.o.s.	3292 1	138	Cells, containing Sodium
3282 151	Organometallic compound, liquid, poisonous, n.o.s.	3292 1	138	Sodium, batteries containing
3282 151	Organometallic compound, liquid, toxic, n.o.s.	3293 1	152	Hydrazine, aqueous solution, with not more than 37% Hydrazine
3282 151	Organometallic compound, poisonous, liquid, n.o.s.	3294 1	131	Hydrogen cyanide, solution in alcohol, with not more than
3282 151	Organometallic compound, toxic, liquid, n.o.s.			45% Hydrogen cyanide
3283 151	Selenium compound, solid,	3295 1	-	Hydrocarbons, liquid, n.o.s.
3203 131	n.o.s.	3296 1	-	Heptafluoropropane
3284 151	Tellurium compound, n.o.s.	3296 1		Refrigerant gas R-227
3285 151	Vanadium compound, n.o.s.	3297 1	126	Chlorotetrafluoroethane and Ethylene oxide mixture, with
3286 131	Flammable liquid, poisonous, corrosive, n.o.s.			not more than 8.8% Ethylene oxide
3286 131	Flammable liquid, toxic, corrosive, n.o.s.	3297 1	126	Ethylene oxide and Chlorotetrafluoroethane mixture, with not more than
3287 151	Poisonous liquid, inorganic, n.o.s.	2200 4	126	8.8% Ethylene oxide
3287 151	Toxic liquid, inorganic, n.o.s.	3298 1	120	Ethylene oxide and Pentafluoroethane mixture,
3288 151	Poisonous solid, inorganic, n.o.s.			with not more than 7.9% Ethylene oxide

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
3298 126 Pentafluoroethane and Ethylene oxide mixture, with not more than 7.9% Ethylene oxide	3303 124 Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone C)
3299 126 Ethylene oxide and Tetrafluoroethane mixture, with not more than 5.6% Ethylene oxide	3303 124 Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone D)
3299 126 Tetrafluoroethane and Ethylene oxide mixture, with not more than 5.6% Ethylene oxide	3304 125 Compressed gas, poisonous, corrosive, n.o.s. 3304 125 Compressed gas, poisonous,
3300 119P Carbon dioxide and Ethylene oxide mixture, with more than 87% Ethylene oxide	corrosive, n.o.s. (Inhalation Hazard Zone A) 3304 125 Compressed gas, poisonous, corrosive, n.o.s. (Inhalation
3300 119P Ethylene oxide and Carbon dioxide mixture, with more than 87% Ethylene oxide	Hazard Zone B) 3304 125 Compressed gas, poisonous, corrosive, n.o.s. (Inhalation
3301 136 Corrosive liquid, self-heating, n.o.s.	Hazard Zone C) 3304 125 Compressed gas, poisonous,
3302 152 2-Dimethylaminoethyl acrylate 3303 124 Compressed gas, poisonous, oxidizing, n.o.s.	corrosive, n.o.s. (Inhalation Hazard Zone D) 3304 125 Compressed gas, toxic,
3303 124 Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone A)	corrosive, n.o.s. 3304 125 Compressed gas, toxic, corrosive, n.o.s. (Inhalation
3303 124 Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone B)	Hazard Zone A) 3304 125 Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone B)
3303 124 Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone C)	3304 125 Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone C)
3303 124 Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone D)	3304 125 Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone D)
3303 124 Compressed gas, toxic, oxidizing, n.o.s.	3305 119 Compressed gas, poisonous, flammable, corrosive, n.o.s.
3303 124 Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone A)	3305 119 Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)
3303 124 Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone B)	3305 119 Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)

ID	Guide	Name	of	Material
No.	No.			

ID Guide Name of Material No. No.

3305 1 1	Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	3306	124	Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)
3305 1 1	Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	3306	124	Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)
3305 1 1	Compressed gas, toxic, flammable, corrosive, n.o.s.	3307	124	Liquefied gas, poisonous, oxidizing, n.o.s.
3305 1 1	Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	3307	7 124	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone A)
3305 1 1	Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	3307	7 124	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone B)
3305 1 1	Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	3307	⁷ 124	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone C)
3305 1 1	Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	3307	7 124	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone D)
3306 12	Compressed gas, poisonous, oxidizing, corrosive, n.o.s.	3307	124	Liquefied gas, toxic, oxidizing, n.o.s.
3306 12	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	3307	7 124	Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone A)
3306 12	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	3307	7 124	Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone B)
3306 12	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)	3307	7 124	Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone C)
3306 12	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)	3307	7 124	Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone D)
3306 12	Compressed gas, toxic, oxidizing, corrosive, n.o.s.	3308	125	Liquefied gas, poisonous, corrosive, n.o.s.
3306 12	Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	3308	125	Liquefied gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone A)
3306 12	Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	3308	125	Liquefied gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone B)
<u> </u>				

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
3308 125 Liquefied gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone C)	3309 119 Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)
3308 125 Liquefied gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone D)	3309 119 Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)
3308 125 Liquefied gas, toxic, corrosive, n.o.s.	3310 124 Liquefied gas, poisonous, oxidizing, corrosive, n.o.s.
3308 125 Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone A)	3310 124 Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)
3308 125 Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone B)	3310 124 Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)
3308 125 Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone C)	3310 124 Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)
3308 125 Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone D)	3310 124 Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)
3309 119 Liquefied gas, poisonous, flammable, corrosive, n.o.s.	3310 124 Liquefied gas, toxic, oxidizing, corrosive, n.o.s.
3309 119 Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	3310 124 Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)
3309 119 Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	3310 124 Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)
3309 119 Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	3310 124 Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)
3309 119 Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	3310 124 Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)
3309 119 Liquefied gas, toxic, flammable, corrosive, n.o.s.	3311 122 Gas, refrigerated liquid, oxidizing, n.o.s.
3309 119 Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation	3312 115 Gas, refrigerated liquid, flammable, n.o.s.
Hazard Zone A) 3309 119 Liquefied gas, toxic, flammable,	3313 135 Organic pigments, self-heating
corrosive, n.o.s. (Inhalation	3314 171 Plastic molding compound
Hazard Zone B)	3314 171 Plastics moulding compound

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
3315 151 Chemical sample, poisonous	3328 165 Radioactive material, Type B(U) package, fissile
3315 151 Chemical sample, toxic 3316 171 Chemical kit	3329 165 Radioactive material, Type B(M) package, fissile
3316 171 First aid kit 3317 113 2-Amino-4.6-dinitrophenol.	3330 165 Radioactive material, Type C
3317 113 2-Amino-4,6-dinitrophenol, wetted with not less than 20% water	3331 165 Radioactive material, transported under special
3318 125 Ammonia solution, with more than 50% Ammonia	arrangement, fissile 3332 164 Radioactive material, Type A
3319 113 Nitroglycerin mixture, desensitized, solid, n.o.s.,	package, special form, non fissile or fissile-excepted
with more than 2% but not more than 10% Nitroglycerin	3333 165 Radioactive material, Type A package, special form, fissile
3320 157 Sodium borohydride and Sodium hydroxide solution, with	3334 171 Aviation regulated liquid, n.o.s.
not more than 12% Sodium borohydride and not more	3334 171 Self-defense spray, non- pressurized
than 40% Sodium hydroxide 3321 162 Radioactive material, low	3335 171 Aviation regulated solid, n.o.s.
3321 162 Radioactive material, low specific activity (LSA-II), non fissile or fissile-excepted	3336 130 Mercaptan mixture, liquid, flammable, n.o.s.
3322 162 Radioactive material, low specific activity (LSA-III), non	3336 130 Mercaptans, liquid, flammable, n.o.s.
fissile or fissile-excepted	3337 126 Refrigerant gas R-404A
3323 163 Radioactive material, Type C package, non fissile or fissile	3338 126 Refrigerant gas R-407A
excepted	3339 126 Refrigerant gas R-407B
3324 165 Radioactive material, low specific activity (LSA-II),	3340 126 Refrigerant gas R-407C
fissile	3341 135 Thiourea dioxide
3325 165 Radioactive material, low specific activity (LSA-III),	3342 135 Xanthates
fissile	3343 113 Nitroglycerin mixture, desensitized, liquid,
3326 165 Radioactive material, surface contaminated objects	flammable, n.o.s., with not more than 30% Nitroglycerin
(SCO-I), fissile 3326 165 Radioactive material, surface contaminated objects (SCO-II), fissile	3344 113 Pentaerythrite tetranitrate mixture, desensitized, solid, n.o.s., with more than 10% but not more than 20% PETN
3327 165 Radioactive material, Type A package, fissile, non-special form	

ID Gui	de Name of Material	ID No.		de Name of Material
3344 113	Pentaerythritol tetranitrate mixture, desensitized, solid,	3352	151	Pyrethroid pesticide, liquid, toxic
	n.o.s., with more than 10% but not more than 20% PETN	3354	115	Insecticide gas, flammable, n.o.s.
3344 113	PETN mixture, desensitized, solid, n.o.s., with more than 10% but not more than 20% PETN	3355		Insecticide gas, poisonous, flammable, n.o.s.
3345 153	Phenoxyacetic acid derivative pesticide, solid, poisonous	3355	119	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone A)
3345 153	Phenoxyacetic acid derivative pesticide, solid, toxic	3355	119	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone B)
3346 131	Phenoxyacetic acid derivative pesticide, liquid, flammable, poisonous	3355	119	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone C)
3346 131	Phenoxyacetic acid derivative pesticide, liquid, flammable, toxic	3355	119	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone D)
3347 131	Phenoxyacetic acid derivative pesticide, liquid, poisonous, flammable	3355	119	Insecticide gas, toxic, flammable, n.o.s.
3347 131	Phenoxyacetic acid derivative pesticide, liquid, toxic, flammable	3355	119	Insecticide gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone A)
3348 153	Phenoxyacetic acid derivative pesticide, liquid, poisonous	3355	119	Insecticide gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone B)
3348 153	Phenoxyacetic acid derivative pesticide, liquid, toxic	3355	119	Insecticide gas, toxic, flammable, n.o.s. (Inhalation
3349 151	Pyrethroid pesticide, solid, poisonous	3355	110	Hazard Zone C) Insecticide gas, toxic,
3349 151	Pyrethroid pesticide, solid, toxic	0000	113	flammable, n.o.s. (Inhalation Hazard Zone D)
3350 131	Pyrethroid pesticide, liquid, flammable, poisonous	3356	140	Oxygen generator, chemical
3350 131	Pyrethroid pesticide, liquid, flammable, toxic	3356	140	Oxygen generator, chemical, spent
3351 131	Pyrethroid pesticide, liquid, poisonous, flammable	3357	113	Nitroglycerin mixture, desensitized, liquid, n.o.s., with not more than 30%
3351 131	Pyrethroid pesticide, liquid, toxic, flammable			Nitroglycerin
3352 151	Pyrethroid pesticide, liquid, poisonous	3358	115	Refrigerating machines, containing flammable, non- poisonous, liquefied gas

No.	No.		No.	No.	
3358	115	Refrigerating machines, containing flammable, non- toxic, liquefied gas	3373		Biological substance, category B
3359	171	Fumigated cargo transport unit	3374 3375	-	Acetylene, solvent free Ammonium nitrate emulsion
3360	133	Fibers, vegetable, dry	3375	-	
3360	133	Fibres, vegetable, dry	3375	-	Ammonium nitrate gel Ammonium nitrate suspension
3361	156	Chlorosilanes, poisonous, corrosive, n.o.s.	3376	-	4-Nitrophenylhydrazine, with not less than 30% water
3361	156	Chlorosilanes, toxic, corrosive, n.o.s.	3377	140	Sodium perborate monohydrate
3362	155	Chlorosilanes, poisonous, corrosive, flammable, n.o.s.	3378	140	Sodium carbonate peroxyhydrate
3362	155	Chlorosilanes, toxic, corrosive, flammable, n.o.s.	3379	113	Desensitized explosive, liquid, n.o.s.
3363	171	Dangerous goods in apparatus	3380	113	Desensitized explosive, solid, n.o.s.
3363		Dangerous goods in articles	3381	151	Poisonous by inhalation liquid,
3363		Dangerous goods in machinery			n.o.s. (Inhalation Hazard Zone A)
3364		Picric acid, wetted with not less than 10% water	3381	151	Toxic by inhalation liquid, n.o.s. (Inhalation Hazard Zone A)
3364	113	Trinitrophenol, wetted with not less than 10% water	3382	151	Poisonous by inhalation liquid, n.o.s. (Inhalation Hazard
3365	113	Picryl chloride, wetted with not less than 10% water			Zone B)
3365	113	Trinitrochlorobenzene, wetted with not less than 10% water	3382	151	Toxic by inhalation liquid, n.o.s. (Inhalation Hazard Zone B)
3366	113	TNT, wetted with not less than 10% water	3383	131	Poisonous by inhalation liquid, flammable, n.o.s. (Inhalation Hazard Zone A)
3366	113	Trinitrotoluene, wetted with not less than 10% water	3383	131	Toxic by inhalation liquid, flammable, n.o.s. (Inhalation
3367	113	Trinitrobenzene, wetted with not less than 10% water	3384	131	Hazard Zone A) Poisonous by inhalation liquid,
3368	113	Trinitrobenzoic acid, wetted with not less than 10% water	0004		flammable, n.o.s. (Inhalation Hazard Zone B)
3369	113	Sodium dinitro-o-cresolate, wetted with not less than 10% water	3384	131	Toxic by inhalation liquid, flammable, n.o.s. (Inhalation Hazard Zone B)
3370	113	Urea nitrate, wetted with not less than 10% water	3385	139	Poisonous by inhalation liquid, water-reactive, n.o.s.
3371	129	2-Methylbutanal			(Inhalation Hazard Zone A)

Page 82

ID Guide Name of Material ID Guide Name of Material

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
3385 139 Toxic by inhalation liquid, water-reactive, n.o.s.	3395 135 Organometallic substance, solid, water-reactive
(Inhalation Hazard Zone A) 3386 139 Poisonous by inhalation liquid, water-reactive, n.o.s.	3396 138 Organometallic substance, solid, water-reactive, flammable
(Inhalation Hazard Zone B) 3386 139 Toxic by inhalation liquid, water-reactive, n.o.s.	3397 138 Organometallic substance, solid, water-reactive, self- heating
(Inhalation Hazard Zone B) 3387 142 Poisonous by inhalation liquid,	3398 135 Organometallic substance, liquid, water-reactive
oxidizing, n.o.s. (Inhalation Hazard Zone A) 3387 142 Toxic by inhalation liquid.	3399 138 Organometallic substance, liquid, water-reactive, flammable
3387 142 Toxic by inhalation liquid, oxidizing, n.o.s. (Inhalation Hazard Zone A)	3400 138 Organometallic substance, solid, self-heating
3388 142 Poisonous by inhalation liquid, oxidizing, n.o.s. (Inhalation Hazard Zone B)	3401 138 Alkali metal amalgam, solid
3388 142 Toxic by inhalation liquid, oxidizing, n.o.s. (Inhalation	3402 138 Alkaline earth metal amalgam, solid 3403 138 Potassium, metal alloys, solid
Hazard Zone B)	3404 138 Potassium sodium alloys, solid
3389 154 Poisonous by inhalation liquid, corrosive, n.o.s. (Inhalation	3404 138 Sodium potassium alloys, solid
Hazard Zone A)	3405 141 Barium chlorate, solution
3389 154 Toxic by inhalation liquid, corrosive, n.o.s. (Inhalation	3406 141 Barium perchlorate, solution
Hazard Zone A)	3407 140 Chlorate and Magnesium
3390 154 Poisonous by inhalation liquid,	chloride mixture, solution
corrosive, n.o.s. (Inhalation Hazard Zone B)	3407 140 Magnesium chloride and Chlorate mixture, solution
3390 154 Toxic by inhalation liquid, corrosive, n.o.s. (Inhalation	3408 141 Lead perchlorate, solution
Hazard Zone B)	3409 152 Chloronitrobenzenes, liquid
3391 135 Organometallic substance, solid, pyrophoric	3410 153 4-Chloro-o-toluidine hydrochloride, solution
3392 135 Organometallic substance, liquid, pyrophoric	3411 153 beta-Naphthylamine, solution
3393 135 Organometallic substance,	3411 153 Naphthylamine (beta), solution
solid, pyrophoric, water- reactive	3412 153 Formic acid, with not less than 5% but less than 10% acid
3394 135 Organometallic substance, liquid, pyrophoric, water- reactive	3412 153 Formic acid, with not less than 10% but not more than 85% acid

ID Guid No. No.	de Name of Material	ID Gui	de Name of Material
3413 157	Potassium cyanide, solution	3439 151	Nitriles, poisonous, solid, n.o.s.
3414 157	Sodium cyanide, solution	3439 151	Nitriles, solid, poisonous, n.o.s.
3415 154	Sodium fluoride, solution	3439 151	Nitriles, solid, toxic, n.o.s.
3416 153	Chloroacetophenone, liquid	3439 151	Nitriles, toxic, solid, n.o.s.
3417 152	Xylyl bromide, solid	3440 151	Selenium compound, liquid,
3418 151	2,4-Toluenediamine, solution		n.o.s.
3418 151	2,4-Toluylenediamine, solution	3441 153	Chlorodinitrobenzenes, solid
3419 157	Boron trifluoride acetic acid	3442 153	Dichloroanilines, solid
	complex, solid	3443 152	Dinitrobenzenes, solid
3420 157	Boron trifluoride propionic acid complex, solid	3444 151	Nicotine hydrochloride, solid
3421 154	Potassium hydrogen difluoride,	3445 151	Nicotine sulfate, solid
0.20.	solution	3445 151	Nicotine sulphate, solid
3422 154	Potassium fluoride, solution	3446 152	Nitrotoluenes, solid
3423 153	Tetramethylammonium hydroxide, solid	3447 152	Nitroxylenes, solid
3424 141	Ammonium dinitro-o-cresolate,	3448 159	Tear gas substance, solid, n.o.s.
	solution	3449 159	Bromobenzyl cyanides, solid
3425 156	Bromoacetic acid, solid	3450 151	Diphenylchloroarsine, solid
3426 153P	Acrylamide, solution	3451 153	Toluidines, solid
3427 153	Chlorobenzyl chlorides, solid	3452 153	Xylidines, solid
3428 156	3-Chloro-4-methylphenyl isocyanate, solid	3453 154	Phosphoric acid, solid
3429 153	Chlorotoluidines, liquid	3454 152	Dinitrotoluenes, solid
3430 153	Xylenols, liquid	3455 153	Cresols, solid
3431 152	Nitrobenzotrifluorides, solid	3456 157	Nitrosylsulfuric acid, solid
3432 171	Polychlorinated biphenyls, solid	3456 157	Nitrosylsulphuric acid, solid
3434 153	Nitrocresols, liquid	3457 152	Chloronitrotoluenes, solid
3436 151	Hexafluoroacetone hydrate,	3458 152	Nitroanisoles, solid
	solid	3459 152	Nitrobromobenzenes, solid
3437 152	Chlorocresols, solid	3460 153	N-Ethylbenzyltoluidines, solid
3438 153	alpha-Methylbenzyl alcohol, solid	3462 153	Toxins, extracted from living sources, solid, n.o.s.
3438 153	Methylbenzyl (alpha) alcohol, solid	3463 153	Propionic acid, with not less than 90% acid

ID Gui	de Name of Material	ID (de Name of Material
3464 151	Organophosphorus compound, poisonous, solid, n.o.s.	3473	128	Fuel cell cartridges contained in equipment, containing flammable liquids
3464 151	Organophosphorus compound, solid, poisonous, n.o.s.	3473	128	Fuel cell cartridges packed with equipment, containing
3464 151	Organophosphorus compound, solid, toxic, n.o.s.	3474	112	flammable liquids 1-Hydroxybenzotriazole,
3464 151	Organophosphorus compound, toxic, solid, n.o.s.	0474	110	anhydrous, wetted with not less than 20% water
3465 151	Organoarsenic compound, solid, n.o.s.	3474	113	1-Hydroxybenzotriazole, monohydrate
3466 151	Metal carbonyls, solid, n.o.s.	3475	127	Ethanol and gasoline mixture,
3467 151	Organometallic compound, poisonous, solid, n.o.s.	3475 ·	127	with more than 10% ethanol Ethanol and motor spirit
3467 151	Organometallic compound, solid, poisonous, n.o.s.			mixture, with more than 10% ethanol
3467 151	Organometallic compound, solid, toxic, n.o.s.	3475	127	Ethanol and petrol mixture, with more than 10% ethanol
3467 151	Organometallic compound, toxic, solid, n.o.s.	3475	127	Gasoline and ethanol mixture, with more than 10% ethanol
3468 115	Hydrogen in a metal hydride storage system	3475	127	Motor spirit and ethanol mixture, with more than 10% ethanol
3468 115	Hydrogen in a metal hydride storage system contained in equipment	3475	127	Petrol and ethanol mixture, with more than 10% ethanol
3468 115	Hydrogen in a metal hydride storage system packed with	3476	138	Fuel cell cartridges, containing water-reactive substances
	equipment	3476	138	Fuel cell cartridges contained in equipment, containing water-
3469 132	Paint, flammable, corrosive			reactive substances
3469 132	Paint related material, flammable, corrosive	3476	138	Fuel cell cartridges packed with equipment, containing water-
3470 132	Paint, corrosive, flammable			reactive substances
3470 132	Paint related material, corrosive, flammable	3477	153	Fuel cell cartridges, containing corrosive substances
3471 154	Hydrogendifluorides, solution, n.o.s.	3477	153	Fuel cell cartridges contained in equipment, containing corrosive substances
3472 153	Crotonic acid, liquid	3477	152	Fuel cell cartridges packed
3473 128	Fuel cell cartridges, containing flammable liquids	J777		with equipment, containing corrosive substances
		l		-

ID Gui	de Name of Material	ID Guide Name of Material No. No.
3478 115	Fuel cell cartridges, containing liquefied flammable gas	3486 140 Calcium hypochlorite mixture, dry, corrosive, with more than 10% but not more than 39%
3478 115	Fuel cell cartridges contained in equipment, containing liquefied flammable gas	available chlorine 3487 140 Calcium hypochlorite, hydrated,
3478 115	Fuel cell cartridges packed with equipment, containing liquefied flammable gas	corrosive, with not less than 5.5% but not more than 16% water
3479 115	Fuel cell cartridges, containing hydrogen in metal hydride	3487 140 Calcium hypochlorite, hydrated mixture, corrosive, with not less than 5.5% but not more
3479 115	Fuel cell cartridges contained in equipment, containing hydrogen in metal hydride	than 16% water 3488 131 Poisonous by inhalation liquid, flammable, corrosive, n.o.s.
3479 115	Fuel cell cartridges packed with equipment, containing hydrogen in metal hydride	(Inhalation Hazard Zone A) 3488 131 Toxic by inhalation liquid, flammable, corrosive, n.o.s.
3480 147	Lithium ion batteries (including lithium ion polymer batteries)	(Inhalation Hazard Zone A) 3489 131 Poisonous by inhalation liquid,
3481 147	Lithium ion batteries contained in equipment (including lithium ion polymer batteries)	flammable, corrosive, n.o.s. (Inhalation Hazard Zone B) 3489 131 Toxic by inhalation liquid,
3481 147	Lithium ion batteries packed with equipment (including lithium ion polymer batteries)	flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)
3482 138	Alkali metal dispersion, flammable	3490 155 Poisonous by inhalation liquid, water-reactive, flammable, n.o.s. (Inhalation Hazard Zone A)
3482 138	Alkaline earth metal dispersion, flammable	3490 155 Toxic by inhalation liquid, water-reactive, flammable, n.o.s.
3483 131	Motor fuel anti-knock mixture, flammable	(Inhalation Hazard Zone A) 3491 155 Poisonous by inhalation liquid,
3484 132	Hydrazine aqueous solution, flammable, with more than 37% hydrazine, by mass	water-reactive, flammable, n.o.s. (Inhalation Hazard Zone B)
3485 140	Calcium hypochlorite, dry, corrosive, with more than 39% available chlorine (8.8%	3491 155 Toxic by inhalation liquid, water-reactive, flammable, n.o.s. (Inhalation Hazard Zone B)
3485 140	available oxygen) Calcium hypochlorite mixture, dry, corrosive, with more than	3492 131 Poisonous by inhalation liquid, corrosive, flammable, n.o.s. (Inhalation Hazard Zone A)
	39% available chlorine (8.8% available oxygen)	3492 131 Toxic by inhalation liquid, corrosive, flammable, n.o.s. (Inhalation Hazard Zone A)

ID Gui No. No	de Name of Material	ID Gui	de Name of Material
3493 131	Poisonous by inhalation liquid, corrosive, flammable, n.o.s. (Inhalation Hazard Zone B)	3509 171	Packagings discarded, empty, uncleaned
3493 131	Toxic by inhalation liquid,	3510 174	Adsorbed gas, flammable, n.o.s.
	corrosive, flammable, n.o.s. (Inhalation Hazard Zone B)	3511 174 3512 173	Adsorbed gas, n.o.s. Adsorbed gas, poisonous, n.o.s.
3494 131	Petroleum sour crude oil, flammable, poisonous	3512 173	Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone A)
3494 131	Petroleum sour crude oil, flammable, toxic	3512 173	Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone B)
3495 154	lodine	3512 173	Adsorbed gas, poisonous, n.o.s.
3496 171	Batteries, nickel-metal hydride		(Inhalation hazard zone C)
3497 133	Krill meal	3512 173	Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone D)
3498 157	lodine monochloride, liquid	3512 173	Adsorbed gas, toxic, n.o.s.
3499 171	Capacitor, electric double layer	3512 173	Adsorbed gas, toxic, n.o.s.
3500 126	Chemical under pressure, n.o.s.	-	(Inhalation hazard zone A)
3501 115	Chemical under pressure, flammable, n.o.s.	3512 173	Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone B)
3502 123	Chemical under pressure, poisonous, n.o.s.	3512 173	Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone C)
3502 123	Chemical under pressure, toxic, n.o.s.	3512 173	Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone D)
3503 125	Chemical under pressure, corrosive, n.o.s.	3513 174	Adsorbed gas, oxidizing, n.o.s.
3504 119	Chemical under pressure, flammable, poisonous, n.o.s.	3514 173	Adsorbed gas, poisonous, flammable, n.o.s.
3504 119	Chemical under pressure, flammable, toxic, n.o.s.	3514 173	Adsorbed gas, poisonous, flammable, n.o.s. (Inhalation hazard zone A)
3505 118	Chemical under pressure, flammable, corrosive, n.o.s.	3514 173	Adsorbed gas, poisonous, flammable, n.o.s. (Inhalation
3506 172	Mercury contained in manufactured articles	3514 173	hazard zone B) Adsorbed gas, poisonous,
3507 166	Uranium hexafluoride, radioactive material,		flammable, n.o.s. (Inhalation hazard zone C)
	excepted package, less than 0.1 kg per package, non- fissile or fissile-excepted	3514 173	Adsorbed gas, poisonous, flammable, n.o.s. (Inhalation hazard zone D)
3508 171	Capacitor, asymmetric	3514 173	Adsorbed gas, toxic, flammable, n.o.s.

ID Gui	de Name of Material		Guio No.	de Name of Material
3514 173	Adsorbed gas, toxic, flammable, n.o.s. (Inhalation hazard zone A)	3516	173	Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation hazard zone A)
3514 173	Adsorbed gas, toxic, flammable, n.o.s. (Inhalation hazard zone B)	3516	173	Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation hazard zone B)
3514 173	Adsorbed gas, toxic, flammable, n.o.s. (Inhalation hazard zone C)	3516	173	Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation hazard zone C)
3514 173	Adsorbed gas, toxic, flammable, n.o.s. (Inhalation hazard zone D)	3516	173	Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation hazard zone D)
3515 173	Adsorbed gas, poisonous, oxidizing, n.o.s.	3516	173	Adsorbed gas, toxic, corrosive, n.o.s.
3515 173	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone A)	3516	173	Adsorbed gas, toxic, corrosive, n.o.s. (Inhalation hazard zone A)
3515 173	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone B)	3516	173	Adsorbed gas, toxic, corrosive, n.o.s. (Inhalation hazard zone B)
3515 173	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone C)	3516	173	Adsorbed gas, toxic, corrosive, n.o.s. (Inhalation hazard zone C)
3515 173	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone D)	3516	173	Adsorbed gas, toxic, corrosive, n.o.s. (Inhalation hazard zone D)
3515 173	Adsorbed gas, toxic, oxidizing, n.o.s.	3517	173	Adsorbed gas, poisonous, flammable, corrosive, n.o.s.
3515 173	Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone A)	3517	173	Adsorbed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation hazard zone A)
3515 173	Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone B)	3517	173	Adsorbed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation hazard zone B)
3515 173	Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone C)	3517	173	Adsorbed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation hazard zone C)
3515 173	Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone D)	3517	173	Adsorbed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation hazard zone D)
3516 173	Adsorbed gas, poisonous, corrosive, n.o.s.	3517	173	Adsorbed gas, toxic, flammable, corrosive, n.o.s.

ID Guide Name of Material No. No.	ID Guide Name of Material No. No.
3517 173 Adsorbed gas, toxic, flammable,	3521 173 Silicon tetrafluoride, adsorbed
corrosive, n.o.s. (Inhalation hazard zone A)	3522 173 Arsine, adsorbed
3517 173 Adsorbed gas, toxic, flammable,	3523 173 Germane, adsorbed
corrosive, n.o.s. (Inhalation hazard zone B)	3524 173 Phosphorus pentafluoride, adsorbed
3517 173 Adsorbed gas, toxic, flammable, corrosive, n.o.s. (Inhalation	3525 173 Phosphine, adsorbed
hazard zone C)	3526 173 Hydrogen selenide, adsorbed
3517 173 Adsorbed gas, toxic, flammable, corrosive, n.o.s. (Inhalation hazard zone D)	3527 128P Polyester resin kit, solid base material
3518 173 Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s.	3528 128 Engine, fuel cell, flammable liquid powered
3518 173 Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s.	3528 128 Engine, internal combustion, flammable liquid powered
(Inhalation hazard zone A)	3528 128 Machinery, fuel cell, flammable liquid powered
3518 173 Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation hazard zone B)	3528 128 Machinery, internal combustion, flammable liquid powered
3518 173 Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation hazard zone C)	3529 115 Engine, fuel cell, flammable gas powered
3518 173 Adsorbed gas, poisonous,	3529 115 Engine, internal combustion, flammable gas powered
oxidizing, corrosive, n.o.s. (Inhalation hazard zone D)	3529 115 Machinery, fuel cell, flammable gas powered
3518 173 Adsorbed gas, toxic, oxidizing, corrosive, n.o.s.	3529 115 Machinery, internal combustion, flammable gas powered
3518 173 Adsorbed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation	3530 171 Engine, internal combustion
hazard zone A)	3530 171 Machinery, internal combustion
3518 173 Adsorbed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation hazard zone B)	3531 149P Polymerizing substance, solid, stabilized, n.o.s.
3518 173 Adsorbed gas, toxic, oxidizing,	3532 149P Polymerizing substance, liquid, stabilized, n.o.s.
corrosive, n.o.s. (Inhalation hazard zone C)	3533 150P Polymerizing substance, solid, temperature controlled, n.o.s.
3518 173 Adsorbed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation hazard zone D)	3534 150P Polymerizing substance, liquid, temperature controlled, n.o.s.
3519 173 Boron trifluoride, adsorbed	3535 134 Toxic solid, flammable, inorganic, n.o.s.
3520 173 Chlorine, adsorbed	morganic, n.o.s.

ID Guide Name of Material No. No.

3536	147	Lithium batteries installed in cargo transport unit (lithium ion batteries)
3536	138	Lithium batteries installed in cargo transport unit (lithium metal batteries)
3537	115	Articles containing flammable gas, n.o.s.
3538	120	Articles containing non- flammable, non-toxic gas, n.o.s.
3539	123	Articles containing toxic gas, n.o.s.
3540	127	Articles containing flammable liquid, n.o.s.
3541	133	Articles containing flammable solid, n.o.s.
3542	135	Articles containing a substance liable to spontaneous combustion, n.o.s.
3543	138	Articles containing a substance which emits flammable gas in contact with water, n.o.s.
3544	140	Articles containing oxidizing substance, n.o.s.
3545	145	Articles containing organic peroxide, n.o.s.
3546	151	Articles containing toxic substance, n.o.s.
3547	154	Articles containing corrosive substance, n.o.s.
3548	171	Articles containing miscellaneous dangerous goods, n.o.s.
3549	158	Medical waste, category A, affecting humans, solid
3549	158	Medical waste, category A, affecting animals only, solid
8000	171	Consumer commodity
9035	123	Gas identification set

ID Guide Name of Material No. No.

9191	143	Chlorine dioxide, hydrate, frozen
9202	168	Carbon monoxide, refrigerated liquid (cryogenic liquid)
9206	137	Methyl phosphonic dichloride
9260	169	Aluminum, molten
9263	156	Chloropivaloyl chloride
9264	151	3,5-Dichloro-2,4,6- trifluoropyridine
9269	132	Trimethoxysilane

NOTES

INTRODUCTION TO BLUE PAGES

For entries highlighted in green follow these steps:

IF THERE IS NO FIRE:

- Go directly to **Table 1** (green-bordered pages)
- Look up the ID number and name of material
- Identify initial isolation and protective action distances
- Also consult the appropriate Orange Guide

IF A FIRE IS INVOLVED:

- Use the appropriate Orange Guide for **EVACUATION** distances
- Also protect in downwind direction according to Table 1 for residual material release
- Note 1: If the name in Table 1 is shown with (when spilled in water), these materials produce large amounts of Toxic Inhalation Hazard (TIH) (PIH in the US) gases when spilled in water. Some Water Reactive materials are also TIH materials themselves (e.g., UN1746 (Bromine trifluoride), UN1836 (Thionyl chloride)). In these instances, two entries are provided in Table 1 for land-based and water-based spills. If a water-reactive material only has one entry in Table 1 for (when spilled in water) and the product is NOT spilled in water, Table 1 and Table 2 do not apply. You will find safe distances in the appropriate orange-bordered guide.
- **Note 2: Explosives** are not individually listed by their name because in an emergency situation, the response will be based only on the division of the explosive, not on the individual explosive.

For divisions 1.1, 1.2, 1.3 and 1.5, refer to GUIDE 112.

For divisions 1.4 and 1.6, refer to GUIDE 114.

Note 3: Chemical warfare agents do not have an assigned ID number because they are not commercially transported. In an emergency situation, the assigned orange guide will provide guidance for the initial response. Also consult "Criminal or Terrorist Use of Chemical, Biological and Radiological Agents", pp. 368 to 372.

Name of Material	Guide No.	ID No.	Name of Material	Guide No.	ID No.
AC	117		Acrylamide, solid	153P	2074
Acetal	127	1088	Acrylamide, solution	153P	3426
Acetaldehyde	129P	1089	Acrylic acid, stabilized	132P	2218
Acetaldehyde ammonia	171	1841	Acrylonitrile, stabilized	131P	1093
Acetaldehyde oxime	129	2332	Adamsite	154	
Acetic acid, glacial	132	2789	Adhesives (flammable)	128	1133
Acetic acid, solution, more than 10% but not more than 80% acid	153	2790	Adiponitrile Adsorbed gas, flammable,	153 174	2205 3510
Acetic acid, solution, more than 80% acid	132	2789	n.o.s. Adsorbed gas, n.o.s.	174	3511
Acetic anhydride	137	1715	Adsorbed gas, oxidizing, n.o.s	. 174	3513
Acetone	127	1090	Adsorbed gas, poisonous,	173	3516
Acetone cyanohydrin,	155	1541	corrosive, n.o.s.	4=0	0540
Stabilized Acetone oils	127	1091	Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation hazard zone A)	173	3516
Acetonitrile	127	1648	Adsorbed gas, poisonous,	173	3516
Acetyl bromide	156	1716	corrosive, n.o.s. (Inhalation hazard zone B)		
Acetyl chloride	155	1717	Adsorbed gas, poisonous,	173	3516
Acetylene, dissolved Acetylene, Ethylene and	116 115	1001 3138	corrosive, n.o.s. (Inhalation hazard zone C)		
Propylene in mixture, refrigerated liquid containir at least 71.5% Ethylene with not more than 22.5%		0100	Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation hazard zone D)	173	3516
Acetylene and not more that 6% Propylene	ın		Adsorbed gas, poisonous, flammable, corrosive, n.o.s	173	3517
Acetylene, solvent free	116	3374	Adsorbed gas, poisonous,	173	3517
Acetylene tetrabromide	159	2504	flammable, corrosive, n.o.s (Inhalation hazard zone A)	•	
Acetyl iodide	156	1898	Adsorbed gas, poisonous,	173	3517
Acetyl methyl carbinol	127	2621	flammable, corrosive, n.o.s (Inhalation hazard zone B)		
Acid, sludge	153	1906	Adsorbed gas, poisonous,	173	3517
Acid butyl phosphate	153	1718	flammable, corrosive, n.o.s (Inhalation hazard zone C)		
Acridine	153	2713	,	173	3517
Acrolein, stabilized	131P	1092	Adsorbed gas, poisonous, flammable, corrosive, n.o.s		3317
Acrolein dimer, stabilized	129P	2607	(Inhalation hazard zone D)		

Name of Material	Guide No.	D No.	Name of Material Guide No.	
Adsorbed gas, poisonous, flammable, n.o.s.	173	3514	Adsorbed gas, poisonous, oxidizing, n.o.s. 173	3515
Adsorbed gas, poisonous, flammable, n.o.s. (Inhalati hazard zone A)	173 ion	3514	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone A)	3515
Adsorbed gas, poisonous, flammable, n.o.s. (Inhalati hazard zone B)	173 ion	3514	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone B)	3515
Adsorbed gas, poisonous, flammable, n.o.s. (Inhalati hazard zone C)	173 ion	3514	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone C)	3515
Adsorbed gas, poisonous, flammable, n.o.s. (Inhalati hazard zone D)	173 ion	3514	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone D)	3515
Adsorbed gas, poisonous, n.o.s.	173	3512	Adsorbed gas, toxic, corrosive, 173 n.o.s.	3516
Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone A)	173	3512	Adsorbed gas, toxic, corrosive, 173 n.o.s. (Inhalation hazard zone A)	3516
Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone B)	173	3512	Adsorbed gas, toxic, corrosive, 173 n.o.s. (Inhalation hazard zone B)	3516
Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone C)	173	3512	Adsorbed gas, toxic, corrosive, 173 n.o.s. (Inhalation hazard zone C)	3516
Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone D)	173	3512	Adsorbed gas, toxic, corrosive, 173 n.o.s. (Inhalation hazard zone D)	3516
Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s	173	3518	Adsorbed gas, toxic, 173 flammable, corrosive, n.o.s.	3517
Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s (Inhalation hazard zone A		3518	Adsorbed gas, toxic, flammable, corrosive, n.o.s. (Inhalation hazard zone A)	3517
Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s (Inhalation hazard zone B		3518	Adsorbed gas, toxic, flammable, corrosive, n.o.s. (Inhalation hazard zone B)	3517
Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s (Inhalation hazard zone C		3518	Adsorbed gas, toxic, flammable, corrosive, n.o.s. (Inhalation hazard zone C)	3517
Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s (Inhalation hazard zone D		3518	Adsorbed gas, toxic, 173 flammable, corrosive, n.o.s. (Inhalation hazard zone D)	3517

Name of Material	Guide No.	ID No.	Name of Material G	uide No.	ID No.
Adsorbed gas, toxic, flammable, n.o.s.	173	3514	Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone B)	173	3515
Adsorbed gas, toxic, flammable, n.o.s. (Inhalat hazard zone A)		3514	Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone C)	173	3515
Adsorbed gas, toxic, flammable, n.o.s. (Inhalat hazard zone B)	173 ion	3514	Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone D)	173	3515
Adsorbed gas, toxic, flammable, n.o.s. (Inhalat	173	3514	Aerosols	126	1950
hazard zone C)	1011		Air, compressed	122	1002
Adsorbed gas, toxic, flammable, n.o.s. (Inhalat hazard zone D)	173 ion	3514	Air, refrigerated liquid (cryogenic liquid)	122	1003
Adsorbed gas, toxic, n.o.s.	173	3512	Air bag inflators	171	3268
Adsorbed gas, toxic, n.o.s.	173	3512	Air bag modules	171	3268
(Inhalation hazard zone A	'	3512	Aircraft hydraulic power unit fuel tank	131	3165
Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone B	173	3312	Alcoholates solution, n.o.s.,	132	3274
Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone C	173	3512	in alcohol	407	2005
Adsorbed gas, toxic, n.o.s.	173	3512	Alcoholic beverages	127 131	3065 1986
(Inhalation hazard zone D			Alcohols, flammable, poisonous, n.o.s.	131	1900
Adsorbed gas, toxic, oxidizing corrosive, n.o.s.	ng, 173	3518	Alcohols, flammable, toxic, n.o.s.	131	1986
Adsorbed gas, toxic, oxidizir corrosive, n.o.s. (Inhalation		3518	Alcohols, n.o.s.	127	1987
hazard zone A) Adsorbed gas, toxic, oxidizir		3518	Aldehydes, flammable, poisonous, n.o.s.	131P	1988
corrosive, n.o.s. (Inhalation hazard zone B)		3310	Aldehydes, flammable, toxic, n.o.s.	131P	1988
Adsorbed gas, toxic, oxidizir	ng, 173	3518	Aldehydes, n.o.s.	129P	1989
corrosive, n.o.s. (Inhalation hazard zone C)	on		Aldol	153	2839
Adsorbed gas, toxic, oxidizir corrosive, n.o.s. (Inhalatio		3518	Alkali metal alcoholates, self- heating, corrosive, n.o.s.	136	3206
hazard zone D)	470	2545	Alkali metal alloy, liquid, n.o.s.	138	1421
Adsorbed gas, toxic, oxidizir n.o.s.	ng, 1/3	3515	Alkali metal amalgam, liquid	138	1389
Adsorbed gas, toxic, oxidizir	ng, 173	3515	Alkali metal amalgam, solid	138	3401
n.o.s. (Inhalation hazard zone A)			Alkali metal amides	139	1390
			I		

Name of Material	Guide No.	∍ ID No.	Name of Material G	uide No.	ID No.
Alkali metal dispersion Alkali metal dispersion, flammable	138 138	1391 3482	Alkyl sulphonic acids, liquid, with more than 5% free Sulphuric acid	153	2584
Alkaline earth metal alcoholates, n.o.s.	135	3205	Alkyl sulphonic acids, liquid, with not more than 5% free Sulphuric acid	153	2586
Alkaline earth metal alloy, n.o.s.	138	1393	Alkyl sulphonic acids, solid, with more than 5% free	153	2583
Alkaline earth metal amalgan liquid	n, 138	1392	Sulphuric acid Alkyl sulphonic acids, solid,	153	2585
Alkaline earth metal amalgan solid	n, 138	3402	with not more than 5% free Sulphuric acid		
Alkaline earth metal dispersi	on 138	1391	Alkylsulphuric acids	156	2571
Alkaline earth metal	138	3482	Allyl acetate	131	2333
dispersion, flammable			Allyl alcohol	131	1098
Alkaloids, liquid, n.o.s. (poisonous)	151	3140	Allylamine	131	2334
Alkaloids, solid, n.o.s.	151	1544	Allyl bromide	131P	1099
(poisonous)			Allyl chloride	131P	1100
Alkaloid salts, liquid, n.o.s. (poisonous)	151	3140	Allyl chlorocarbonate Allyl chloroformate	155 155	1722 1722
Alkaloid salts, solid, n.o.s. (poisonous)	151	1544	Allyl ethyl ether	131	2335
(poisonous) Alkylphenols, liquid, n.o.s.	151 153	1544 3145	· · ·		
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12			Allyl ethyl ether	131	2335
(poisonous) Alkylphenols, liquid, n.o.s.			Allyl ethyl ether Allyl formate	131 131	2335 2336
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12	153	3145	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl iodide Allyl isothiocyanate, stabilized	131 131 129	2335 2336 2219 1723 1545
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12 homologues)	153 153	3145 2430	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl iodide	131 131 129 132	2335 2336 2219 1723
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12	153 153 rith 153	3145	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl iodide Allyl isothiocyanate, stabilized	131 131 129 132 155	2335 2336 2219 1723 1545
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12 homologues) Alkyl sulfonic acids, liquid, w more than 5% free Sulfuric acid Alkyl sulfonic acids, liquid, with not more than 5% free	153 153 with 153	3145 2430	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl iodide Allyl isothiocyanate, stabilized Allyltrichlorosilane, stabilized alpha-Methylbenzyl alcohol,	131 131 129 132 155	2335 2336 2219 1723 1545 1724
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12 homologues) Alkyl sulfonic acids, liquid, wmore than 5% free Sulfuric acid Alkyl sulfonic acids, liquid, with not more than 5% free Sulfuric acid	153 153 with 153	3145 2430 2584 2586	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl iodide Allyl isothiocyanate, stabilized Allyltrichlorosilane, stabilized alpha-Methylbenzyl alcohol, liquid alpha-Methylbenzyl alcohol, solid alpha-Methylvaleraldehyde	131 131 129 132 155 155 153 153	2335 2336 2219 1723 1545 1724 2937 3438
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12 homologues) Alkyl sulfonic acids, liquid, w more than 5% free Sulfuric acid Alkyl sulfonic acids, liquid, with not more than 5% free	153 153 153 153 153 153	3145 2430 2584	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl iodide Allyl isothiocyanate, stabilized Allyltrichlorosilane, stabilized alpha-Methylbenzyl alcohol, liquid alpha-Methylbenzyl alcohol, solid	131 131 129 132 155 155 153 153 130 153	2335 2336 2219 1723 1545 1724 2937 3438 2367 2077
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12 homologues) Alkyl sulfonic acids, liquid, w more than 5% free Sulfuric acid Alkyl sulfonic acids, liquid, with not more than 5% free Sulfuric acid Alkyl sulfonic acids, solid, wi	153 153 153 153 153 153 153	3145 2430 2584 2586 2583	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl isothiocyanate, stabilized Allyltrichlorosilane, stabilized alpha-Methylbenzyl alcohol, liquid alpha-Methylbenzyl alcohol, solid alpha-Methylvaleraldehyde alpha-Naphthylamine alpha-Pinene	131 131 129 132 155 155 153 153	2335 2336 2219 1723 1545 1724 2937 3438
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12 homologues) Alkyl sulfonic acids, liquid, w more than 5% free Sulfuric acid Alkyl sulfonic acids, liquid, with not more than 5% free Sulfuric acid Alkyl sulfonic acids, solid, wi more than 5% free Sulfuric acid Alkyl sulfonic acids, solid, wi acid Alkyl sulfonic acids, solid, wi	153 153 153 153 153	3145 2430 2584 2586	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl iodide Allyl isothiocyanate, stabilized Allyltrichlorosilane, stabilized alpha-Methylbenzyl alcohol, liquid alpha-Methylbenzyl alcohol, solid alpha-Methylvaleraldehyde alpha-Naphthylamine alpha-Pinene Aluminum, molten	131 131 129 132 155 155 153 153 153 153 153 153	2335 2336 2219 1723 1545 1724 2937 3438 2367 2077 2368 9260
(poisonous) Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) Alkylphenols, solid, n.o.s. (including C2-C12 homologues) Alkyl sulfonic acids, liquid, w more than 5% free Sulfuric acid Alkyl sulfonic acids, liquid, with not more than 5% free Sulfuric acid Alkyl sulfonic acids, solid, wi more than 5% free Sulfuric acid	153 153 153 153 153	3145 2430 2584 2586 2583	Allyl ethyl ether Allyl formate Allyl glycidyl ether Allyl isothiocyanate, stabilized Allyltrichlorosilane, stabilized alpha-Methylbenzyl alcohol, liquid alpha-Methylbenzyl alcohol, solid alpha-Methylvaleraldehyde alpha-Naphthylamine alpha-Pinene	131 131 129 132 155 155 153 153 130 153 128	2335 2336 2219 1723 1545 1724 2937 3438 2367 2077 2368

Name of Material	Guide No.	D No.	Name of Material (Suide No.	ID No.
Aluminum borohydride	135	2870	2-(2-Aminoethoxy)ethanol	154	3055
Aluminum borohydride in	135	2870	N-Aminoethylpiperazine	153	2815
devices	407	1705	Aminophenols	152	2512
Aluminum bromide, anhydrou	'	1725	Aminopyridines	153	2671
Aluminum bromide, solution	154	2580	Ammonia, anhydrous	125	1005
Aluminum carbide	138	1394	Ammonia, solution, with more	154	2672
Aluminum chloride, anhydrou	1	1726	than 10% but not more than 35% Ammonia		
Aluminum chloride, solution	154	2581	Ammonia, solution, with more	125	2073
Aluminum dross	138	3170	than 35% but not more than		
Aluminum ferrosilicon powde	r 139	1395	50% Ammonia	405	2240
Aluminum hydride	138	2463	Ammonia solution, with more than 50% Ammonia	125	3318
Aluminum nitrate	140	1438	Ammonium arsenate	151	1546
Aluminum phosphide	139	1397	Ammonium bifluoride, solid	154	1727
Aluminum phosphide pesticio	de 157	3048	Ammonium bifluoride, solution	154	2817
Aluminum powder, coated	170	1309	Ammonium dichromate	141	1439
Aluminum powder, pyrophori	c 135	1383	Ammonium dinitro-o-cresolate	141	1843
Aluminum powder, uncoated	138	1396	solid		
Aluminum remelting by- products	138	3170	Ammonium dinitro-o-cresolate, solution	141	3424
Aluminum resinate	133	2715	Ammonium fluoride	154	2505
Aluminum silicon powder,	138	1398	Ammonium fluorosilicate	151	2854
uncoated Aluminum smelting by-produ	cts 138	3170	Ammonium hydrogendifluoride solid	, 154	1727
Amines, flammable, corrosiven.o.s.	e, 132	2733	Ammonium hydrogendifluoride solution	, 154	2817
Amines, liquid, corrosive,	132	2734	Ammonium hydrogen sulfate	154	2506
flammable, n.o.s.			Ammonium hydrogen sulphate	154	2506
Amines, liquid, corrosive, n.c		2735	Ammonium hydroxide	154	2672
Amines, solid, corrosive, n.o		3259	Ammonium hydroxide, with	154	2672
2-Amino-4-chlorophenol	151	2673	more than 10% but not more than 35% Ammonia		
2-Amino-5- diethylaminopentane	153	2946	Ammonium metavanadate	154	2859
2-Amino-4,6-dinitrophenol, wetted with not less than 20% water	113	3317	Ammonium nitrate, liquid (hot concentrated solution)	140	2426

Name of Material G	uide No.	D No.	Name of Material G	uide No.	No.
Ammonium nitrate, with not	140	1942	n-Amylene	128	1108
more than 0.2% combustible substances			Amyl formates	129	1109
Ammonium nitrate based	140	2067	Amyl mercaptan	130	1111
fertilizer			n-Amyl methyl ketone	127	1110
Ammonium nitrate based fertilizer	140	2071	Amyl nitrate	128	1112
Ammonium nitrate emulsion	140	3375	Amyl nitrite	129	1113
Ammonium nitrate-fuel oil mixtures	112		Amyltrichlorosilane Anhydrous ammonia	155 125	1728 1005
Ammonium nitrate gel	140	3375	Aniline	153	1547
Ammonium nitrate suspension	140	3375	Aniline hydrochloride	153	1548
Ammonium perchlorate	143	1442	Anisidines	153	2431
Ammonium persulfate	140	1444	Anisole	128	2222
Ammonium persulphate	140	1444	Anisoyl chloride	156	1729
Ammonium picrate, wetted with not less than 10% water	113	1310	Antimony compound, inorganic liquid, n.o.s.	, 157	3141
Ammonium polysulfide, solution	154	2818	Antimony compound, inorganic solid, n.o.s.	, 157	1549
Ammonium polysulphide, solution	154	2818	Antimony lactate	151	1550
Ammonium polyvanadate	151	2861	Antimony pentachloride, liquid		1730
Ammonium silicofluoride	151	2854	Antimony pentachloride, solution	157	1731
Ammonium sulfide, solution	132	2683	Antimony pentafluoride	157	1732
Ammonium sulphide, solution	132	2683	Antimony potassium tartrate	151	1551
Ammunition, poisonous, non-	151	2016	Antimony powder	170	2871
explosive	159	2017	Antimony trichloride	157	1733
Ammunition, tear-producing, non-explosive	139	2017	Antimony trichloride, liquid	157	1733
Ammunition, toxic, non-	151	2016	Antimony trichloride, solid	157	1733
explosive	129	1104	Aqua regia	157	1798
Amyl acetates	153	2819	Argon	120	1006
Amylamina	132	1106	Argon, compressed	120	1006
Amylamine	132	2620	Argon, refrigerated liquid (cryogenic liquid)	120	1951
Amyl butyrates Amyl chloride	129	1107	Arsenic	152	1558
7yr omorido	. 2 3	1101			

Name of Material	Guide No.	D No.	Name of Material G	uide No.	ID No.
Arsenic acid, liquid	154	1553	Articles containing flammable	115	3537
Arsenic acid, solid	154	1554	gas, n.o.s.		
Arsenical dust	152	1562	Articles containing flammable liquid, n.o.s.	127	3540
Arsenical pesticide, liquid, flammable, poisonous	131	2760	Articles containing flammable solid, n.o.s.	133	3541
Arsenical pesticide, liquid, flammable, toxic	131	2760	Articles containing miscellaneous dangerous	171	3548
Arsenical pesticide, liquid, poisonous	151	2994	goods, n.o.s. Articles containing non-	120	3538
Arsenical pesticide, liquid, poisonous, flammable	131	2993	flammable, non-toxic gas, n.o.s.		
Arsenical pesticide, liquid, toxic	151	2994	Articles containing oxidizing substance, n.o.s.	140	3544
Arsenical pesticide, liquid, toxic, flammable	131	2993	Articles containing organic peroxide, n.o.s.	145	3545
Arsenical pesticide, solid, poisonous	151	2759	Articles containing Polychlorinated biphenyls (PCB)	171	2315
Arsenical pesticide, solid, to	oxic 151	2759	Articles containing toxic gas,	123	3539
Arsenic bromide	151	1555	n.o.s.		
Arsenic chloride	157	1560	Articles containing toxic substance, n.o.s.	151	3546
Arsenic compound, liquid, n.o.s.	152	1556	Articles, pressurized, hydraulic (containing non-flammable	126	3164
Arsenic compound, solid, n.	o.s. 152	1557	gas)		
Arsenic pentoxide	151	1559	Articles, pressurized,	126	3164
Arsenic trichloride	157	1560	pneumatic (containing non- flammable gas)		
Arsenic trioxide	151	1561	Aryl sulfonic acids, liquid, with	153	2584
Arsine	119	2188	more than 5% free Sulfuric acid		
Arsine, adsorbed	173	3522	Aryl sulfonic acids, liquid,	153	2586
Articles containing a substa liable to spontaneous combustion, n.o.s.	nce 135	3542	with not more than 5% free Sulfuric acid		
Articles containing a substa which emits flammable ga in contact with water, n.o	as	3543	Aryl sulfonic acids, solid, with more than 5% free Sulfuric acid	153	2583
Articles containing corrosive substance, n.o.s.		3547	Aryl sulfonic acids, solid, with not more than 5% free Sulfuric acid	153	2585

	uide No.	ID No.		uide No.	ID No.
Aryl sulphonic acids, liquid,	153	2584	Barium perchlorate, solid	141	1447
with more than 5% free Sulphuric acid			Barium perchlorate, solution	141	3406
Aryl sulphonic acids, liquid,	153	2586	Barium permanganate	141	1448
with not more than 5% free Sulphuric acid			Barium peroxide	141	1449
Aryl sulphonic acids, solid,	153	2583	Batteries, containing Sodium	138	3292
with more than 5% free Sulphuric acid			Batteries, dry, containing Potassium hydroxide solid	154	3028
Aryl sulphonic acids, solid,	153	2585	Batteries, nickel-metal hydride	171	3496
with not more than 5% free Sulphuric acid			Batteries, wet, filled with acid	154	2794
Asbestos	171	2212	Batteries, wet, filled with alkali	154	2795
Asbestos, amphibole	171	2212	Batteries, wet, non-spillable	154	2800
Asbestos, blue	171	2212	Battery fluid, acid	157	2796
Asbestos, brown	171	2212	Battery fluid, alkali	154	2797
Asbestos, chrysotile	171	2590	Battery-powered equipment (wet battery)	154	3171
Asbestos, white	171	2590	Battery-powered equipment	147	3171
Asphalt	130	1999	(with lithium ion batteries)		0171
Asphalt, cut back	130	1999	Battery-powered equipment	138	3171
Aviation regulated liquid, n.o.s.	171	3334	(with lithium metal batteries)		3171
$\label{eq:Aviation regulated solid} A \ viation \ regulated \ solid, \ n.o.s.$	171	3335	Battery-powered equipment (with sodium batteries)	138	31/1
Azodicarbonamide	149	3242	Battery-powered vehicle (wet	154	3171
Barium	138	1400	battery)		
Barium alloys, pyrophoric	135	1854	Battery-powered vehicle (with lithium ion batteries)	147	3171
Barium azide, wetted with not less than 50% water	113	1571	Battery-powered vehicle (with sodium batteries)	138	3171
Barium bromate	141	2719	Benzaldehyde	171	1990
Barium chlorate, solid	141	1445	Benzene	130	1114
Barium chlorate, solution	141	3405	Benzene phosphorus dichloride	137	2798
Barium compound, n.o.s.	154	1564	Benzene phosphorus	137	2799
Barium cyanide	157	1565	thiodichloride		
Barium hypochlorite, with more than 22% available Chlorine	141	2741	Benzenesulfonyl chloride	156	2225
Barium nitrate	141	1446	Benzenesulphonyl chloride	156	2225
Barium oxide	157	1884	Benzidine	153	1885
Page 100			Benzonitrile	152	2224
- ugo 100					

Name of Material	Guide No.	ID No.	Name of Material	uide No.	ID No.
Benzoquinone	153	2587	Bipyridilium pesticide, solid,	151	2781
Benzotrichloride	156	2226	poisonous		0704
Benzotrifluoride	127	2338	Bipyridilium pesticide, solid, toxic	151	2781
Benzoyl chloride	137	1736	Bisulfates, aqueous solution	154	2837
Benzyl bromide	156	1737	Bisulfites, aqueous solution,	154	2693
Benzyl chloride	156	1738	n.o.s.		
Benzyl chloroformate	137	1739	Bisulphates, aqueous solution	154	2837
Benzyldimethylamine	132	2619	Bisulphites, aqueous solution, n.o.s.	154	2693
Benzylidene chloride	156	1886	Blasting agent, n.o.s.	112	
Benzyl iodide	156	2653	Bleaching powder	140	2208
Beryllium compound, n.o.s.	154	1566	Blue asbestos	171	2212
Beryllium nitrate	141	2464	Bombs, smoke, non-explosive,	153	2028
Beryllium powder	134	1567	with corrosive liquid, withou		
beta-Naphthylamine, solid	153	1650	initiating device	140	1458
beta-Naphthylamine, solution	n 153	3411	Borate and Chlorate mixture	133	1312
Bhusa, wet, damp or contaminated with oil	133	1327	Borneol Boron tribromide	157	2692
Bicyclo[2.2.1]hepta-2,5-dienstabilized	e, 128P	2251	Boron trichloride	125	1741
Biological agents	158		Boron trifluoride	125	1008
Biological substance,	158	3373	Boron trifluoride, adsorbed	173	3519
category B			Boron trifluoride, compressed	125	1008
(Bio)Medical waste, n.o.s.	158	3291	Boron trifluoride, dihydrate	157	2851
Bipyridilium pesticide, liquid flammable, poisonous	, 131	2782	Boron trifluoride acetic acid complex, liquid	157	1742
Bipyridilium pesticide, liquid flammable, toxic	, 131	2782	Boron trifluoride acetic acid complex, solid	157	3419
Bipyridilium pesticide, liquid poisonous	, 151	3016	Boron trifluoride diethyl etherate	132	2604
Bipyridilium pesticide, liquid poisonous, flammable	, 131	3015	Boron trifluoride dimethyl etherate	139	2965
Bipyridilium pesticide, liquid toxic	, 151	3016	Boron trifluoride propionic acid complex, liquid	157	1743
Bipyridilium pesticide, liquid toxic, flammable	, 131	3015	Boron trifluoride propionic acid complex, solid	157	3420

Name of Material	Guide No.	ID No.	Name of Material	Guide No.	ID No.
Bromates, inorganic, aqueou	s 140	3213	Bromotrifluoromethane	126	1009
solution, n.o.s.		02.10	Brown asbestos	171	2212
Bromates, inorganic, n.o.s.	140	1450	Brucine	152	1570
Bromine	154	1744	Butadienes, stabilized	116P	1010
Bromine, solution	154	1744	Butadienes and hydrocarbon	116P	1010
Bromine, solution (Inhalation Hazard Zone A)	154	1744	mixture, stabilized		
Bromine, solution (Inhalation	154	1744	Butane	115	1011
Hazard Zone B)			Butane	115	1075
Bromine chloride	124	2901	Butanedione	127	2346
Bromine pentafluoride	144	1745	Butanols	129	1120
Bromine trifluoride	144	1746	Butyl acetates	129	1123
Bromoacetic acid, solid	156	3425	Butyl acid phosphate	153	1718
Bromoacetic acid, solution	156	1938	Butyl acrylates, stabilized	129P	2348
Bromoacetone	131	1569	n-Butylamine	132	1125
Bromoacetyl bromide	156	2513	N-Butylaniline	153	2738
Bromobenzene	130	2514	Butylbenzenes	128	2709
Bromobenzyl cyanides, liquid	159	1694	n-Butyl bromide	130	1126
Bromobenzyl cyanides, solid	159	3449	n-Butyl chloride	130	1127
1-Bromobutane	130	1126	n-Butyl chloroformate	155	2743
2-Bromobutane	130	2339	sec-Butyl chloroformate	155	2742
Bromochloromethane	160	1887	tert-Butylcyclohexyl chloroformate	156	2747
1-Bromo-3-chloropropane	159	2688	Butylene	115	1012
2-Bromoethyl ethyl ether	130	2340	Butylene	115	1075
Bromoform	159	2515	1.2-Butylene oxide, stabilizec	127P	3022
1-Bromo-3-methylbutane	130	2341	Butyl ethers	128	1149
Bromomethylpropanes	130	2342	n-Butyl formate	129	1128
2-Bromo-2-nitropropane-1,3- diol	133	3241	tert-Butyl hypochlorite	135	3255
2-Bromopentane	130	2343	N,n-Butylimidazole	152	2690
Bromopropanes	129	2344	n-Butyl isocyanate	155P	2485
3-Bromopropyne	130	2345	tert-Butyl isocyanate	155	2484
Bromotrifluoroethylene	116	2419	Butyl mercaptan	130	2347

Name of Material	Guide No.	ID No.	Name of Material G	uide No.	D No.
n-Butyl methacrylate, stabilized	130P	2227	Calcium arsenite and Calcium arsenate mixture, solid	151	1574
Butyl methyl ether	127	2350	Calcium carbide	138	1402
Butyl nitrites	129	2351	Calcium chlorate	140	1452
Butyl propionates	130	1914	Calcium chlorate, aqueous	140	2429
Butyltoluenes	152	2667	solution	440	4.450
Butyltrichlorosilane	155	1747	Calcium chlorite	140	1453
5-tert-Butyl-2,4,6-trinitro-m- xylene	149	2956	Calcium cyanamide, with more than 0.1% Calcium carbide		1403
Butyl vinyl ether, stabilized	127P	2352	Calcium cyanide	157	1575
1,4-Butynediol	153	2716	Calcium dithionite	135	1923
Butyraldehyde	129P	1129	Calcium hydride	138	1404
Butyraldoxime	129	2840	Calcium hydrosulfite	135	1923
Butyric acid	153	2820	Calcium hydrosulphite	135	1923
Butyric anhydride	156	2739	Calcium hypochlorite, dry	140	1748
	131	2411	Calcium hypochlorite, dry, corrosive, with more than	140	3485
Butyronitrile		2353	39% available chlorine (8.8%	0	
Butyryl chloride	132	2333	available oxygen)		
Buzz	153		Calcium hypochlorite, hydrated, corrosive, with not	140	3487
CA	153	<u> </u>	less than 5.5% but not more than 16% water		
	159 151	1572	Calcium hypochlorite,	140	2880
Cacodylic acid		2570	hydrated, with not less than		2000
Cadmium compound	154		5.5% but not more than 16% water		
Caesium	138	1407 2682	Calcium hypochlorite, hydrated	140	3487
Caesium hydroxide	157		mixture, corrosive, with not less than 5.5% but not more		
Caesium hydroxide, solution	154	2681	than 16% water		
Caesium nitrate	140	1451	Calcium hypochlorite, hydrated	140	2880
Calcium	138	1401	mixture, with not less than 5.5% but not more than 16%		
Calcium, pyrophoric	135	1855	water		
Calcium alloys, pyrophoric	135	1855	Calcium hypochlorite mixture,	140	3486
Calcium arsenate	151	1573	dry, corrosive, with more than 10% but not more than		
Calcium arsenate and Calcium arsenite mixture, solid	m 151	1574	39% available chlorine		

dry, corrosive, with more than 39% available chlorine (8.8% available oxygen) Calcium hypochlorite mixture, of the chlorine chlorine Calcium hypochlorite mixture, of the chlorine Calcium hypochlorite mixture, of the chlorine Calcium hypochlorite mixture, of the chlorine chlorine dry, with more than 39% Carbamate pesticide, solid, poisonous Carbamate pesticide,	2991 2757 2757 362 361 1131 1131 1013
(8.8% available oxygen) Calcium hypochlorite mixture, dry, with more than 10% but not more than 39% available Chlorine Calcium hypochlorite mixture, dry, with more than 39% Carbamate pesticide, solid, poisonous Carbamate pesticide, solid, toxic Carbamate pesticide, solid, toxic Carbamate pesticide, solid, toxic Carbamate pesticide, solid, poisonous Carbamate pesticide, solid, toxic	2757 362 361 1131 1131 013
dry, with more than 10% but not more than 39% available Chlorine Calcium hypochlorite mixture, 140 1748 dry, with more than 39% Carbon, activated 133 1 Carbon, animal or vegetable origin	362 361 1131 1131 013
Calcium hypochlorite mixture, 140 1748 dry, with more than 39% Carbon, animal or vegetable 133 1	361 1131 1131 013
dry, with more than 39%	1131 1131 013
available Chlorine (8.8%	013
	013
	013
liquid	187
Carbon dioxide solid 120 1	845
Calcium peroxide 140 1457 Carbon dioxide and Ethylene 115 1	041
Calcium phosphide 139 1360 oxide mixture, with more	•
Calcium resinate 133 1313 than 9% but not more than 87% Ethylene oxide	
	300
Calcium silicide 138 1405 oxide mixture, with more than 87% Ethylene oxide	
Campnor, synthetic 133 2/1/	952
Camphor oil 128 1130 oxide mixtures, with not	002
Capacitor, asymmetric 171 3508 more than 9% Ethylene oxide	0.45
Capacitor, electric double layer 171 3499 Carbon dioxide and Nitrous 126 1	015
Caproic acid 153 2829 Carbon dioxide and Oxygen 122 1	014
Carbamate pesticide, liquid, 131 2758 mixture, compressed	1131
Carbamate pesticide liquid 131 2758	1131
Carbamate pesticide, fiquid,	016
Oarboil monoxide, compressed 113	202
Carbamate pesticide, liquid, 151 2992 Carbon tetrabromide 151 2	2516
toxic	846

Name of Material	Guide No.	D No.	Name of Material G	uide No.	ID No.
Carbonyl fluoride	125	2417	Chemical under pressure,	119	3504
Carbonyl fluoride, compresse	ed 125	2417	flammable, poisonous, n.o.s		
Carbonyl sulfide	119	2204	Chemical under pressure, flammable, toxic, n.o.s.	119	3504
Carbonyl sulphide	119	2204	Chemical under pressure,	126	3500
Castor beans, meal, pomace or flake	171	2969	n.o.s.		
Caustic alkali liquid, n.o.s.	154	1719	Chemical under pressure, poisonous, n.o.s.	123	3502
Caustic potash, solid	154	1813	Chemical under pressure,	123	3502
Caustic potash, solution	154	1814	toxic, n.o.s.		
Caustic soda, solid	154	1823	Chloral, anhydrous, stabilized	153	2075
Caustic soda, solution	154	1824	Chlorate and Borate mixture	140	1458
Cells, containing Sodium	138	3292	Chlorate and Magnesium chloride mixture, solid	140	1459
Celluloid, in blocks, rods, rol sheets, tubes, etc., except		2000	Chlorate and Magnesium chloride mixture, solution	140	3407
scrap Celluloid, scrap	135	2002	Chlorates, inorganic, aqueous solution, n.o.s.	140	3210
Cerium, slabs, ingots or rods	170	1333	Chlorates, inorganic, n.o.s.	140	1461
Cerium, turnings or gritty powder	138	3078	Chloric acid, aqueous solution, with not more than 10% Chloric acid	140	2626
Cesium	138	1407	Chlorine	124	1017
Cesium hydroxide	157	2682		173	3520
Cesium hydroxide, solution	154	2681	Chlorine, adsorbed Chlorine dioxide, hydrate,	143	9191
Cesium nitrate	140	1451	frozen	143	3131
CG	125		Chlorine pentafluoride	124	2548
Charcoal	133	1361	Chlorine trifluoride	124	1749
Chemical kit	154	1760	Chlorite solution	154	1908
Chemical kit	171	3316	Chlorites, inorganic, n.o.s.	143	1462
Chemical sample, poisonous	151	3315	Chloroacetaldehyde	153	2232
Chemical sample, toxic	151	3315	Chloroacetic acid, molten	153	3250
Chemical under pressure, corrosive, n.o.s.	125	3503	Chloroacetic acid, solid	153	1751
Chemical under pressure,	118	3505	Chloroacetic acid, solution	153	1750
flammable, corrosive, n.o.s	3.		Chloroacetone, stabilized	131	1695
Chemical under pressure, flammable, n.o.s.	115	3501	Chloroacetonitrile	131	2668

Name of Material	∋uide No.	D No.	Name of Material	Guide No.	ID No.
Chloroacetophenone, liquid Chloroacetophenone, solid	153 153	3416 1697	3-Chloro-4-methylphenyl isocyanate, solid	156	3428
Chloroacetyl chloride	156	1752	Chloronitroanilines	153	2237
Chloroanilines, liquid	152	2019	Chloronitrobenzenes, liquid	152	3409
Chloroanilines, inquid	152	2013	Chloronitrobenzenes, solid	152	1578
Chloroanisidines	152	2233	Chloronitrotoluenes, liquid	152	2433
Chlorobenzene	130	1134	Chloronitrotoluenes, solid	152	3457
Chlorobenzotrifluorides	130	2234	Chloropentafluoroethane	126	1020
Chlorobenzyl chlorides, liquid	153	2235	Chloropentafluoroethane and	126	1973
Chlorobenzyl chlorides, solid	153	3427	Chlorodifluoromethane mixture		
Chlorobutanes	130	1127	Chlorophenolates, liquid	154	2904
Chlorocresols, solid	152	3437	Chlorophenolates, solid	154	2905
Chlorocresols, solution	152	2669	Chlorophenols, liquid	153	2021
Chlorodifluorobromomethane	126	1974	Chlorophenols, solid	153	2020
1-Chloro-1,1-difluoroethane	115	2517	Chlorophenyltrichlorosilane	156	1753
Chlorodifluoromethane	126	1018	Chloropicrin	154	1580
Chlorodifluoromethane and Chloropentafluoroethane	126	1973	Chloropicrin and Methyl bromide mixture	123	1581
mixture Chlorodinitrobenzenes, liquid	153	1577	Chloropicrin and Methyl chloride mixture	119	1582
Chlorodinitrobenzenes, solid	153	3441	Chloropicrin mixture, n.o.s.	154	1583
2-Chloroethanal	153	2232	Chloropivaloyl chloride	156	9263
Chloroform	151	1888	Chloroplatinic acid, solid	154	2507
Chloroformates, poisonous,	155	2742	Chloroprene, stabilized	131P	1991
corrosive, flammable, n.o.s.	154	3277	1-Chloropropane	129	1278
Chloroformates, poisonous, corrosive, n.o.s.	134	3211	2-Chloropropane	129	2356
Chloroformates, toxic,	155	2742	3-Chloropropanol-1	153	2849
corrosive, flammable, n.o.s.			2-Chloropropene	130P	
Chloroformates, toxic, corrosive, n.o.s.	154	3277	2-Chloropropionic acid	153	2511
Chloromethyl chloroformate	157	2745	2-Chloropyridine	153	2822
Chloromethyl ethyl ether	131	2354	Chlorosilanes, corrosive, flammable, n.o.s.	155	2986
3-Chloro-4-methylphenyl isocyanate, liquid	156	2236	Chlorosilanes, corrosive, n.o.	s. 156	2987

Name of Material	Guide No.	ID No.	Name of Material	Guide No.	ID No.
Chlorosilanes, flammable,	155	2985	Chromium oxychloride	137	1758
corrosive, n.o.s.			Chromium trioxide, anhydrous	141	1463
Chlorosilanes, poisonous, corrosive, flammable, n.o.s	155	3362	Chromosulfuric acid	154	2240
Chlorosilanes, poisonous, corrosive, n.o.s.	156	3361	Chromosulphuric acid	154	2240
Chlorosilanes, toxic, corrosive flammable, n.o.s.	e, 155	3362	Clinical waste, unspecified,	125 158	3291
Chlorosilanes, toxic, corrosive	e, 156	3361	CN	153	
n.o.s. Chlorosilanes, water-reactive	139	2988	Coal gas	119	1023
flammable, corrosive, n.o.s		2300	Coal gas, compressed	119	1023
Chlorosulfonic acid (with or	137	1754	Coal tar distillates, flammable	128	1136
without sulfur trioxide)	407	4754	Coating solution	127	1139
Chlorosulphonic acid (with or without sulphur trioxide)	137	1754	Cobalt naphthenates, powder	133	2001
1-Chloro-1,2,2,2-	126	1021	Cobalt resinate, precipitated	133	1318
tetrafluoroethane			Combustible liquid, n.o.s.	128	1993
Chlorotetrafluoroethane and Ethylene oxide mixture, wit not more than 8.8% Ethyler		3297	Compounds, cleaning liquid (corrosive)	154	1760
oxide			Compounds, cleaning liquid (flammable)	128	1993
Chlorotoluenes	129	2238	Compounds, tree or weed	154	1760
4-Chloro-o-toluidine hydrochloride, solid	153	1579	killing, liquid (corrosive)		
4-Chloro-o-toluidine hydrochloride, solution	153	3410	Compounds, tree or weed killing, liquid (flammable)	128	1993
Chlorotoluidines, liquid	153	3429	Compounds, tree or weed killing, liquid (toxic)	153	2810
Chlorotoluidines, solid	153	2239	Compressed gas, flammable,	115	1954
1-Chloro-2,2,2-trifluoroethane	126	1983	n.o.s.		
Chlorotrifluoromethane	126	1022	Compressed gas, n.o.s.	126	1956
Chlorotrifluoromethane and Trifluoromethane azeotropi mixture with approximately	126	2599	Compressed gas, oxidizing, n.o.s.	122	3156
60% Chlorotrifluoromethane	Э		Compressed gas, poisonous, corrosive, n.o.s.	125	3304
Chromic acid, solution	154	1755	Compressed gas, poisonous,	125	3304
Chromic fluoride, solid	154	1756	corrosive, n.o.s. (Inhalation Hazard Zone A)		
Chromic fluoride, solution	154	1757	The Later a Lotto Try		
Chromium nitrate	141	2720			

	uide No.	ID No.	Name of Material G	uide No.	No.
Compressed gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone B)	125	3304	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone B)	123	1955
Compressed gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone C)	125	3304	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone C)	123	1955
Compressed gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone D)	125	3304	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone D)	123	1955
Compressed gas, poisonous, flammable, corrosive, n.o.s.	119	3305	Compressed gas, poisonous, oxidizing, corrosive, n.o.s.	124	3306
Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	119	3305	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	124	3306
Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	119	3305	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	124	3306
Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	119	3305	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)	124	3306
Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	119	3305	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)	124	3306
Compressed gas, poisonous, flammable, n.o.s.	119	1953	Compressed gas, poisonous, oxidizing, n.o.s.	124	3303
Compressed gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone A)	119	1953	Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone A)	124	3303
Compressed gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone B)	119	1953	Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone B)	124	3303
Compressed gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone C)	119	1953	Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone C)	124	3303
Compressed gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone D)	119	1953	Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone D)	124	3303
Compressed gas, poisonous, n.o.s.	123	1955	Compressed gas, toxic, corrosive, n.o.s.	125	3304
Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone A)	123	1955	Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone A)	125	3304

Name of Material	Suide No.	ID No.	Name of Material	Suide No.	ID No.
Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone B)	125	3304	Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone C)	123	1955
Compressed gas, toxic, corrosive, n.o.s. (Inhalation	125	3304	Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone D)	123	1955
Hazard Zone C)		0004	Compressed gas, toxic, oxidizing, corrosive, n.o.s.	124	3306
Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone D)	125	3304	Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	124	3306
Compressed gas, toxic, flammable, corrosive, n.o.s.	119	3305	Compressed gas, toxic, oxidizing, corrosive, n.o.s.	124	3306
Compressed gas, toxic, flammable, corrosive, n.o.s.	119	3305	(Inhalation Hazard Zone B) Compressed gas, toxic,	124	3306
(Inhalation Hazard Zone A) Compressed gas, toxic,	119	3305	oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)		
flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)		2205	Compressed gas, toxic, oxidizing, corrosive, n.o.s.	124	3306
Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	119	3305	(Inhalation Hazard Zone D) Compressed gas, toxic, oxidizing, n.o.s.	124	3303
Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	119	3305	Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone A)	124	3303
Compressed gas, toxic, flammable, n.o.s.	119	1953	Compressed gas, toxic, oxidizing, n.o.s. (Inhalation	124	3303
Compressed gas, toxic, flammable, n.o.s. (Inhalation	119	1953	Hazard Zone B)	124	3303
Hazard Zone A) Compressed gas, toxic,	119	1953	Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone C)	124	3303
flammable, n.o.s. (Inhalation Hazard Zone B)	n		Compressed gas, toxic, oxidizing, n.o.s. (Inhalation	124	3303
Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone C)	119	1953	Hazard Zone D) Compressed gas and hexaethy	123	1612
Compressed gas, toxic, flammable, n.o.s. (Inhalation	119	1953	tetraphosphate mixture Consumer commodity	171	8000
Hazard Zone D)			Copper acetoarsenite	151	1585
Compressed gas, toxic, n.o.s.	123	1955	Copper arsenite	151	1586
Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone A)	123	1955	Copper based pesticide, liquid flammable, poisonous	, 131	2776
Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone B)	123	1955	Copper based pesticide, liquid flammable, toxic	, 131	2776

Name of Material	uide No.	e ID No.		uide No.	No.
Copper based pesticide, liquid poisonous	, 151	3010	Corrosive solid, acidic, organic, n.o.s.	154	3261
Copper based pesticide, liquid poisonous, flammable	, 131	3009	Corrosive solid, basic, inorganic, n.o.s.	154	3262
Copper based pesticide, liquid toxic	, 151	3010	Corrosive solid, basic, organic, n.o.s.	154	3263
Copper based pesticide, liquid toxic, flammable	, 131	3009	Corrosive solid, flammable, n.o.s.	134	2921
Copper based pesticide, solid, poisonous	151	2775	Corrosive solid, n.o.s.	154	1759
Copper based pesticide, solid, toxic	151	2775	Corrosive solid, oxidizing, n.o.s.	157	3084
Copper chlorate	140	2721	Corrosive solid, poisonous, n.o.s.	154	2923
Copper chloride	154	2802	Corrosive solid, self-heating,	136	3095
Copper cyanide	151	1587	n.o.s.	454	0000
Copra	135	1363	Corrosive solid, toxic, n.o.s.	154	2923
Corrosive liquid, acidic, inorganic, n.o.s.	154	3264	Corrosive solid, water-reactive, n.o.s.	138	3096
Corrosive liquid, acidic,	153	3265	Cotton	133	1365
organic, n.o.s.			Cotton, wet	133	1365
Corrosive liquid, basic, inorganic, n.o.s.	154	3266	Cotton waste, oily	133	1364
Corrosive liquid, basic, organic, n.o.s.	153	3267	Coumarin derivative pesticide, liquid, flammable, poisonous	131	3024
Corrosive liquid, flammable,	132	2920	Coumarin derivative pesticide, liquid, flammable, toxic	131	3024
Corrosive liquid, n.o.s.	154	1760	Coumarin derivative pesticide, liquid, poisonous	151	3026
Corrosive liquid, oxidizing, n.o.s.	157	3093	Coumarin derivative pesticide, liquid, poisonous, flammable		3025
Corrosive liquid, poisonous, n.o.s.	154	2922	Coumarin derivative pesticide, liquid, toxic	151	3026
Corrosive liquid, self-heating, n.o.s.	136	3301	Coumarin derivative pesticide, liquid, toxic, flammable	131	3025
Corrosive liquid, toxic, n.o.s.	154	2922	Coumarin derivative pesticide,	151	3027
Corrosive liquid, water- reactive, n.o.s.	138	3094	solid, poisonous Coumarin derivative pesticide,	151	3027
Corrosive solid, acidic, inorganic, n.o.s.	154	3260	solid, toxic Cresols, liquid	153	2076
Page 110					

Name of Material	Guide No.	ID No.	Name of Material	uide No.	ID No.
Cresols, solid	153	3455	Cyclohexyl mercaptan	129	3054
Cresylic acid	153	2022	Cyclohexyltrichlorosilane	156	1763
Crotonaldehyde	131P	1143	Cyclooctadiene phosphines	135	2940
Crotonaldehyde, stabilized	131P	1143	Cyclooctadienes	130P	2520
Crotonic acid, liquid	153	3472	Cyclooctatetraene	128P	2358
Crotonic acid, solid	153	2823	Cyclopentane	128	1146
Crotonylene	128	1144	Cyclopentanol	129	2244
CS	153		Cyclopentanone	128	2245
Cumene	130	1918	Cyclopentene	128	2246
Cupriethylenediamine, solut	ion 154	1761	Cyclopropane	115	1027
CX	154		Cymenes	130	2046
Cyanide solution, n.o.s.	157	1935	DA	151	
Cyanides, inorganic, solid,	157	1588	Dangerous goods in apparatus	171	3363
n.o.s.	119	1026	Dangerous goods in articles	171	3363
Cyanogen Cyanogen bromide	157	1889	Dangerous goods in machinery	171	3363
Cyanogen chloride, stabilize		1589	DC	153	—
Cyanuric chloride	157	2670	Decaborane	134	1868
Cyclobutane	115	2601	Decahydronaphthalene	130	1147
Cyclobutyl chloroformate	155	2744	n-Decane	128	2247
1,5,9-Cyclododecatriene	153	2518	Denatured alcohol	127	1987
Cycloheptane	128	2241	Desensitized explosive, liquid, n.o.s.	113	3379
Cycloheptatriene	131	2603	Desensitized explosive, solid,	113	3380
Cycloheptene	128	2242	n.o.s.		
Cyclohexane	128	1145	Deuterium	115	1957
Cyclohexanethiol	129	3054	Deuterium, compressed	115	1957
Cyclohexanone	127	1915	Devices, small, hydrocarbon gas powered, with release device	115	3150
Cyclohexene	130	2256	Diacetone alcohol	129	1148
Cyclohexenyltrichlorosilane	156	1762	Diacetyl	127	2346
Cyclohexyl acetate	130	2243	Diallylamine	132	2359
Cyclohexylamine	132	2357	Diallyl ether	131P	2360
Cyclohexyl isocyanate	155	2488	4,4'-Diaminodiphenylmethane	153	2651
	'		, ,		

Name of Material	Guide No.	No.	Name of Material G	uide No.	ID No.
Di-n-amylamine	131	2841	Dichloroisocyanuric acid, dry	140	2465
Dibenzyldichlorosilane	156	2434	Dichloroisocyanuric acid salts	140	2465
Diborane	119	1911	Dichloroisopropyl ether	153	2490
Diborane, compressed	119	1911	Dichloromethane	160	1593
Diborane mixtures	119	1911	1,1-Dichloro-1-nitroethane	153	2650
1,2-Dibromobutan-3-one	154	2648	Dichloropentanes	130	1152
Dibromochloropropanes	159	2872	Dichlorophenyl isocyanates	156	2250
Dibromodifluoromethane	171	1941	Dichlorophenyltrichlorosilane	156	1766
Dibromomethane	160	2664	1,2-Dichloropropane	130	1279
Di-n-butylamine	132	2248	1,3-Dichloropropanol-2	153	2750
Dibutylaminoethanol	153	2873	Dichloropropenes	129	2047
Dibutyl ethers	128	1149	Dichlorosilane	119	2189
Dichloroacetic acid	153	1764	1,2-Dichloro-1,1,2,2- tetrafluoroethane	126	1958
1,3-Dichloroacetone	153	2649	3.5-Dichloro-2.4.6-	151	9264
Dichloroacetyl chloride	156	1765	trifluoropyridine	131	3204
Dichloroanilines, liquid	153	1590	Dicyclohexylamine	153	2565
Dichloroanilines, solid	153	3442	Dicyclohexylammonium nitrite	133	2687
o-Dichlorobenzene	152	1591	Dicyclopentadiene	130P	2048
2,2'-Dichlorodiethyl ether	152	1916	1,2-Di-(dimethylamino)ethane	129	2372
Dichlorodifluoromethane	126	1028	Didymium nitrate	140	1465
Dichlorodifluoromethane and Difluoroethane	126	2602	Diesel fuel	128	1202
azeotropic mixture with			Diesel fuel	128	1993
approximately 74% Dichlorodifluoromethane			Diethoxymethane	127	2373
Dichlorodifluoromethane and	126	3070	3,3-Diethoxypropene	127	2374
Ethylene oxide mixture, with not more than 12.5%			Diethylamine	132	1154
Ethylene oxide			2-Diethylaminoethanol	132	2686
Dichlorodimethyl ether, symmetrical	131	2249	3-Diethylaminopropylamine	132	2684
1,1-Dichloroethane	130	2362	N,N-Diethylaniline	153	2432
1,2-Dichloroethylene	130P	1150	Diethylbenzene Diethyl carbonate	130	2049
Dichloroethyl ether	152	1916	·	128	2366
Dichlorofluoromethane	126	1029	Diethyldichlorosilane Diethylenetriamine	155 154	1767 2079

Name of Material G	uide No.	D No.	Name of Material G	uide No.	ID No.
Diethyl ether	127	1155	2-Dimethylaminoacetonitrile	131	2378
N,N-Diethylethylenediamine	132	2685	2-Dimethylaminoethanol	132	2051
Diethyl ketone	127	1156	2-Dimethylaminoethyl acrylate	152	3302
Diethyl sulfate	152	1594	2-Dimethylaminoethyl	153P	2522
Diethyl sulfide	129	2375	methacrylate		
Diethyl sulphate	152	1594	N,N-Dimethylaniline	153	2253
Diethyl sulphide	129	2375	2,3-Dimethylbutane	128	2457
Diethylthiophosphoryl chloride	155	2751	1,3-Dimethylbutylamine	132	2379
Diethylzinc	135	1366	Dimethylcarbamoyl chloride	156	2262
Difluorochloroethanes	115	2517	Dimethyl carbonate	129	1161
1,1-Difluoroethane	115	1030	Dimethylcyclohexanes	128	2263
Difluoroethane and	126	2602	N,N-Dimethylcyclohexylamine	132	2264
Dichlorodifluoromethane azeotropic mixture with			Dimethylcyclohexylamine	132	2264
approximately 74% Dichlorodifluoromethane			Dimethyldichlorosilane	155	1162
1,1-Difluoroethylene	116P	1959	Dimethyldiethoxysilane	127	2380
Difluoromethane	115	3252	Dimethyldioxanes	127	2707
Difluorophosphoric acid,	154	1768	Dimethyl disulfide	131	2381
anhydrous		1100	Dimethyl disulphide	131	2381
2,3-Dihydropyran	127	2376	Dimethyl ether	115	1033
Diisobutylamine	132	2361	N,N-Dimethylformamide	129	2265
Diisobutylene, isomeric compounds	128	2050	Dimethylhydrazine, symmetrical	131	
Diisobutyl ketone	128	1157	Dimethylhydrazine, unsymmetrical	131	1163
Diisooctyl acid phosphate	153	1902	2,2-Dimethylpropane	115	2044
Diisopropylamine	132	1158	Dimethyl-N-propylamine	132	2266
Diisopropyl ether	127	1159	Dimethyl sulfate	156	1595
Diketene, stabilized	131P	2521	Dimethyl sulfide	130	1164
1,1-Dimethoxyethane	127	2377	Dimethyl sulphate	156	1595
1,2-Dimethoxyethane	127	2252	Dimethyl sulphide	130	1164
Dimethylamine, anhydrous	118	1032	Dimethyl thiophosphoryl	156	2267
Dimethylamine, aqueous solution	132	1160	chloride		
Dimethylamine, solution	132	1160	Dimethylzinc	135	1370

Name of Material	Guide No.	D No.	Name of Material G	uide No.	ID No.
Dinitroanilines	153	1596	Disinfectant, liquid, poisonous	, 151	3142
Dinitrobenzenes, liquid	152	1597	n.o.s.		
Dinitrobenzenes, solid	152	3443	Disinfectant, liquid, toxic, n.o.s.	151	3142
Dinitro-o-cresol	153	1598	Disinfectant, solid, poisonous,	151	1601
Dinitrogen tetroxide	124	1067	n.o.s.		
Dinitrogen tetroxide and Nitri	c 124	1975	Disinfectant, solid, toxic, n.o.s		1601
Dinitrophenol, solution	153	1599	Disodium trioxosilicate	154	3253
Dinitrophenol, wetted with no		1320	Dispersant gas, n.o.s.	126	1078
less than 15% water	(113	1320	Dispersant gases, n.o.s. (flammable)	115	1954
Dinitrophenolates, wetted wit not less than 15% water	h 113	1321	Divinyl ether, stabilized	128P	1167
Dinitroresorcinol, wetted with	113	1322	DM	154	
not less than 15% water	4.50	0000	Dodecyltrichlorosilane	156	1771
Dinitrotoluenes, liquid	152	2038	DP	125	
Dinitrotoluenes, molten	152	1600	Dry ice	120	1845
Dinitrotoluenes, solid	152	3454	Dye, liquid, corrosive, n.o.s.	154	2801
Dioxane	127	1165	Dye, liquid, poisonous, n.o.s.	151	1602
Dioxolane	127	1166	Dye, liquid, toxic, n.o.s.	151	1602
Dipentene	128	2052	Dye, solid, corrosive, n.o.s.	154	3147
Diphenylamine chloroarsine	154	1698	Dye, solid, poisonous, n.o.s.	151	3143
Diphenylchloroarsine, liquid	151	1699	Dye, solid, toxic, n.o.s.	151	3143
Diphenylchloroarsine, solid	151	3450	Dye intermediate, liquid, corrosive, n.o.s.	154	2801
Diphenyldichlorosilane	156	1769	Dye intermediate, liquid,	151	1602
Diphenylmethyl bromide	153	1770	poisonous, n.o.s.		
Dipicryl sulfide, wetted with n less than 10% water	ot 113	2852	Dye intermediate, liquid, toxic, n.o.s.	151	1602
Dipicryl sulphide, wetted with not less than 10% water	113	2852	Dye intermediate, solid, corrosive, n.o.s.	154	3147
Dipropylamine	132	2383	Dye intermediate, solid,	151	3143
Di-n-propyl ether	127	2384	poisonous, n.o.s.		
Dipropyl ketone	128	2710 1903	Dye intermediate, solid, toxic, n.o.s.	151	3143
Disinfectant, liquid, corrosive n.o.s.	, 153	1903	ED	151	

Name of Material	∋uide No.	ID No.	Name of Material G	uide No.	ID No.
Elevated temperature liquid,	128	3256	Esters, n.o.s.	127	3272
flammable, n.o.s., with flash point above 37.8°C (100°F)			Ethane	115	1035
at or above its flash point	,		Ethane, compressed	115	1035
Elevated temperature liquid,	128	3256	Ethane, refrigerated liquid	115	1961
flammable, n.o.s., with flash point above 60°C (140°F), a or above its flash point	it		Ethane-Propane mixture, refrigerated liquid	115	1961
Elevated temperature liquid,	171	3257	Ethanol	127	1170
n.o.s., at or above 100°C (212°F), and below its flash point			Ethanol and gasoline mixture, with more than 10% ethanol	127	3475
Elevated temperature solid, n.o.s., at or above 240°C (464°F)	171	3258	Ethanol and motor spirit mixture, with more than 10% ethanol	127	3475
Engine, fuel cell, flammable gas powered	115	3166	Ethanol and petrol mixture, with more than 10% ethanol	127	3475
Engine, fuel cell, flammable	115	3529	Ethanol, solution	127	1170
gas powered			Ethanolamine	153	2491
Engine, fuel cell, flammable liquid powered	128	3166	Ethanolamine, solution	153	2491
Engine, fuel cell, flammable	128	3528	Ethers, n.o.s.	127	3271
liquid powered			Ethyl acetate	129	1173
Engine, internal combustion	128	3166	Ethylacetylene, stabilized	116P	2452
Engine, internal combustion	171	3530	Ethyl acrylate, stabilized	129P	1917
Engine, internal combustion, flammable gas powered	115	3529	Ethyl alcohol	127	1170
Engine, internal combustion,	128	3528	Ethyl alcohol, solution	127	1170
flammable liquid powered	120	0020	Ethylamine	118	1036
Engines, internal combustion, flammable gas powered	115	3166	Ethylamine, aqueous solution, with not less than 50% but not more than 70%	132	2270
Engines, internal combustion, flammable liquid powered	128	3166	Ethylamine		
Environmentally hazardous	171	3082	Ethyl amyl ketone	128	2271
substance, liquid, n.o.s.		0002	2-Ethylaniline	153	2273
Environmentally hazardous	171	3077	N-Ethylaniline	153	2272
substance, solid, n.o.s.	424	2550	Ethylbenzene	130	1175
Epibromohydrin	131	2558	N-Ethyl-N-benzylaniline	153	2274
Epichlorohydrin	131P	2023	N-Ethylbenzyltoluidines, liquid		2753
1,2-Epoxy-3-ethoxypropane	127	2752	N-Ethylbenzyltoluidines, solid	153	3460

Name of Material	Guide No.	No.	Name of Material G	uide No.	ID No.
Ethyl borate	129	1176	Ethylene glycol monoethyl ether	127	1171
Ethyl bromide	131	1891		129	1172
Ethyl bromoacetate	155	1603	Ethylene glycol monoethyl ether acetate	123	1172
2-Ethylbutanol	129	2275	Ethylene glycol monomethyl	127	1188
2-Ethylbutyl acetate	130	1177	ether		4400
Ethyl butyl ether	127	1179	Ethylene glycol monomethyl ether acetate	129	1189
2-Ethylbutyraldehyde	130	1178	Ethyleneimine, stabilized	131P	1185
Ethyl butyrate	130	1180	Ethylene oxide	119P	1040
Ethyl chloride	115	1037	Ethylene oxide and Carbon	115	1041
Ethyl chloroacetate	155	1181	dioxide mixture, with more than 9% but not more than		
Ethyl chloroformate	155	1182	87% Ethylene oxide		
Ethyl 2-chloropropionate	129	2935	Ethylene oxide and Carbon	119P	3300
Ethyl chlorothioformate	155	2826	dioxide mixture, with more than 87% Ethylene oxide		
Ethyl crotonate	130	1862	Ethylene oxide and Carbon	126	1952
Ethyldichloroarsine	151	1892	dioxide mixtures, with not more than 9% Ethylene oxid	2	
Ethyldichlorosilane	139	1183	Ethylene oxide and	126	3297
Ethylene	116P	1962	Chlorotetrafluoroethane	120	0201
Ethylene, Acetylene and Propylene in mixture,	115	3138	mixture, with not more than 8.8% Ethylene oxide		
refrigerated liquid contair at least 71.5% Ethylene with not more than 22.5% Acetylene and not more the 6% Propylene			Ethylene oxide and Dichlorodifluoromethane mixture, with not more than 12.5% Ethylene oxide	126	3070
Ethylene, compressed	116P	1962	Ethylene oxide and Pentafluoroethane mixture,	126	3298
Ethylene, refrigerated liquid (cryogenic liquid)	115	1038	with not more than 7.9% Ethylene oxide		
Ethylene chlorohydrin	131	1135	Ethylene oxide and Propylene oxide mixture, with not more		2983
Ethylenediamine	132	1604	than 30% Ethylene oxide		
Ethylene dibromide	154	1605	Ethylene oxide and	126	3299
Ethylene dibromide and Met bromide mixture, liquid	hyl 151	1647	Tetrafluoroethane mixture, with not more than 5.6% Ethylene oxide		
Ethylene dichloride	131	1184	Ethylene oxide with Nitrogen	119P	1040
		4450			
Ethylene glycol diethyl ethe	r 127	1153	Ethyl ether	127	1155

Name of Material	Guide No.	ID No.	Name of Material G	uide No.	ID No.
Ethyl formate	129	1190	Fabrics, animal or vegetable or	133	1373
Ethylhexaldehydes	129	1191	synthetic, n.o.s. with oil		
2-Ethylhexylamine	132	2276	Fabrics impregnated with weakly nitrated	133	1353
2-Ethylhexyl chloroformate	156	2748	Nitrocellulose, n.o.s.		
Ethyl isobutyrate	129	2385	Ferric arsenate	151	1606
Ethyl isocyanate	155	2481	Ferric arsenite	151	1607
Ethyl lactate	129	1192	Ferric chloride, anhydrous	157	1773
Ethyl mercaptan	129	2363	Ferric chloride, solution	154	2582
Ethyl methacrylate, stabilize	d 130P	2277	Ferric nitrate	140	1466
Ethyl methyl ether	115	1039	Ferrocerium	170	1323
Ethyl methyl ketone	127	1193	Ferrosilicon	139	1408
Ethyl nitrite, solution	131	1194	Ferrous arsenate	151	1608
Ethyl orthoformate	129	2524	Ferrous chloride, solid	154	1759
Ethyl oxalate	156	2525	Ferrous chloride, solution	154	1760
Ethylphenyldichlorosilane	156	2435	Ferrous metal borings, shavings, turnings or	170	2793
Ethyl phosphonothioic dichloride, anhydrous	154	2927	cuttings Fertilizer, ammoniating	125	1043
Ethyl phosphonous dichlorid anhydrous	e, 135	2845	solution, with free Ammonia	133	1372
Ethyl phosphorodichloridate	154	2927	Fibers, animal or vegetable, burnt, wet or damp	133	1372
1-Ethylpiperidine	132	2386	Fibers, animal or vegetable or	133	1373
Ethyl propionate	129	1195	synthetic, n.o.s. with oil		
Ethyl propyl ether	127	2615	Fibers, vegetable, dry	133	3360
Ethyl silicate	129	1292	Fibers impregnated with weakly nitrated Nitrocellulose, n.o.s		1353
N-Ethyltoluidines	153	2754	Fibres, animal or vegetable,	133	1372
Ethyltrichlorosilane	155	1196	burnt, wet or damp		
Explosives, division 1.1, 1.2 1.3 or 1.5	, 112		Fibres, animal or vegetable or synthetic, n.o.s. with oil	133	1373
Explosives, division 1.4 or 1	.6 114		Fibres, vegetable, dry	133	3360
Extracts, aromatic, liquid	127	1169	Fibres impregnated with weakly nitrated Nitrocellulose, n.o.s	/ 133	1353
Extracts, flavoring, liquid	127	1197	Films, nitrocellulose base	133	1324
Extracts, flavouring, liquid	127	1197	Fire extinguisher charges, corrosive liquid	154	1774
			I		

Name of Material G	uide No.	D No.	Name of Material G	uide No.	No.
Fire extinguishers with compressed or liquefied gas	126	1044	Flammable solid, toxic, organic, n.o.s.	134	2926
Firelighters, solid, with flammable liquid	133	2623	Fluorine	124	1045
First aid kit	171	3316	Fluorine, compressed	124	1045
Fish meal, stabilized	171	2216	Fluoroacetic acid	154	2642
Fish meal, unstabilized	133	1374	Fluoroanilines	153	2941
Fish scrap, stabilized	171	2216	Fluorobenzene	130	2387
Fish scrap, unstabilized	133	1374	Fluoroboric acid	154	1775
Flammable liquid, corrosive,	132	2924	Fluorophosphoric acid, anhydrous	154	1776
Flammable liquid, n.o.s.	128	1993	Fluorosilicates, n.o.s.	151	2856
Flammable liquid, poisonous,	131	3286	Fluorosilicic acid	154	1778
corrosive, n.o.s.		0200	Fluorosulfonic acid	137	1777
Flammable liquid, poisonous, n.o.s.	131	1992	Fluorosulphonic acid Fluorotoluenes	137	1777 2388
Flammable liquid, toxic, corrosive, n.o.s.	131	3286	Formaldehyde, solution (corrosive)	153	2209
Flammable liquid, toxic, n.o.s.	131	1992	Formaldehyde, solution,	132	1198
Flammable solid, corrosive, inorganic, n.o.s.	134	3180	flammable Formalin (corrosive)	153	2209
Flammable solid, corrosive,	134	2925	Formalin (flammable)	132	1198
organic, n.o.s.	133	3178	Formic acid	153	1779
Flammable solid, inorganic, n.o.s.			Formic acid, with more than 85% acid	153	1779
Flammable solid, organic, molten, n.o.s.	133	3176	Formic acid, with not less than 5% but less than 10% acid	153	3412
Flammable solid, organic, n.o.s.	133	1325	Formic acid, with not less than	153	3412
Flammable solid, oxidizing, n.o.s.	140	3097	10% but not more than 85% acid		
Flammable solid, poisonous,	134	3179	Fuel, aviation, turbine engine	128	1863
inorganic, n.o.s. Flammable solid, poisonous,	134	2926	Fuel cell cartridges, containing corrosive substances	153	3477
organic, n.o.s.			Fuel cell cartridges, containing flammable liquids	128	3473
Flammable solid, toxic, inorganic, n.o.s.	134	3179	Fuel cell cartridges, containing hydrogen in metal hydride	115	3479

Name of Material	uide No.	ID No.	Name of Material	uide No.	ID No.
Fuel cell cartridges, containing liquefied flammable gas	g 115	3478	Furfurylamine	132	2526
	. 120	2476	Fusee (railway or highway)	133	1325
Fuel cell cartridges, containing water-reactive substances	J 130	3476	Fusel oil	127	1201
Fuel cell cartridges contained	153	3477	GA	153	
in equipment, containing corrosive substances			Gallium	172	2803
Fuel cell cartridges contained in equipment, containing	128	3473	Gas, refrigerated liquid, flammable, n.o.s.	115	3312
flammable liquids			Gas, refrigerated liquid, n.o.s.	120	3158
Fuel cell cartridges contained in equipment, containing hydrogen in metal hydride	115	3479	Gas, refrigerated liquid, oxidizing, n.o.s.	122	3311
Fuel cell cartridges contained	115	3478	Gas cartridges	115	2037
in equipment, containing		0170	Gas identification set	123	9035
liquefied flammable gas	420	2.470	Gasohol	128	1203
Fuel cell cartridges contained in equipment, containing	138	3476	Gas oil	128	1202
water-reactive substances			Gasoline	128	1203
Fuel cell cartridges packed with equipment, containing corrosive substances	153	3477	Gasoline and ethanol mixture, with more than 10% ethanol	127	3475
Fuel cell cartridges packed with equipment, containing flammable liquids	128	3473	Gas sample, non-pressurized, flammable, n.o.s., not refrigerated liquid	115	3167
Fuel cell cartridges packed with equipment, containing hydrogen in metal hydride	115	3479	Gas sample, non-pressurized, poisonous, flammable, n.o.s., not refrigerated liqui		3168
Fuel cell cartridges packed with equipment, containing	115	3478	Gas sample, non-pressurized, poisonous, n.o.s., not refrigerated liquid	123	3169
liquefied flammable gas Fuel cell cartridges packed with equipment, containing	138	3476	Gas sample, non-pressurized, toxic, flammable, n.o.s., not refrigerated liquid		3168
water-reactive substances	400	4000	Gas sample, non-pressurized,		3169
Fuel oil	128	1202	toxic, n.o.s., not refrigerate liquid	d	
Fuel oil	128	1993	GB	153	
Fumaryl chloride	156	1780	GD	153	
Fumigated cargo transport uni		3359	Genetically modified micro-	171	3245
Furaldehydes	153P	1199	organisms		
Furfuryl alachal	128 153	2389 2874	Genetically modified organism	s 171	3245
Furfuryl alcohol	133	2014			

Name of Material	∋uide No.	No.	Name of Material G	uide No.	No.
Germane	119	2192	Hexachlorophene	151	2875
Germane, adsorbed	173	3523	Hexadecyltrichlorosilane	156	1781
GF	153		Hexadiene	130	2458
Glycerol alpha- monochlorohydrin	153	2689	Hexaethyl tetraphosphate Hexaethyl tetraphosphate and	151 123	1611 1612
Glycidaldehyde	131P	2622	compressed gas mixture	123	1012
Guanidine nitrate	143	1467	Hexafluoroacetone	125	2420
Н	153		Hexafluoroacetone hydrate,	151	2552
Hafnium powder, dry	135	2545	liquid		
Hafnium powder, wetted with not less than 25% water	170	1326	Hexafluoroacetone hydrate, solid	151	3436
Halogenated	171	3151	Hexafluoroethane	126	2193
monomethyldiphenylmethanes liquid	3,		Hexafluoroethane, compressed	126	2193
· ·	171	3152	Hexafluorophosphoric acid	154	1782
Halogenated monomethyldiphenylmethanes		3132	Hexafluoropropylene	126	1858
solid Hay, wet, damp or	133	1327	Hexafluoropropylene, compressed	126	1858
contaminated with oil			Hexaldehyde	130	1207
Hazardous waste, liquid, n.o.s		3082	Hexamethylenediamine, solid	153	2280
Hazardous waste, solid, n.o.s.		3077	Hexamethylenediamine,	153	1783
HD	153		solution	450	0004
Heating oil, light	128	1202	Hexamethylene diisocyanate	156	2281
Helium	120	1046	Hexamethyleneimine	132	2493
Helium, compressed	120	1046	Hexamethylenetetramine	133	1328
Helium, refrigerated liquid (cryogenic liquid)	120	1963	Hexanes Hexanoic acid	128 153	1208 2829
Heptafluoropropane	126	3296	Hexanols	129	2282
n-Heptaldehyde	129	3056	1-Hexene	128	2370
Heptanes	128	1206	Hexyltrichlorosilane	156	1784
n-Heptene	128	2278	HL	153	
Hexachloroacetone	153	2661	HN-1	153	
Hexachlorobenzene	152	2729	HN-2	153	
Hexachlorobutadiene	151	2279	HN-3	153	
Hexachlorocyclopentadiene	151	2646	Hydrazine, anhydrous	132	2029

Name of Material	Guide No.	ID No.		uide No.	ID No.
Hydrazine aqueous solution, flammable, with more than 37% hydrazine, by mass	132	3484	Hydrogen in a metal hydride storage system contained in equipment	115	3468
Hydrazine, aqueous solution, with more than 37% Hydrazine	153	2030	Hydrogen in a metal hydride storage system packed with equipment	115	3468
Hydrazine, aqueous solution, with not more than 37% Hydrazine	152	3293	Hydrogen, refrigerated liquid (cryogenic liquid)	115	1966
Hydriodic acid	154	1787	Hydrogen and Methane mixture, compressed	115	2034
Hydrobromic acid	154	1788	Hydrogen bromide, anhydrous	125	1048
Hydrocarbon and butadienes	116P	1010	Hydrogen chloride, anhydrous	125	1050
mixture, stabilized Hydrocarbon gas mixture,	115	1964	Hydrogen chloride, refrigerated liquid	125	2186
compressed, n.o.s. Hydrocarbon gas mixture,	115	1965	Hydrogen cyanide, anhydrous, stabilized	117P	1051
liquefied, n.o.s. Hydrocarbon gas refills for small devices, with release device	115	3150	Hydrogen cyanide, aqueous solution, with not more than 20% Hydrogen cyanide	154	1613
Hydrocarbons, liquid, n.o.s.	128	3295	Hydrogen cyanide, solution in alcohol, with not more than 45% Hydrogen cyanide	131	3294
Hydrochloric acid	157	1789	Hydrogen cyanide, stabilized	117P	1051
Hydrocyanic acid, aqueous solution, with less than 5% Hydrogen cyanide	154	1613	Hydrogen cyanide, stabilized (absorbed)	152	1614
Hydrocyanic acid, aqueous solution, with not more than	154	1613	Hydrogendifluorides, solid, n.o.s.	154	1740
20% Hydrogen cyanide Hydrofluoric acid	157	1790	Hydrogendifluorides, solution, n.o.s.	154	3471
Hydrofluoric acid and Sulfuric		1786	Hydrogen fluoride, anhydrous	125	1052
acid mixture		1100	Hydrogen iodide, anhydrous	125	2197
Hydrofluoric acid and Sulphur acid mixture	ic 157	1786	Hydrogen peroxide, aqueous solution, stabilized, with	143	2015
Hydrofluorosilicic acid	154	1778	more than 60% Hydrogen		
Hydrogen	115	1049	peroxide	140	2984
Hydrogen, compressed	115	1049	Hydrogen peroxide, aqueous solution, with not less	140	2504
Hydrogen in a metal hydride storage system	115	3468	than 8% but less than 20% Hydrogen peroxide		

Name of Material G	uide No.	ID No.		uide No.	ID No.
Hydrogen peroxide, aqueous solution, with not less than 20% but not more than 60% Hydrogen peroxide	140	2014	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone B)	119	3355
(stabilized as necessary) Hydrogen peroxide, stabilized	143	2015	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone C)	119	3355
Hydrogen peroxide, stabilized Hydrogen peroxide and Peroxyacetic acid mixture, with acid(s), water and not more than 5% Peroxyacetic	140	3149	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone D)		3355
acid, stabilized	,		Insecticide gas, poisonous, n.o.s.	123	1967
Hydrogen selenide, adsorbed	173	3526	Insecticide gas, toxic,	119	3355
, , ,	117	2202	flammable, n.o.s.	440	3355
Hydrogen sulfide Hydrogen sulphide	117	1053 1053	Insecticide gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone A)	119	3333
1-Hydroxybenzotriazole, anhydrous, wetted with not less than 20% water	113	3474	Insecticide gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone B)	119	3355
1-Hydroxybenzotriazole, monohydrate	113	3474	Insecticide gas, toxic, flammable, n.o.s. (Inhalation	119	3355
Hydroxylamine sulfate	154	2865	Hazard Zone C)		
Hydroxylamine sulphate	154	2865	Insecticide gas, toxic, flammable, n.o.s. (Inhalation	119	3355
Hypochlorite solution	154	1791	Hazard Zone D)		
Hypochlorites, inorganic, n.o.s	. 140	3212	Insecticide gas, toxic, n.o.s.	123	1967
3,3'-Iminodipropylamine	153	2269	lodine	154	3495
Infectious substance, affecting animals only	158	2900	lodine monochloride, liquid	157	3498
Infectious substance, affecting humans	158	2814	lodine monochloride, solid lodine pentafluoride	157 144	1792 2495
Ink, printer's, flammable	129	1210	2-lodobutane	129	2390
Insecticide gas, flammable,	115	3354	lodomethylpropanes	129	2391
n.o.s.			lodopropanes	129	2392
Insecticide gas, n.o.s.	126	1968	Iron oxide, spent	135	1376
Insecticide gas, poisonous, flammable, n.o.s.	119	3355	Iron pentacarbonyl	136	1994
Insecticide gas, poisonous,	119	3355	Iron sponge, spent	135	1376
flammable, n.o.s. (Inhalation Hazard Zone A)	1		Isobutane	115	1075
,	1		Isobutane	115	1969

Name of Material	Guide No.	ID No.	Name of Material	Guide No.	ID No.
Isobutanol	129	1212	Isocyanates, poisonous,	155	3080
Isobutyl acetate	129	1213	flammable, n.o.s.		
Isobutyl acrylate, stabilized	129P	2527	Isocyanates, poisonous, n.o.s	. 155	2206
Isobutyl alcohol	129	1212	Isocyanates, toxic, flammable n.o.s.	, 155	3080
Isobutyl aldehyde	130	2045	Isocyanates, toxic, n.o.s.	155	2206
Isobutylamine	132	1214	Isocyanatobenzotrifluorides	156	2285
Isobutyl chloroformate	155	2742	Isoheptenes	128	2287
Isobutylene	115	1055	Isohexenes	128	2288
Isobutylene	115	1075	Isooctane	128	1262
Isobutyl formate	129	2393	Isooctenes	128	1216
IsobutyI isobutyrate	130	2528	Isopentane	128	1265
Isobutyl isocyanate	155P	2486	Isopentenes	128	2371
Isobutyl methacrylate, stabilized	130P	2283	Isophoronediamine	153	2289
Isobutyl propionate	129	2394	Isophorone diisocyanate	156	2290
Isobutyraldehyde	130	2045	Isoprene, stabilized	130P	1218
Isobutyric acid	132	2529	Isopropanol	129	1219
Isobutyronitrile	131	2284	Isopropenyl acetate	129P	2403
Isobutyryl chloride	132	2395	Isopropenylbenzene	128	2303
Isocyanate solution,	155	2478	Isopropyl acetate	129	1220
flammable, poisonous, n.o	.s.		Isopropyl acid phosphate	153	1793
Isocyanate solution, flammable, toxic, n.o.s.	155	2478	Isopropyl alcohol	129	1219
Isocyanate solution,	155	3080	Isopropylamine	132	1221
poisonous, flammable, n.o		0000	Isopropylbenzene	130	1918
Isocyanate solution,	155	2206	Isopropyl butyrate	129	2405
poisonous, n.o.s.	455	2000	Isopropyl chloroacetate	155	2947
Isocyanate solution, toxic, flammable, n.o.s.	155	3080	Isopropyl chloroformate	155	2407
Isocyanate solution, toxic,	155	2206	Isopropyl 2-chloropropionate	129	2934
n.o.s.	455	0.470	Isopropyl isobutyrate	127	2406
Isocyanates, flammable, poisonous, n.o.s.	155	2478	Isopropyl isocyanate Isopropyl nitrate	155P 130	24831222
Isocyanates, flammable, toxi	c, 155	2478	Isopropyl mitate	129	2409
n.o.s.			Isosorbide dinitrate mixture	133	2907
			150501blue dilititate illixture		2907

Name of Material	Guide No.	D No.	Name of Material Guide No.	∍ ID No.
Isosorbide-5-mononitrate	133	3251	Liquefied gas, flammable, 115	3161
Kerosene	128	1223	n.o.s.	
Ketones, liquid, n.o.s.	127	1224	Liquefied gas, n.o.s. 126	3163
Krill meal	133	3497	Liquefied gas, oxidizing, n.o.s. 122	3157
Krypton	120	1056	Liquefied gas, poisonous, corrosive, n.o.s.	3308
Krypton, compressed	120	1056	Liquefied gas, poisonous, 125	3308
Krypton, refrigerated liquid (cryogenic liquid)	120	1970	corrosive, n.o.s. (Inhalation Hazard Zone A)	
L (Lewisite)	153		Liquefied gas, poisonous, 125 corrosive, n.o.s. (Inhalation	3308
Lead acetate	151	1616	Hazard Zone B)	
Lead arsenates	151	1617	Liquefied gas, poisonous, 125	3308
Lead arsenites	151	1618	corrosive, n.o.s. (Inhalation Hazard Zone C)	
Lead compound, soluble, n.c	.s. 151	2291	Liquefied gas, poisonous, 125	3308
Lead cyanide	151	1620	corrosive, n.o.s. (Inhalation Hazard Zone D)	
Lead dioxide	140	1872	Liquefied gas, poisonous, 119	3309
Lead nitrate	141	1469	flammable, corrosive, n.o.s.	
Lead perchlorate, solid	141	1470	Liquefied gas, poisonous, 119 flammable, corrosive, n.o.s.	3309
Lead perchlorate, solution	141	3408	(Inhalation Hazard Zone A)	
Lead phosphite, dibasic	133	2989	Liquefied gas, poisonous, 119	3309
Lead sulfate, with more than 3% free acid	154	1794	flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	
Lead sulphate, with more tha 3% free acid	an 154	1794	Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	3309
Lewisite	153		Liquefied gas, poisonous, 119	3309
Life-saving appliances, not self-inflating	171	3072	flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	
Life-saving appliances, self- inflating	171	2990	Liquefied gas, poisonous, 119 flammable, n.o.s.	3160
Lighter refills containing flammable gas	115	1057	Liquefied gas, poisonous, flammable, n.o.s. (Inhalation	3160
Lighters containing flammab gas	le 115	1057	Hazard Zone A) Liquefied gas, poisonous, 119	3160
Lighters, non-pressurized, containing flammable liqui	128	1057	flammable, n.o.s. (Inhalation Hazard Zone B)	

Name of Material G	uide No.	ID No.		uide No.	ID No.
Liquefied gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone C)	119	3160	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone C)	124	3307
Liquefied gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone D)	119	3160	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone D)	124	3307
Liquefied gas, poisonous, n.o.s.	123	3162	Liquefied gas, toxic, corrosive, n.o.s.	125	3308
Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone A)	123	3162	Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone A)	125	3308
Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone B)	123	3162	Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone B)	125	3308
Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone C)	123	3162	Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone C)	125	3308
Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone D)	123	3162	Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone D)	125	3308
Liquefied gas, poisonous, oxidizing, corrosive, n.o.s.	124	3310	Liquefied gas, toxic, flammable, corrosive, n.o.s.	119	3309
Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	124	3310	Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	119	3309
Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	124	3310	Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	119	3309
Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)	124	3310	Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	119	3309
Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)	124	3310	Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	119	3309
Liquefied gas, poisonous, oxidizing, n.o.s.	124	3307	Liquefied gas, toxic, flammable, n.o.s.	119	3160
Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone A)	124	3307	Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone A)	119	3160
Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone B)	124	3307	Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone B)	119	3160

Name of Material	uide No.	ID No.	Name of Material G	uide No.	ID No.
Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone C)	119	3160	Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone D)	124	3307
Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone D)	119	3160	Liquefied gases, non- flammable, charged with Nitrogen, Carbon dioxide or Air	120	1058
Liquefied gas, toxic, n.o.s. Liquefied gas, toxic, n.o.s.	123 123	3162 3162	Liquefied natural gas (cryogenic liquid)	115	1972
(Inhalation Hazard Zone A) Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone B)	123	3162	Liquefied petroleum gas	115 138	1075 1415
Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone C)	123	3162	Lithium aluminum hydride Lithium aluminum hydride,	138 138	1410 1411
Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone D)	123	3162	ethereal Lithium batteries	138	3090
Liquefied gas, toxic, oxidizing, corrosive, n.o.s.		3310	Lithium batteries contained in equipment	138	3091
Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	124	3310	Lithium batteries installed in cargo transport unit (lithium ion batteries)	147	3536
Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	124	3310	Lithium batteries installed in cargo transport unit (lithium metal batteries)	138	3536
Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)	124	3310	Lithium batteries packed with equipment	138	3091
Liquefied gas, toxic, oxidizing,	124	3310	Lithium borohydride	138	1413
corrosive, n.o.s. (Inhalation Hazard Zone D)			Lithium ferrosilicon	139	2830
Liquefied gas, toxic, oxidizing,	124	3307	Lithium hydride	138	1414
n.o.s.	424	2207	Lithium hydride, fused solid	138 154	2805 2680
Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard	124	3307	Lithium hydroxide Lithium hydroxide, solution	154	2679
Zone A)	404	2207	Lithium hypochlorite, dry	140	1471
Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard	124	3307	Lithium hypochlorite mixture	140	1471
Zone B) Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard	124	3307	Lithium hypochlorite mixtures, dry	140	1471
Zone C)			Lithium ion batteries (including lithium ion polymer batteries)	147	3480

Name of Material	Guide No.	D No.	Name of Material	Guide No.	ID No.
Lithium ion batteries contair in equipment (including lithium ion polymer	ned 147	3481	Magnesium alloys, with more than 50% Magnesium, in pellets, turnings or ribbons	138	1869
batteries)	147	3481	Magnesium alloys powder	138	1418
Lithium ion batteries packed with equipment (including lithium ion polymer batteries)		3401	Magnesium aluminum phosphide	139	1419
Lithium metal batteries	138	3090	Magnesium arsenate	151	1622
(including lithium alloy	100	0000	Magnesium bromate	140	1473
batteries)	400	2004	Magnesium chlorate	140	2723
Lithium metal batteries contained in equipment (including lithium alloy	138	3091	Magnesium chloride and Chlorate mixture, solid	140	1459
batteries)		0004	Magnesium chloride and Chlorate mixture, solution	140	3407
Lithium metal batteries pack with equipment (including		3091	Magnesium diamide	135	2004
lithium alloy batteries)			Magnesium diphenyl	135	2005
Lithium nitrate	140	2722	Magnesium fluorosilicate	151	2853
Lithium nitride	139	2806	Magnesium granules, coated	138	2950
Lithium peroxide	143	1472	Magnesium hydride	138	2010
Lithium silicon	138	1417	Magnesium nitrate	140	1474
LNG (cryogenic liquid)	115	1972	Magnesium perchlorate	140	1475
London purple	151	1621	Magnesium peroxide	140	1476
LPG	115	1075	Magnesium phosphide	139	2011
Machinery, fuel cell, flamma gas powered	ble 115	3529	Magnesium powder	138	1418
Machinery, fuel cell, flamma	hle 128	3528	Magnesium silicide	138	2624
liquid powered	.510 120	0020	Magnetized material	171	2807
Machinery, internal combust	tion 171	3530	Maleic anhydride	156	2215
Machinery, internal	115	3529	Maleic anhydride, molten	156	2215
combustion, flammable gapowered	as		Malononitrile	153	2647
Machinery, internal	128	3528	Maneb	135	2210
combustion, flammable lic	quid		Maneb, stabilized	135	2968
Magnesium	138	1869	Maneb preparation, stabilized	135	2968
Magnesium, in pellets, turni or ribbons		1869	Maneb preparation, with not less than 60% Maneb	135	2210
Magnesium alkyls	135	3053	Manganese nitrate	140	2724

Name of Material	Guide No.	e ID No.	Name of Material G	uide No.	No.
Manganese resinate	133	1330	Mercaptans, liquid, poisonous,	131	3071
Matches, fusee	133	2254	flammable, n.o.s.		0074
Matches, safety	133	1944	Mercaptans, liquid, toxic, flammable, n.o.s.	131	3071
Matches, "strike anywhere"	133	1331	Mercuric arsenate	151	1623
Matches, wax "vesta"	133	1945	Mercuric chloride	154	1624
MD	152		Mercuric nitrate	141	1625
Medical waste, category A, affecting animals only, sol	158	3549	Mercuric potassium cyanide	157	1626
Medical waste, category A,	158	3549	Mercurous nitrate	141	1627
affecting humans, solid	100	00+0	Mercury	172	2809
Medical waste, n.o.s.	158	3291	Mercury acetate	151	1629
Medicine, liquid, flammable,	131	3248	Mercury ammonium chloride	151	1630
poisonous, n.o.s. Medicine, liquid, flammable,	131	3248	Mercury based pesticide, liquid, flammable, poisonous	131	2778
toxic, n.o.s. Medicine, liquid, poisonous,	151	1851	Mercury based pesticide, liquid, flammable, toxic	131	2778
n.o.s. Medicine, liquid, toxic, n.o.s.	151	1851	Mercury based pesticide, liquid, poisonous	151	3012
Medicine, solid, poisonous, n.o.s.	151	3249	Mercury based pesticide, liquid, poisonous, flammable	131	3011
Medicine, solid, toxic, n.o.s.	151	3249	Mercury based pesticide,	151	3012
Mercaptan mixture, liquid, flammable, n.o.s.	130	3336	liquid, toxic Mercury based pesticide,	131	3011
Mercaptan mixture, liquid, flammable, poisonous, n.o	131	1228	liquid, toxic, flammable Mercury based pesticide, solid,	151	2777
Mercaptan mixture, liquid,	131	1228	poisonous		2111
flammable, toxic, n.o.s.			Mercury based pesticide, solid, toxic	, 151	2777
Mercaptan mixture, liquid, poisonous, flammable, n.o	131 .s.	3071	Mercury benzoate	154	1631
Mercaptan mixture, liquid,	131	3071	Mercury bromides	154	1634
toxic, flammable, n.o.s.			Mercury compound, liquid,	151	2024
Mercaptans, liquid, flammabl n.o.s.	e, 130	3336	n.o.s.	454	2025
Mercaptans, liquid, flammabl poisonous, n.o.s.	e, 131	1228	Mercury compound, solid, n.o.s.	151	2025
Mercaptans, liquid, flammabl	e, 131	1228	Mercury contained in manufactured articles	172	3506
toxic, n.o.s.			Mercury cyanide	154	1636

Name of Material	Guide No.	ID No.	Name of Material	Suide No.	ID No.
Mercury gluconate	151	1637	Methacrylonitrile, stabilized	131P	3079
Mercury iodide	151	1638	Methallyl alcohol	129	2614
Mercury nucleate	151	1639	Methane	115	1971
Mercury oleate	151	1640	Methane, compressed	115	1971
Mercury oxide	151	1641	Methane, refrigerated liquid	115	1972
Mercury oxycyanide, desensitized	151	1642	(cryogenic liquid) Methane and Hydrogen	115	2034
Mercury potassium iodide	151	1643	mixture, compressed		
Mercury salicylate	151	1644	Methanesulfonyl chloride	156	3246
Mercury sulfate	151	1645	Methanesulphonyl chloride	156	3246
Mercury sulphate	151	1645	Methanol	131	1230
Mercury thiocyanate	151	1646	Methoxymethyl isocyanate	155	2605
Mesityl oxide	129	1229	4-Methoxy-4-methylpentan- 2-one	128	2293
Metal carbonyls, liquid, n.o.s	. 151	3281	1-Methoxy-2-propanol	129	3092
Metal carbonyls, solid, n.o.s.	151	3466	Methyl acetate	129	1231
Metal catalyst, dry	135	2881	Methylacetylene and	116P	1060
Metal catalyst, wetted	170	1378	Propadiene mixture, stabilized		
Metaldehyde	133	1332	Methyl acrylate, stabilized	129P	1919
Metal hydrides, flammable, n.o.s.	170	3182	Methylal	127	1234
Metal hydrides, water-reactiv	e, 138	1409	Methyl alcohol	131	1230
n.o.s.			Methylallyl chloride	130P	2554
Metallic substance, water- reactive, n.o.s.	138	3208	Methylamine, anhydrous	118	1061
Metallic substance, water-	138	3209	Methylamine, aqueous solution	1 132	1235
reactive, self-heating, n.o.			Methylamyl acetate	130	1233
Metal powder, flammable, n.o.s.	170	3089	Methylamyl alcohol	129	2053
Metal powder, self-heating,	135	3189	Methyl amyl ketone	127	1110
n.o.s.	100	0100	N-Methylaniline	153	2294
Metal salts of organic compounds, flammable,	133	3181	Methylbenzyl (alpha) alcohol, liquid	153	2937
n.o.s.	. 4045	0000	Methylbenzyl (alpha) alcohol, solid	153	3438
Methacrylaldehyde, stabilize		2396	Methyl bromide	123	1062
Methacrylic acid, stabilized	153P	2531	wietny bronnide	120	1002
				_	400

Name of Material	Guide No.	No.	Name of Material	Suide No.	No.
Methyl bromide and Chloropicrin mixture	123	1581	Methyl ethyl ketone 2-Methyl-5-ethylpyridine	127 153	1193 2300
Methyl bromide and Ethylene dibromide mixture, liquid	151	1647	Methyl fluoride	115	2454
Methyl bromoacetate	155	2643	Methyl formate	129	1243
2-Methylbutanal	129	3371	2-Methylfuran	128	2301
3-Methylbutan-2-one	127	2397	2-Methyl-2-heptanethiol	131	3023
2-Methyl-1-butene	128	2459	5-Methylhexan-2-one	127	2302
2-Methyl-2-butene	128	2460	Methylhydrazine	131	1244
3-Methyl-1-butene	128	2561	Methyl iodide	151	2644
N-Methylbutylamine	132	2945	Methyl isobutyl carbinol	129	2053
Methyl tert-butyl ether	127	2398	Methyl isobutyl ketone	127	1245
Methyl butyrate	129	1237	Methyl isocyanate	155P	2480
Methyl chloride	115	1063	Methyl isopropenyl ketone, stabilized	127P	1246
Methyl chloride and Chloropicrin mixture	119	1582	Methyl isothiocyanate	131	2477
Methyl chloride and Methyler	ne 115	1912	Methyl isovalerate	130	2400
chloride mixture Methyl chloroacetate	155	2295	Methyl magnesium bromide in Ethyl ether	138	1928
Methyl chloroformate	155	1238	Methyl mercaptan	117	1064
Methyl chloromethyl ether	131	1239	Methyl methacrylate monomer stabilized	, 129P	1247
Methyl 2-chloropropionate	129	2933	4-Methylmorpholine	132	2535
Methylchlorosilane	119	2534	N-Methylmorpholine	132	2535
Methylcyclohexane	128	2296	Methyl nitrite	116	2455
Methylcyclohexanols	129	2617	Methyl orthosilicate	155	2606
Methylcyclohexanone	128	2297	Methylpentadiene	128	2461
Methylcyclopentane	128	2298	2-Methylpentan-2-ol	129	2560
Methyl dichloroacetate	155	2299	Methylphenyldichlorosilane	156	2437
Methyldichloroarsine	152	1556	Methyl phosphonic dichloride	137	9206
Methyldichlorosilane	139	1242	Methyl phosphonous dichlorid		2845
Methylene chloride	160	1593	1-Methylpiperidine	132	2399
Methylene chloride and Meth chloride mixture	yl 115	1912	Methyl propionate	129	1248
Methyl ethyl ether	115	1039	Methyl propyl ether	127	2612
Page 130					

Name of Material	Guide No.	D No.	Name of Material	Suide No.	ID No.
Methyl propyl ketone	127	1249	Natural gas, refrigerated liquid	115	1972
Methyltetrahydrofuran	127	2536	(cryogenic liquid)		
Methyl trichloroacetate	156	2533	Neohexane 	128	1208
Methyltrichlorosilane	155	1250	Neon	120	1065
Methyl valeraldehyde (alpha)	130	2367	Neon, compressed	120	1065
Methyl vinyl ketone, stabilized	131P	1251	Neon, refrigerated liquid (cryogenic liquid)	120	1913
Molten sulfur	133	2448	Nickel carbonyl	131	1259
Molten sulphur	133	2448	Nickel catalyst, dry	135	2881
Molybdenum pentachloride	156	2508	Nickel cyanide	151	1653
Monoethanolamine	153	2491	Nickel nitrate	140	2725
Mononitrotoluidines	153	2660	Nickel nitrite	140	2726
Morpholine	132	2054	Nicotine	151	1654
Motor fuel anti-knock mixture	152	1649	Nicotine compound, liquid,	151	3144
Motor fuel anti-knock mixture, flammable	131	3483	n.o.s. Nicotine compound, solid,	151	1655
Motor spirit	128	1203	n.o.s.		
Motor spirit and ethanol	127	3475	Nicotine hydrochloride, liquid	151	1656
mixture, with more than 109 ethanol	/o		Nicotine hydrochloride, solid	151	3444
Muriatic acid	157	1789	Nicotine hydrochloride, solution	151	1656
Musk xylene	149	2956	Nicotine preparation, liquid,	151	3144
Mustard	153		n.o.s.		
Mustard Lewisite	153	—	Nicotine preparation, solid, n.o.s.	151	1655
Naphthalene, crude	133	1334	Nicotine salicylate	151	1657
Naphthalene, molten	133	2304	Nicotine sulfate, solid	151	3445
Naphthalene, refined	133	1334	Nicotine sulfate, solution	151	1658
Naphthylamine (alpha)	153	2077	Nicotine sulphate, solid	151	3445
Naphthylamine (beta), solid	153	1650	Nicotine sulphate, solution	151	1658
Naphthylamine (beta), solutio	n 153	3411	Nicotine tartrate	151	1659
Naphthylthiourea	153	1651	Nitrates, inorganic, aqueous	140	3218
Naphthylurea	153	1652	solution, n.o.s.		,
Natural gas, compressed	115	1971	Nitrates, inorganic, n.o.s.	140	1477

Name of Material	Guide No.	No.	Name of Material G	euid€ No.	No.
Nitrating acid mixture with more than 50% nitric acid	157	1796	Nitriles, toxic, flammable, n.o.s.	131	3275
Nitrating acid mixture with not more than 50% nitric	157	1796	Nitriles, toxic, liquid, n.o.s.	151	3276
acid			Nitriles, toxic, solid, n.o.s.	151	3439
Nitrating acid mixture, spent, with more than 50%	157	1826	Nitrites, inorganic, aqueous solution, n.o.s.	140	3219
nitric acid	457	1826	Nitrites, inorganic, n.o.s.	140	2627
Nitrating acid mixture, spent, with not more than 50%	157	1020	Nitroanilines	153	1661
nitric acid			Nitroanisoles, liquid	152	2730
Nitric acid, other than red fuming, with more than 65%	157	2031	Nitroanisoles, solid	152	3458
nitric acid			Nitrobenzene	152	1662
Nitric acid, other than red fuming, with not more than	157	2031	Nitrobenzenesulfonic acid	153	2305
65% nitric acid			Nitrobenzenesulphonic acid	153	2305
Nitric acid, red fuming	157	2032	Nitrobenzotrifluorides, liquid	152	2306
Nitric oxide	124	1660	Nitrobenzotrifluorides, solid	152	3431
Nitric oxide, compressed	124	1660	Nitrobromobenzenes, liquid	152	2732
Nitric oxide and Dinitrogen	124	1975	Nitrobromobenzenes, solid	152	3459
tetroxide mixture	404	4075	Nitrocellulose membrane filter		3270
Nitric oxide and Nitrogen dioxide mixture	124	1975	Nitrocellulose mixture, without pigment	133	2557
Nitriles, flammable, poisonous n.o.s.	s, 131	3273	Nitrocellulose mixture, without plasticizer	133	2557
Nitriles, flammable, toxic, n.o.s.	131	3273	Nitrocellulose mixture, with pigment	133	2557
Nitriles, liquid, poisonous, n.o.s.	151	3276	Nitrocellulose mixture, with plasticizer	133	2557
Nitriles, liquid, toxic, n.o.s.	151	3276	Nitrocellulose, solution, flammable	127	2059
Nitriles, poisonous, flammable n.o.s.	e, 131	3275	Nitrocellulose with alcohol, not less than 25% alcohol	113	2556
Nitriles, poisonous, liquid, n.o.s.	151	3276	Nitrocellulose with water, not	113	2555
Nitriles, poisonous, solid, n.o.s.	151	3439	less than 25% water 3-Nitro-4-chlorobenzotrifluorid	e 152	2307
Nitriles, solid, poisonous,	151	3439	Nitrocresols, liquid	153	3434
n.o.s.			Nitrocresols, solid	153	2446
Nitriles, solid, toxic, n.o.s.	151	3439			_

Name of Material	Guide No.	D No.	Name of Material	Guide No.	ID No.
Nitroethane	129	2842	Nitropropanes	129	2608
Nitrogen	120	1066	p-Nitrosodimethylaniline	135	1369
Nitrogen, compressed	120	1066	Nitrostarch, wetted with not	113	1337
Nitrogen, refrigerated liquid	120	1977	less than 20% water	405	1000
(cryogenic liquid)			Nitrosyl chloride	125	1069
Nitrogen dioxide	124	1067	Nitrosylsulfuric acid, liquid	157	2308
Nitrogen dioxide and Nitric oxide mixture	124	1975	Nitrosylsulfuric acid, solid	157	3456
Nitrogen trifluoride	122	2451	Nitrosylsulphuric acid, liquid	157	2308
Nitrogen trifluoride,	122	2451	Nitrosylsulphuric acid, solid	157	3456
compressed			Nitrotoluenes, liquid	152	1664
Nitrogen trioxide	124	2421	Nitrotoluenes, solid	152	3446
Nitroglycerin, solution in	127	3064	Nitrotoluidines (mono)	153	2660
alcohol, with more than 1% but not more than 5%			Nitrous oxide	122	1070
Nitroglycerin			Nitrous oxide, compressed	122	1070
Nitroglycerin, solution in alcohol, with not more tha 1% Nitroglycerin	127 n	1204	Nitrous oxide, refrigerated liquid	122	2201
Nitroglycerin mixture, desensitized, liquid,	113	3343	Nitrous oxide and Carbon dioxide mixture	126	1015
flammable, n.o.s., with no			Nitroxylenes, liquid	152	1665
more than 30% Nitroglyce		0057	Nitroxylenes, solid	152	3447
Nitroglycerin mixture, desensitized, liquid, n.o.s.	113	3357	Nonanes	128	1920
with not more than 30%	,		Nonyltrichlorosilane	156	1799
Nitroglycerin	113	3319	2,5-Norbornadiene, stabilized	128P	2251
Nitroglycerin mixture, desensitized, solid, n.o.s.	,	3313	Octadecyltrichlorosilane	156	1800
with more than 2% but not more than 10% Nitroglyce			Octadiene	128P	2309
Nitroguanidine, wetted with r		1336	Octafluorobut-2-ene	126	2422
less than 20% water	101 110	1000	Octafluorocyclobutane	126	1976
Nitrohydrochloric acid	157	1798	Octafluoropropane	126	2424
Nitromethane	129	1261	Octanes	128	1262
Nitronaphthalene	133	2538	Octyl aldehydes	129	1191
Nitrophenols	153	1663	Octyltrichlorosilane	156	1801
4-Nitrophenylhydrazine, with	113	3376	Oil, petroleum	128	1270
not less than 30% water			Oil gas	119	1071

Name of Material G	Puide No.	No.		iide lo.	ID No.
Oil gas, compressed Organic peroxide type B, liquid	119	1071 3101	Organic phosphate mixed with 1 compressed gas	23	1955
Organic peroxide type B, liquid, temperature	148	3111	Organic phosphorus compound 1 mixed with compressed gas	23	1955
controlled			Organic pigments, self-heating 1		3313
Organic peroxide type B, solid		3102	Organoarsenic compound, 1 liquid, n.o.s.	51	3280
Organic peroxide type B, solid, temperature controlled	, 148	3112	- 3	51	3465
Organic peroxide type C, liquic	146	3103	solid, n.o.s.	0.4	0700
Organic peroxide type C, liquid, temperature	148	3113	liquid, flammable, poisonous	31	2762
controlled Organic peroxide type C, solid	146	3104	Organochlorine pesticide, 1 liquid, flammable, toxic	31	2762
Organic peroxide type C, solid, temperature controlled	148	3114	Organochlorine pesticide, 1 liquid, poisonous	51	2996
Organic peroxide type D, liquic		3105	Organochlorine pesticide, 1 liquid, poisonous, flammable	31	2995
Organic peroxide type D, liquid, temperature controlled	148	3115	Organochlorine pesticide, 1 liquid, toxic	51	2996
Organic peroxide type D, solid	145	3106	Organochlorine pesticide, 1 liquid, toxic, flammable	31	2995
Organic peroxide type D, solid, temperature controlled	148	3116	Organochlorine pesticide, 1 solid, poisonous	51	2761
Organic peroxide type E, liquid	145	3107	g	51	2761
Organic peroxide type E, liquid, temperature	148	3117	solid, toxic	E4	3282
controlled			Organometallic compound, 1 liquid, poisonous, n.o.s.	51	3202
Organic peroxide type E, solid		3108 3118	Organometallic compound, 1 liquid, toxic, n.o.s.	51	3282
Organic peroxide type E, solid, temperature controlled	, 140	3110	Organometallic compound, 1	51	3282
Organic peroxide type F, liquid	145	3109	poisonous, liquid, n.o.s.	E4	2467
Organic peroxide type F, liquid, temperature controlled	148	3119	poisonous, solid, n.o.s.	51	3467
Organic peroxide type F, solid	145	3110	Organometallic compound, 1 solid, poisonous, n.o.s.	51	3467
Organic peroxide type F, solid, temperature controlled		3120	Organometallic compound, 1 solid, toxic, n.o.s.	51	3467
Organic phosphate compound mixed with compressed gas	123	1955	Organometallic compound, toxic, liquid, n.o.s.	51	3282

Name of Material	Guide No.	D No.		uide No.	D No.
Organometallic compound, toxic, solid, n.o.s.	151	3467	Organophosphorus compound, toxic, flammable, n.o.s.	131	3279
Organometallic substance, liquid, pyrophoric	135	3392	Organophosphorus compound, toxic, liquid, n.o.s.	151	3278
Organometallic substance, liquid, pyrophoric, water- reactive	135	3394	Organophosphorus compound, toxic, solid, n.o.s.	151	3464
Organometallic substance, liquid, water-reactive	135	3398	Organophosphorus pesticide, liquid, flammable, poisonous	131	2784
Organometallic substance, liquid, water-reactive,	138	3399	Organophosphorus pesticide, liquid, flammable, toxic	131	2784
flammable	425	2204	Organophosphorus pesticide, liquid, poisonous	152	3018
Organometallic substance, solid, pyrophoric	135	3391	Organophosphorus pesticide, liquid, poisonous, flammable	131	3017
Organometallic substance, solid, pyrophoric, water-reactive	135	3393	Organophosphorus pesticide, liquid, toxic	152	3018
Organometallic substance, solid, self-heating	138	3400	Organophosphorus pesticide, liquid, toxic, flammable	131	3017
Organometallic substance, solid, water-reactive	135	3395	Organophosphorus pesticide, solid, poisonous	152	2783
Organometallic substance, solid, water-reactive,	138	3396	Organophosphorus pesticide, solid, toxic	152	2783
flammable Organometallic substance,	138	3397	Organotin compound, liquid, n.o.s.	153	2788
solid, water-reactive, self- heating			Organotin compound, solid, n.o.s.	153	3146
Organophosphorus compour liquid, poisonous, n.o.s.	id, 151	3278	Organotin pesticide, liquid, flammable, poisonous	131	2787
Organophosphorus compour liquid, toxic, n.o.s.	id, 151	3278	Organotin pesticide, liquid, flammable, toxic	131	2787
Organophosphorus compour poisonous, flammable, n.c		3279	Organotin pesticide, liquid, poisonous	153	3020
Organophosphorus compour poisonous, liquid, n.o.s.	id, 151	3278	Organotin pesticide, liquid, poisonous, flammable	131	3019
Organophosphorus compour poisonous, solid, n.o.s.	id, 151	3464	Organotin pesticide, liquid, toxic	153	3020
Organophosphorus compour solid, poisonous, n.o.s.	id, 151	3464	Organotin pesticide, liquid, toxic, flammable	131	3019
Organophosphorus compour solid, toxic, n.o.s.	id, 151	3464	Organotin pesticide, solid, poisonous	153	2786

Name of Material	Guide No.	D No.	Name of Material G	uide No.	D No.
Organotin pesticide, solid, toxic	153	2786	Packagings discarded, empty, uncleaned	171	3509
Osmium tetroxide	154	2471	Paint (corrosive)	153	3066
Other regulated substances,	171	3082	Paint, corrosive, flammable	132	3470
liquid, n.o.s.	171	3077	Paint (flammable)	128	1263
Other regulated substances, solid, n.o.s.	171	3011	Paint, flammable, corrosive	132	3469
Oxidizing liquid, corrosive, n.o.s.	140	3098	Paint related material (corrosive)	153	3066
Oxidizing liquid, n.o.s.	140	3139	Paint related material, corrosive, flammable	132	3470
Oxidizing liquid, poisonous, n.o.s.	142	3099	Paint related material (flammable)	128	1263
Oxidizing liquid, toxic, n.o.s.	142	3099	Paint related material,	132	3469
Oxidizing solid, corrosive, n.o.s.	140	3085	flammable, corrosive		
Oxidizing solid, flammable,	140	3137	Paper, unsaturated oil treated	133	1379
n.o.s.			Paraformaldehyde	133	2213
Oxidizing solid, n.o.s.	140	1479	Paraldehyde	129	1264
Oxidizing solid, poisonous, n.o.s.	141	3087	Parathion and compressed gas mixture	,	1967
Oxidizing solid, self-heating, n.o.s.	135	3100	PCB PD	171	2315
Oxidizing solid, toxic, n.o.s.	141	3087	Pentaborane	135	1380
Oxidizing solid, water-reactiv	e, 144	3121	Pentachloroethane	151	1669
n.o.s.	122	1072	Pentachlorophenol	154	3155
Oxygen	122	1072	Pentaerythrite tetranitrate	113	3344
Oxygen, compressed Oxygen, refrigerated liquid	122	1072	mixture, desensitized, solid, n.o.s., with more than 10%		
(cryogenic liquid)	122	1075	but not more than 20% PETN	1	
Oxygen and Carbon dioxide mixture, compressed	122	1014	Pentaerythritol tetranitrate mixture, desensitized, solid, n.o.s., with more than 10%	113	3344
Oxygen difluoride	124	2190	but not more than 20% PETN	1	
Oxygen difluoride, compress	ed 124	2190	Pentafluoroethane	126	3220
Oxygen generator, chemical	140	3356	Pentafluoroethane and Ethylene oxide mixture, with	126	3298
Oxygen generator, chemical, spent	140	3356	not more than 7.9% Ethylene oxide		
			Pentamethylheptane	128	2286

Name of Material	euide No.	ID No.	Name of Material	∋uide No.	ID No.
Pentane-2,4-dione	131	2310	Pesticide, liquid, flammable,	131	3021
Pentanes	128	1265	poisonous, n.o.s.	404	2004
Pentanols	129	1105	Pesticide, liquid, flammable, toxic, n.o.s.	131	3021
1-Pentene	128	1108	Pesticide, liquid, poisonous,	131	2903
1-Pentol	153P	2705	flammable, n.o.s.		
Perchlorates, inorganic, aqueous solution, n.o.s.	140	3211	Pesticide, liquid, poisonous, n.o.s.	151	2902
Perchlorates, inorganic, n.o.s.	140	1481	Pesticide, liquid, toxic, flammable, n.o.s.	131	2903
Perchloric acid, with more than 50% but not more than 72%	143	1873	Pesticide, liquid, toxic, n.o.s.	151	2902
acid Perchloric acid, with not more	157	1802	Pesticide, solid, poisonous, n.o.s.	151	2588
than 50% acid			Pesticide, solid, toxic, n.o.s.	151	2588
Perchloroethylene	160	1897	PETN mixture, desensitized,	113	3344
Perchloromethyl mercaptan	157	1670	solid, n.o.s., with more than 10% but not more than 20%		
Perchloryl fluoride	124	3083	PETN		
Perfluoro(ethyl vinyl ether)	115	3154	Petrol	128	1203
Perfluoro(methyl vinyl ether)	115	3153	Petrol and ethanol mixture, with more than 10% ethanol	127	3475
Perfumery products, with flammable solvents	127	1266	Petroleum crude oil	128	1267
Permanganates, inorganic,	140	3214	Petroleum distillates, n.o.s.	128	1268
aqueous solution, n.o.s.	440	1482	Petroleum gases, liquefied	115	1075
Permanganates, inorganic, n.o.s.	140	1402	Petroleum oil	128	1270
Peroxides, inorganic, n.o.s.	140	1483	Petroleum products, n.o.s.	128	1268
Peroxyacetic acid and hydrogen peroxide mixture,	140	3149	Petroleum sour crude oil, flammable, poisonous	131	3494
with acid(s), water and not more than 5% Peroxyacetic acid, stabilized			Petroleum sour crude oil, flammable, toxic	131	3494
Persulfates, inorganic,	140	3216	Phenacyl bromide	153	2645
aqueous solution, n.o.s.			Phenetidines	153	2311
Persulfates, inorganic, n.o.s.	140	3215	Phenol, molten	153	2312
Persulphates, inorganic,	140	3216	Phenol, solid	153	1671
aqueous solution, n.o.s.	1/10	3215	Phenol solution	153	2821
Persulphates, inorganic, n.o.s.	140	JZ 1 J	Phenolates, liquid	154	2904
			Phenolates, solid	154	2905

Name of Material	uide No.	D No.	Name of Material (∋uide No.	D No.
Phenolsulfonic acid, liquid	153	1803	Phenylphosphorus thiodichloride	137	2799
Phenolsulphonic acid, liquid	153	1803	Phenyltrichlorosilane	156	1804
Phenoxyacetic acid derivative pesticide, liquid, flammable, poisonous	131	3346	Phenyl urea pesticide, liquid, poisonous	151	3002
Phenoxyacetic acid derivative pesticide, liquid, flammable, toxic	131	3346	Phenyl urea pesticide, liquid, toxic	151	3002
Phenoxyacetic acid derivative	153	3348	Phosgene	125	1076
pesticide, liquid, poisonous	100	0040	9-Phosphabicyclononanes	135	2940
Phenoxyacetic acid derivative	131	3347	Phosphine	119	2199
pesticide, liquid, poisonous, flammable			Phosphine, adsorbed	173	3525
Phenoxyacetic acid derivative	153	3348	Phosphoric acid, solid	154	3453
pesticide, liquid, toxic			Phosphoric acid, solution	154	1805
Phenoxyacetic acid derivative pesticide, liquid, toxic,	131	3347	Phosphorous acid	154	2834
flammable			Phosphorus, amorphous	133	1338
Phenoxyacetic acid derivative pesticide, solid, poisonous	153	3345	Phosphorus, white, dry or under water or in solution	136	1381
Phenoxyacetic acid derivative	153	3345	Phosphorus, white, molten	136	2447
pesticide, solid, toxic Phenylacetonitrile, liquid	152	2470	Phosphorus, yellow, dry or under water or in solution	136	1381
Phenylacetyl chloride	156	2577	Phosphorus heptasulfide,	139	1339
Phenylcarbylamine chloride	151	1672	free from yellow and white Phosphorus		
Phenyl chloroformate	156	2746	Phosphorus heptasulphide,	139	1339
Phenylenediamines	153	1673	free from yellow and white Phosphorus		
Phenylhydrazine	153	2572	Phosphorus oxybromide,	137	2576
Phenyl isocyanate	155	2487	molten		
Phenyl mercaptan	131	2337	Phosphorus oxybromide, solid	137	1939
Phenylmercuric acetate	151	1674	Phosphorus oxychloride	137	1810
Phenylmercuric compound,	151	2026	Phosphorus pentabromide	137	2691
n.o.s.			Phosphorus pentachloride	137	1806
Phenylmercuric hydroxide	151	1894	Phosphorus pentafluoride	125	2198
Phenylmercuric nitrate	151	1895	Phosphorus pentafluoride,	173	3524
Phenylphosphorus dichloride	137	2798	adsorbed Phosphorus pentafluoride, compressed	125	2198

Name of Mate	erial	Guide No.	ID No.		ame o	f Materi	al (∋uide No.	ID No.
Phosphorus pentas free from yellow Phosphorus		139	1340	l_	self-heati	rocellulose ing, n.o.s.			2006
Phosphorus pentas free from yellow Phosphorus		139	1340	Po	corrosive	oy inhalatio , flammable on Hazard Z	e, n.o.s.		3492
Phosphorus pentox	ide	137	1807	Po	corrosive	oy inhalatio , flammable on Hazard Z	e, n.o.s.		3493
Phosphorus sesquis free from yellow Phosphorus		139	1341	Po	` pisonous k corrosive	oy inhalatio , n.o.s. (Inh	n liquid	, 154	3389
Phosphorus sesquis free from yellow Phosphorus	sulphide, and white	139	1341	Po	corrosive	oy inhalatio , n.o.s. (Inh			3390
Phosphorus tribrom	ide	137	1808	D	Hazard Z		n liauid	121	3488
Phosphorus trichlor Phosphorus trioxide		137 157	1809 2578	F (flammabl	oy inhalatio e, corrosive on Hazard Z	e, n.o.s.		3400
Phosphorus trisulfic from yellow and v Phosphorus	de, free	139	1343	Po	flammabl	oy inhalatio e, corrosive on Hazard Z	e, n.o.s.		3489
Phosphorus trisulph from yellow and v Phosphorus		139	1343	Po		oy inhalatio e, n.o.s. (In one A)			3383
Phthalic anhydride		156	2214	Po		oy inhalatio			3384
Picolines		129	2313		Hazard Z	e, n.o.s. (In one B)	maialio	П	
Picric acid, wetted less than 10% wa		113	3364	Po	n.o.s. (In	oy inhalatio halation Ha	n liquid zard	, 151	3381
Picric acid, wetted less than 30% wa		113	1344	Po		y inhalatio		, 151	3382
Picrite, wetted with than 20% water	not less	113	1336		Zone B)	halation Ha			
Picryl chloride, wet less than 10% wa		ot 113	3365	Po		oy inhalatio , n.o.s. (Inh one A)		, 142	3387
Pinene (alpha)		128	2368	Po	oisonous k	oy inhalatio	n liquid	, 142	3388
Pine oil		129	1272		oxidizing Hazard Z	, n.o.s. (Inh	alation		
Piperazine		153	2579	Po		by inhalatio	n liauid	155	3490
Piperidine		132	2401		water-rea	ictive, flami	mable.	, 100	0100
Plastic molding con	npound	171	3314		n.o.s. (In Zone A)	halation Ha	zaro		
Plastics moulding c	ompound	171	3314						

Name of Material	Suide No.	No.		uide No.	No.
Poisonous by inhalation liquid water-reactive, flammable,	, 155	3491	Polyamines, liquid, corrosive, flammable, n.o.s.	132	2734
n.o.s. (Inhalation Hazard Zone B)			Polyamines, liquid, corrosive, n.o.s.	153	2735
Poisonous by inhalation liquid, water-reactive, n.o.s. (Inhalation Hazard Zone A)	139	3385	Polyamines, solid, corrosive, n.o.s.	154	3259
Poisonous by inhalation liquid, water-reactive, n.o.s. (Inhalation Hazard Zone B)	139	3386	Polychlorinated biphenyls, liquid	171	2315
Poisonous liquid, corrosive,	154	3289	Polychlorinated biphenyls, solid	171	3432
inorganic, n.o.s. Poisonous liquid, corrosive,	154	2927	Polyester resin kit, liquid base material	128	3269
organic, n.o.s. Poisonous liquid, flammable,	131	2929	Polyester resin kit, solid base material	128P	3527
organic, n.o.s. Poisonous liquid, inorganic,	151	3287	Polyhalogenated biphenyls, liquid	171	3151
n.o.s.			Polyhalogenated biphenyls, solid	171	3152
Poisonous liquid, organic, n.o.s.	153	2810	Polyhalogenated terphenyls,	171	3151
Poisonous liquid, oxidizing, n.o.s.	142	3122	liquid Polyhalogenated terphenyls,	171	3152
Poisonous liquid, water- reactive, n.o.s.	139	3123	solid Polymeric beads, expandable	171	2211
Poisonous solid, corrosive, inorganic, n.o.s.	154	3290	Polymerizing substance, liquid stabilized, n.o.s.		3532
Poisonous solid, corrosive, organic, n.o.s.	154	2928	Polymerizing substance, liquid, temperature controlled,	150P	3534
Poisonous solid, flammable, organic, n.o.s.	134	2930	n.o.s. Polymerizing substance, solid,	149P	3531
Poisonous solid, inorganic, n.o.s.	151	3288	stabilized, n.o.s. Polymerizing substance, solid,		
Poisonous solid, organic, n.o.s	s. 154	2811	temperature controlled,	1301	3333
Poisonous solid, oxidizing, n.o.s.	141	3086	Potassium	138	2257
Poisonous solid, self-heating, n.o.s.	136	3124	Potassium, metal alloys, liquid	138 138	1420 3403
Poisonous solid, water-	139	3125	Potassium, metal alloys, solid Potassium arsenate	151	1677
reactive, n.o.s. Polyamines, flammable,	132	2733	Potassium arsenite	154	1678
corrosive, n.o.s.			Potassium borohydride	138	1870

Name of Material	Guide No.	D No.	Name of Material G	uide No.	ID No.
Potassium bromate	140	1484	Potassium persulphate	140	1492
Potassium chlorate	140	1485	Potassium phosphide	139	2012
Potassium chlorate, aqueous solution	140	2427	Potassium sodium alloys, liquio		1422
Potassium cuprocyanide	157	1679	Potassium sodium alloys, solid		3404
Potassium cyanide, solid	157	1680	Potassium sulfide, anhydrous	135	1382
Potassium cyanide, solution	157	3413	Potassium sulfide, hydrated, with not less than 30% water	153	1847
Potassium dithionite	135	1929	of crystallization		
Potassium fluoride, solid	154	1812	Potassium sulfide, with less than 30% water of	135	1382
Potassium fluoride, solution	154	3422	crystallization		
Potassium fluoroacetate	151	2628	Potassium sulphide, anhydrous	135	1382
Potassium fluorosilicate	151	2655	Potassium sulphide, hydrated, with not less than 30% water		1847
Potassium hydrogen difluorio solid	de, 154	1811	of crystallization		4000
Potassium hydrogen difluorid solution	de, 154	3421	Potassium sulphide, with less than 30% water of crystallization	135	1382
Potassium hydrogen sulfate	154	2509	Potassium superoxide	143	2466
Potassium hydrogen sulphat	e 154	2509	Printing ink, flammable	129	1210
Potassium hydrosulfite	135	1929	Printing ink related material,	129	1210
Potassium hydrosulphite	135	1929	flammable	44 C D	2200
Potassium hydroxide, solid	154	1813	Propadiene, stabilized	116P	1060
Potassium hydroxide, solutio	n 154	1814	Propadiene and Methylacetylene mixture,	116P	1000
Potassium metavanadate	151	2864	stabilized		
Potassium monoxide	154	2033	Propane	115	1075
Potassium nitrate	140	1486	Propane	115	1978
Potassium nitrate and Sodiu nitrate mixture	m 140	1499	Propane-Ethane mixture, refrigerated liquid	115	1961
Potassium nitrate and Sodiu	m 140	1487	Propanethiols	130	2402
nitrite mixture			n-Propanol	129	1274
Potassium nitrite	140	1488	Propionaldehyde	129P	1275
Potassium perchlorate	140	1489	Propionic acid	153	1848
Potassium permanganate	140	1490	Propionic acid, with not less	153	1848
Potassium peroxide	144	1491	than 10% and less than 90% acid		
Potassium persulfate	140	1492		_	

Name of Material	Guide No.	ID No.	Name of Material G	euide No.	e ID No.
Propionic acid, with not less than 90% acid	153	3463	Pyrethroid pesticide, liquid, poisonous	151	3352
Propionic anhydride	156	2496	Pyrethroid pesticide, liquid, poisonous, flammable	131	3351
Propionitrile	131	2404	, ,	454	3352
Propionyl chloride	132	1815	Pyrethroid pesticide, liquid, toxic	151	3332
n-Propyl acetate	129	1276	Pyrethroid pesticide, liquid,	131	3351
Propyl alcohol, normal	129	1274	toxic, flammable		
Propylamine	132	1277	Pyrethroid pesticide, solid, poisonous	151	3349
n-Propyl benzene	128	2364	Pyrethroid pesticide, solid,	151	3349
Propyl chloride	129	1278	toxic		00.0
n-Propyl chloroformate	155	2740	Pyridine	129	1282
Propylene	115	1075	Pyrophoric alloy, n.o.s.	135	1383
Propylene	115	1077	Pyrophoric liquid, inorganic, n.o.s.	135	3194
Propylene, Ethylene and Acetylene in mixture, refrigerated liquid containir	115 ng	3138	Pyrophoric liquid, organic, n.o.s.	135	2845
at least 71.5% Ethylene with not more than 22.5%			Pyrophoric metal, n.o.s.	135	1383
Acetylene and not more tha 6% Propylene	ın		Pyrophoric solid, inorganic, n.o.s.	135	3200
Propylene chlorohydrin	131	2611	Pyrophoric solid, organic,	135	2846
1,2-Propylenediamine	132	2258	n.o.s.		
Propyleneimine, stabilized	131P	1921	Pyrosulfuryl chloride	137	1817
Propylene oxide	127P	1280	Pyrosulphuryl chloride	137	1817
Propylene oxide and Ethylene		2983	Pyrrolidine	132	1922
oxide mixture, with not mor than 30% Ethylene oxide	е		Quinoline	154	2656
Propylene tetramer	128	2850	Radioactive material, excepted package, articles	161	2911
Propyl formates	129	1281	Radioactive material,	161	2909
n-Propyl isocyanate	155P	2482	excepted package, articles manufactured from depleted		
n-Propyl nitrate	128	1865	Uranium		
Propyltrichlorosilane	155	1816	Radioactive material,	161	2909
Pyrethroid pesticide, liquid, flammable, poisonous	131	3350	excepted package, articles manufactured from natural Thorium		
Pyrethroid pesticide, liquid, flammable, toxic	131	3350			

Name of Material	Guide No.	D No.	Name of Material (∋uide No.	ID No.
Radioactive material, excepted package, articles manufactured from natural Uranium	161	2909	Radioactive material, transported under special arrangement, non fissile or fissile-excepted	163	2919
Radioactive material, excepte package, empty packaging	d 161	2908	Radioactive material, Type A package, fissile,	165	3327
Radioactive material, excepte package, instruments	d 161	2911	non-special form Radioactive material, Type A	163	2915
Radioactive material, excepte package, limited quantity o material		2910	package, non-special form, non fissile or fissile- excepted		
Radioactive material, low specific activity (LSA-I), no fissile or fissile-excepted	162 n	2912	Radioactive material, Type A package, special form, fissile	165	3333
Radioactive material, low specific activity (LSA-II), fissile	165	3324	Radioactive material, Type A package, special form, non fissile or fissile-excepted	164	3332
Radioactive material, low specific activity (LSA-II), no fissile or fissile-excepted	162	3321	Radioactive material, Type B(M) package, fissile	165	3329
Radioactive material, low specific activity (LSA-III), fissile	165	3325	Radioactive material, Type B(M) package, non fissile or fissile-excepted	163	2917
Radioactive material, low specific activity (LSA-III), non fissile or fissile-excepted	162	3322	Radioactive material, Type B(U) package, fissile	165	3328
Radioactive material, surface contaminated objects (SCO-I), fissile	165	3326	Radioactive material, Type B(U) package, non fissile or fissile-excepted	163	2916
Radioactive material, surface contaminated objects (SCO-I), non fissile or	162	2913	Radioactive material, Type C package, fissile	165	3330
fissile-excepted Radioactive material, surface	165	3326	Radioactive material, Type C package, non fissile or	163	3323
contaminated objects (SCO II), fissile			fissile excepted Radioactive material, Uranium	166	2977
Radioactive material, surface contaminated objects (SCO II), non fissile or fissile- excepted	162	2913	hexafluoride, fissile Radioactive material, Uranium hexafluoride, non fissile or fissile-excepted	166	2978
Radioactive material, transported under special arrangement, fissile	165	3331	Rags, oily	133	1856

Name of Material	Guide No.	D No.	Name of Material	Guide No.	ID No.
Receptacles, small, contain	ning 115	2037	Refrigerant gas R-218	126	2424
gas	422	1220	Refrigerant gas R-227	126	3296
Red phosphorus	133	1338	Refrigerant gas R-404A	126	3337
Refrigerant gas, n.o.s.	126	1078	Refrigerant gas R-407A	126	3338
Refrigerant gases, n.o.s. (flammable)	115	1954	Refrigerant gas R-407B	126	3339
Refrigerant gas R-12	126	1028	Refrigerant gas R-407C	126	3340
Refrigerant gas R-12B1	126	1974	Refrigerant gas R-500	126	2602
Refrigerant gas R-12B2	171	1941	Refrigerant gas R-502	126	1973
Refrigerant gas R-13	126	1022	Refrigerant gas R-503	126	2599
Refrigerant gas R-13B1	126	1009	Refrigerant gas R-1113	119P	1082
Refrigerant gas R-14	126	1982	Refrigerant gas R-1132a	116P	1959
Refrigerant gas R-14,	126	1982	Refrigerant gas R-1216	126	1858
compressed	400	4000	Refrigerant gas R-1318	126	2422
Refrigerant gas R-21	126	1029	Refrigerant gas RC-318	126	1976
Refrigerant gas R-22	126	1018	Refrigerating machines, containing Ammonia	126	2857
Refrigerant gas R-23	126	1984	solutions (UN2672)		
Refrigerant gas R-32	115	3252	Refrigerating machines,	115	3358
Refrigerant gas R-40	115	1063	containing flammable, non- poisonous, liquefied gas		
Refrigerant gas R-41	115	2454	Refrigerating machines,	115	3358
Refrigerant gas R-114	126	1958	containing flammable, non- toxic, liquefied gas		
Refrigerant gas R-115	126	1020	Refrigerating machines,	126	2857
Refrigerant gas R-116	126	2193	containing non-flammable,	120	2001
Refrigerant gas R-116, compressed	126	2193	non-poisonous gases Refrigerating machines.	126	2857
Refrigerant gas R-124	126	1021	containing non-flammable,	120	2001
Refrigerant gas R-125	126	3220	non-toxic gases		
Refrigerant gas R-133a	126	1983	Regulated medical waste, n.o.s.	158	3291
Refrigerant gas R-134a	126	3159	Resin solution	127	1866
Refrigerant gas R-142b	115	2517	Resorcinol	153	2876
Refrigerant gas R-143a	115	2035	Rosin oil	127	1286
Refrigerant gas R-152a	115	1030	Rubber scrap, powdered or	133	1345
Refrigerant gas R-161	115	2453	granulated		
Dogo 144					

Name of Material	euide No.	D No.	Name of Material G	uide No.	ID No.
Rubber shoddy, powdered or granulated	133	1345	Self-heating liquid, poisonous, inorganic, n.o.s.	136	3187
Rubber solution	127	1287	Self-heating liquid, poisonous, organic, n.o.s.	136	3184
Rubidium	138	1423		136	3187
Rubidium hydroxide, solid	154	2678	Self-heating liquid, toxic, inorganic, n.o.s.	130	3101
Rubidium hydroxide, solution	154	2677	Self-heating liquid, toxic,	136	3184
SA	119		organic, n.o.s.		
Safety devices	171	3268	Self-heating solid, corrosive, inorganic, n.o.s.	136	3192
Sarin	153		Self-heating solid, corrosive,	136	3126
Seat-belt pre-tensioners	171	3268	organic, n.o.s.		
Seed cake, with more than 1.5% oil and not more than 11% moisture	135	1386	Self-heating solid, inorganic, n.o.s.	135	3190
Seed cake, with not more than	135	2217	Self-heating solid, organic, n.o.s.	135	3088
1.5% oil and not more than 11% moisture	100	2211	Self-heating solid, oxidizing,	135	3127
Selenates	151	2630	Self-heating solid, poisonous,	136	3191
Selenic acid	154	1905	inorganic, n.o.s.		
Selenites	151	2630	Self-heating solid, poisonous,	136	3128
Selenium compound, liquid, n.o.s.	151	3440	organic, n.o.s. Self-heating solid, toxic, inorganic, n.o.s.	136	3191
Selenium compound, solid, n.o.s.	151	3283	Self-heating solid, toxic,	136	3128
Selenium disulfide	153	2657	organic, n.o.s.	149	3221
Selenium disulphide	153	2657	Self-reactive liquid type B Self-reactive liquid type B,	150	3231
Selenium hexafluoride	125	2194	temperature controlled	130	3231
Selenium oxychloride	157	2879	Self-reactive liquid type C	149	3223
Self-defense spray, non- pressurized	171	3334	Self-reactive liquid type C, temperature controlled	150	3233
Self-heating liquid, corrosive, inorganic, n.o.s.	136	3188	Self-reactive liquid type D	149	3225
Self-heating liquid, corrosive, organic, n.o.s.	136	3185	Self-reactive liquid type D, temperature controlled	150	3235
Self-heating liquid, inorganic,	135	3186	Self-reactive liquid type E	149	3227
n.o.s. Self-heating liquid, organic,	135	3183	Self-reactive liquid type E, temperature controlled	150	3237
n.o.s.			Self-reactive liquid type F	149	3229

Name of Material	Guide No.	D No.	Name of Material (∋uide No.	No.
Self-reactive liquid type F, temperature controlled	150	3239	Sodium	138	1428
Self-reactive solid type B	149	3222	Sodium aluminate, solid	154	2812
Self-reactive solid type B.	150	3232	Sodium aluminate, solution	154	1819
temperature controlled	130	3232	Sodium aluminum hydride	138	2835
Self-reactive solid type C	149	3224	Sodium ammonium vanadate	154	2863
Self-reactive solid type C,	150	3234	Sodium arsanilate	154	2473
temperature controlled	440	2006	Sodium arsenate	151	1685
Self-reactive solid type D	149	3226 3236	Sodium arsenite, aqueous solution	154	1686
Self-reactive solid type D, temperature controlled	150	3230	Sodium arsenite, solid	151	2027
Self-reactive solid type E	149	3228	Sodium azide	153	1687
Self-reactive solid type E, temperature controlled	150	3238	Sodium, batteries containing	138	3292
Self-reactive solid type F	149	3230	Sodium bisulfate, solution	154	2837
Self-reactive solid type F,	150	3240	Sodium bisulphate, solution	154	2837
temperature controlled		0210	Sodium borohydride	138	1426
Shale oil	128	1288	Sodium borohydride and Sodium hydroxide solution,	157	3320
Silane	116	2203	with not more than 12%		
Silane, compressed	116	2203	Sodium borohydride and not more than 40% Sodium		
Silicon powder, amorphous	170	1346	hydroxide		
Silicon tetrachloride	157	1818	Sodium bromate	140	1494
Silicon tetrafluoride	125	1859	Sodium cacodylate	152	1688
Silicon tetrafluoride, adsorbe	d 173	3521	Sodium carbonate peroxyhydrate	140	3378
Silicon tetrafluoride, compressed	125	1859	Sodium chlorate	140	1495
Silver arsenite	151	1683	Sodium chlorate, aqueous	140	2428
Silver cyanide	151	1684	solution		
Silver nitrate	140	1493	Sodium chlorite	143	1496
Silver picrate, wetted with not less than 30% water	113	1347	Sodium chloroacetate Sodium cuprocyanide, solid	151 157	2659 2316
Sludge acid	153	1906	Sodium cuprocyanide, solution		2317
Smokeless powder for small arms	133	3178	Sodium cyanide, solid	157	1689
Soda lime, with more than 4%	154	1907	Sodium cyanide, solution	157	3414
Sodium hydroxide			Sodium dichloroisocyanurate	140	2465

Name of Material	Guide No.	D No.	Name of Material G	uide No.	∍ ID No.
Sodium dichloro-s- triazinetrione	140	2465	Sodium methylate, solution in alcohol	132	1289
Sodium dinitro-o-cresolate,	113	3369	Sodium monoxide	157	1825
wetted with not less than 10% water			Sodium nitrate	140	1498
Sodium dinitro-o-cresolate, wetted with not less than	113	1348	Sodium nitrate and Potassium nitrate mixture	140	1499
15% water	405	1204	Sodium nitrite	141	1500
Sodium dithionite	135	1384 1690	Sodium nitrite and Potassium nitrate mixture	140	1487
Sodium fluoride, solid Sodium fluoride, solution	154 154	3415	Sodium pentachlorophenate	154	2567
Sodium fluoroacetate	151	2629	Sodium perborate monohydrate	140	3377
Sodium fluorosilicate	154	2674	Sodium perchlorate	140	1502
Sodium hydride	138	1427	Sodium permanganate	140	1503
Sodium hydrogendifluoride	154	2439	Sodium peroxide	144	1504
Sodium hydrosulfide, hydrate with not less than 25% wa	ed, 154	2949	Sodium peroxoborate, anhydrous	140	3247
of crystallization			Sodium persulfate	140	1505
Sodium hydrosulfide, with less than 25% water of	135	2318	Sodium persulphate	140	1505
crystallization			Sodium phosphide	139	1432
Sodium hydrosulfide, with not less than 25% water o crystallization	154 f	2949	Sodium picramate, wetted with not less than 20% water	113	1349
Sodium hydrosulfite	135	1384	Sodium potassium alloys, liquid	138	1422
Sodium hydrosulphide,	154	2949	Sodium potassium alloys, solid	138	3404
hydrated, with not less that 25% water of crystallization			Sodium sulfide, anhydrous	135	1385
Sodium hydrosulphide, with less than 25% water of	135	2318	Sodium sulfide, hydrated, with not less than 30% water	153	1849
crystallization Sodium hydrosulphide, with	154	2949	Sodium sulfide, with less than 30% water of crystallization	135	1385
not less than 25% water o crystallization	f		Sodium sulphide, anhydrous	135	1385
Sodium hydrosulphite	135	1384	Sodium sulphide, hydrated, with not less than 30% water	153	1849
Sodium hydroxide, solid	154	1823	Sodium sulphide, with	135	1385
Sodium hydroxide, solution	154	1824	less than 30% water of crystallization		
Sodium hypochlorite	154	1791	Sodium superoxide	143	2547
Sodium methylate, dry	138	1431	<u>'</u>	_	

Name of Material G	uide No.	ID No.	Name of Material	Guide No.	No.
Solids containing corrosive liquid, n.o.s.	154	3244	Substituted nitrophenol pesticide, liquid, toxic, flammable	131	3013
Solids containing flammable liquid, n.o.s.	133	3175	Substituted nitrophenol pesticide, solid, poisonous	153	2779
Solids containing poisonous liquid, n.o.s.	151	3243	Substituted nitrophenol	153	2779
Solids containing toxic liquid, n.o.s.	151	3243	pesticide, solid, toxic Sulfamic acid	154	2967
Soman	153		Sulfur	133	1350
Stannic chloride, anhydrous	137	1827	Sulfur, molten	133	2448
Stannic chloride, pentahydrate	154	2440	Sulfur chlorides	137	1828
Stannic phosphides	139	1433	Sulfur dioxide	125	1079
Stibine	119	2676	Sulfur hexafluoride	126	1080
Straw, wet, damp or contaminated with oil	133	1327	Sulfuric acid	137	1830
Strontium arsenite	151	1691	Sulfuric acid, fuming	137	1831
Strontium chlorate	143	1506	Sulfuric acid, spent	137	
Strontium nitrate	140	1507	Sulfuric acid, with more than 51% acid	137	1830
Strontium perchlorate	140	1508	Sulfuric acid, with not more than 51% acid	157	2796
Strontium peroxide	143	1509	Sulfuric acid and Hydrofluoric	157	1786
Strontium phosphide	139	2013	acid mixture	137	1700
Strychnine	151	1692	Sulfurous acid	154	1833
Strychnine salts	151	1692	Sulfur tetrafluoride	125	2418
Styrene monomer, stabilized	128P	2055	Sulfur trioxide, stabilized	137	1829
Substituted nitrophenol pesticide, liquid, flammable,	131	2780	Sulfuryl chloride	137	1834 2191
poisonous	404	0700	Sulfuryl fluoride	123	
Substituted nitrophenol pesticide, liquid, flammable, toxic	131	2780	Sulphamic acid Sulphur	154 133	2967 1350
	153	3014	Sulphur, molten	133	2448
Substituted nitrophenol pesticide, liquid, poisonous	133	3014	Sulphur chlorides	137	1828
Substituted nitrophenol	131	3013	Sulphur dioxide	125	1079
pesticide, liquid, poisonous, flammable			Sulphur hexafluoride	126	1080
Substituted nitrophenol	153	3014	Sulphuric acid	137	1830
pesticide, liquid, toxic			Sulphuric acid, fuming	137	1831

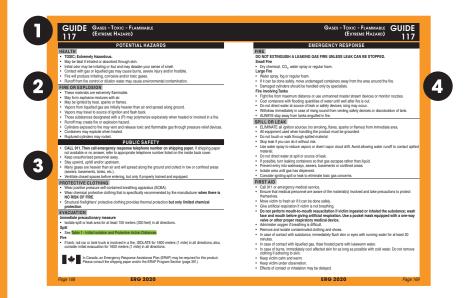
Name of Material	Guide No.	D No.	Name of Material 6	uide No.	ID No.
Sulphuric acid, spent	137	1832	Tetrafluoroethylene, stabilized	116P	1081
Sulphuric acid, with more th	an 137	1830	Tetrafluoromethane	126	1982
51% acid Sulphuric acid, with not more	e 157	2796	Tetrafluoromethane, compressed	126	1982
than 51% acid	rio 157	1786	1,2,3,6-Tetrahydrobenzaldehyd	e 129	2498
Sulphuric acid and Hydrofluo acid mixture) C 131	1700	Tetrahydrofuran	127	2056
Sulphurous acid	154	1833	Tetrahydrofurfurylamine	129	2943
Sulphur tetrafluoride	125	2418	Tetrahydrophthalic anhydrides	156	2698
Sulphur trioxide, stabilized	137	1829	1,2,3,6-Tetrahydropyridine	129	2410
Sulphuryl chloride	137	1834	Tetrahydrothiophene	130	2412
Sulphuryl fluoride	123	2191	Tetramethylammonium hydroxide, solid	153	3423
Tabun	153	4000	Tetramethylammonium	153	1835
Tars, liquid	130	1999	hydroxide, solution	400	0740
Tear gas candles	159	1700	Tetramethylsilane	130	2749
Tear gas devices	159	1693	Tetranitromethane	143	1510
Tear gas grenades	159	1700	Tetrapropyl orthotitanate	128	2413
Tear gas substance, liquid, n.o.s.	159	1693	Textile waste, wet	133	1857
Tear gas substance, solid, n.o.s.	159	3448	Thallium chlorate Thallium compound, n.o.s.	141 151	25731707
Tellurium compound, n.o.s.	151	3284	Thallium nitrate	141	2727
Tellurium hexafluoride	125	2195	4-Thiapentanal	152	2785
Terpene hydrocarbons, n.o.s		2319	Thickened GD	153	
Terpinolene	128	2541	Thioacetic acid	129	2436
Tetrabromoethane	159	2504	Thiocarbamate pesticide, liquid, flammable, poisonous	131	2772
1,1,2,2-Tetrachloroethane	151	1702		131	2772
Tetrachloroethylene	160	1897	Thiocarbamate pesticide, liquid, flammable, toxic	131	2112
Tetraethyl dithiopyrophosph	ate 153	1704	Thiocarbamate pesticide,	151	3006
Tetraethylenepentamine	153	2320	liquid, poisonous		
Tetraethyl silicate	129	1292	Thiocarbamate pesticide, liquid, poisonous, flammable	131	3005
1,1,1,2-Tetrafluoroethane	126	3159	Thiocarbamate pesticide,	151	3006
Tetrafluoroethane and Ethyloxide mixture, with not mo than 5.6% Ethylene oxide		3299	liquid, toxic		

Name of Material	uide No.	No.	Name of Material Guide No.	ID No.
Thiocarbamate pesticide, liquid, toxic, flammable	131	3005	2,4-Toluenediamine, solution 151	3418
Thiocarbamate pesticide, solid poisonous	, 151	2771	Toluene diisocyanate 156 Toluidines, liquid 153	20781708
Thiocarbamate pesticide, solid toxic	, 151	2771	Toluidines, solid 153 2,4-Toluylenediamine, solid 151	3451 1709
Thioglycol	153	2966	2,4-Toluylenediamine, solution 151	3418
Thioglycolic acid	153	1940	Toxic by inhalation liquid, 131	3492
Thiolactic acid	153	2936	corrosive, flammable, n.o.s. (Inhalation Hazard Zone A)	
Thionyl chloride	137	1836	Toxic by inhalation liquid, 131	3493
Thiophene	130	2414	corrosive, flammable, n.o.s.	0400
Thiophosgene	157	2474	(Inhalation Hazard Zone B)	2200
Thiophosphoryl chloride	157	1837	Toxic by inhalation liquid, corrosive, n.o.s. (Inhalation	3389
Thiourea dioxide	135	3341	Hazard Zone A)	
Tinctures, medicinal	127	1293	Toxic by inhalation liquid, corrosive, n.o.s. (Inhalation	3390
Tin tetrachloride	137	1827	Hazard Zone B)	
Titanium disulfide	135	3174	Toxic by inhalation liquid, 131 flammable, corrosive, n.o.s.	3488
Titanium disulphide	135	3174	(Inhalation Hazard Zone A)	
Titanium hydride	170	1871	Toxic by inhalation liquid, 131	3489
Titanium powder, dry	135	2546	flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	
Titanium powder, wetted with not less than 25% water	170	1352	Toxic by inhalation liquid, flammable, n.o.s. (Inhalation	3383
Titanium sponge granules	170	2878	Hazard Zone A)	
Titanium sponge powders	170	2878	Toxic by inhalation liquid, 131	3384
Titanium tetrachloride	137	1838	flammable, n.o.s. (Inhalation Hazard Zone B)	
Titanium trichloride, pyrophori	c 135	2441	Toxic by inhalation liquid, n.o.s. 151	3381
Titanium trichloride mixture	157	2869	(Inhalation Hazard Zone A)	
Titanium trichloride mixture, pyrophoric	135	2441	Toxic by inhalation liquid, n.o.s. 151 (Inhalation Hazard Zone B)	3382
TNT, wetted with not less than 10% water	113	3366	Toxic by inhalation liquid, 0xidizing, n.o.s. (Inhalation Hazard Zone A)	3387
TNT, wetted with not less than 30% water	113	1356	Toxic by inhalation liquid, oxidizing, n.o.s. (Inhalation	3388
Toluene	130	1294	Hazard Zone B)	
2,4-Toluenediamine, solid	151	1709		

Page 150

Name of Material	Guide No.	ID No.	Name of Material G	uide No.	ID No.
Toxic by inhalation liquid,	155	3490	Toxins	153	
water-reactive, flammable n.o.s. (Inhalation Hazard Zone A)			Toxins, extracted from living sources, liquid, n.o.s.	153	3172
Toxic by inhalation liquid, water-reactive, flammable,	155	3491	Toxins, extracted from living sources, solid, n.o.s.	153	3462
n.o.s. (Inhalation Hazard Zone B)			Triallylamine	132	2610
Toxic by inhalation liquid,	139	3385	Triallyl borate	156	2609
water-reactive, n.o.s. (Inhalation Hazard Zone A)		Triazine pesticide, liquid, flammable, poisonous	131	2764
Toxic by inhalation liquid, water-reactive, n.o.s.	139	3386	Triazine pesticide, liquid, flammable, toxic	131	2764
(Inhalation Hazard Zone B Toxic liquid, corrosive,	154	3289	Triazine pesticide, liquid, poisonous	151	2998
inorganic, n.o.s. Toxic liquid, corrosive, organ	ic, 154	2927	Triazine pesticide, liquid, poisonous, flammable	131	2997
n.o.s.	404	0000	Triazine pesticide, liquid, toxic	151	2998
Toxic liquid, flammable, organic, n.o.s.	131	2929	Triazine pesticide, liquid, toxic flammable	, 131	2997
Toxic liquid, inorganic, n.o.s.	151	3287	Triazine pesticide, solid,	151	2763
Toxic liquid, organic, n.o.s.	153	2810	poisonous		
Toxic liquid, oxidizing, n.o.s.	142	3122	Triazine pesticide, solid, toxic	151	2763
Toxic liquid, water-reactive, n.o.s.	139	3123	Tributylamine	153	2542
Toxic solid, corrosive,	154	3290	Tributylphosphane	135	3254
inorganic, n.o.s.			Trichloroacetic acid	153	1839
Toxic solid, corrosive, organi	ic, 154	2928	Trichloroacetic acid, solution	153	2564
	134	3535	Trichloroacetyl chloride	156	2442
Toxic solid, flammable, inorganic, n.o.s.	134	3333	Trichlorobenzenes, liquid	153	2321
Toxic solid, flammable, organic, n.o.s.	134	2930	Trichlorobutene 1,1,1-Trichloroethane	152 160	23222831
Toxic solid, inorganic, n.o.s.	151	3288	Trichloroethylene	160	1710
Toxic solid, organic, n.o.s.	154	2811	Trichloroisocyanuric acid, dry	140	2468
Toxic solid, oxidizing, n.o.s.	141	3086	Trichlorosilane	139	1295
Toxic solid, self-heating, n.o	.s. 136	3124	Tricresyl phosphate	151	2574
Toxic solid, water-reactive,	139	3125	Triethylamine	132	1296
n.o.s.		-	Triethylenetetramine	153	2259

Name of Material	uide No.	ID No.		uide No.	ID No.
Triethyl phosphite	130	2323	Trinitrobenzoic acid, wetted	113	3368
Trifluoroacetic acid	154	2699	with not less than 10% water		
Trifluoroacetyl chloride	125	3057	Trinitrobenzoic acid, wetted with not less than 30% water	113	1355
Trifluorochloroethylene, stabilized	119P	1082	Trinitrochlorobenzene, wetted with not less than 10% water	113	3365
1,1,1-Trifluoroethane	115	2035	Trinitrophenol, wetted with not	113	3364
Trifluoromethane	126	1984	less than 10% water		
Trifluoromethane, refrigerated liquid	120	3136	Trinitrophenol, wetted with not less than 30% water	113	1344
Trifluoromethane and Chlorotrifluoromethane	126	2599	Trinitrotoluene, wetted with not less than 10% water	113	3366
azeotropic mixture with approximately 60% Chlorotrifluoromethane			Trinitrotoluene, wetted with not less than 30% water	113	1356
2-Trifluoromethylaniline	153	2942	Tripropylamine	132	2260
3-Trifluoromethylaniline	153	2948	Tripropylene	128	2057
Triisobutylene	128	2324	Tris-(1-aziridinyl)phosphine oxide, solution	152	2501
Triisopropyl borate	129	2616	Tungsten hexafluoride	125	2196
Trimethoxysilane	132	9269	Turpentine	128	1299
Trimethylacetyl chloride	131	2438	Turpentine substitute	128	1300
Trimethylamine, anhydrous	118	1083	Undecane	128	2330
Trimethylamine, aqueous solution	132	1297	Uranium hexafluoride, radioactive material,	166	3507
1,3,5-Trimethylbenzene	129	2325	excepted package, less than 0.1 kg per package, non-		
Trimethyl borate	129	2416	fissile or fissile-excepted		
Trimethylchlorosilane	155	1298	Uranium hexafluoride,	166	2977
Trimethylcyclohexylamine	153	2326	radioactive material, fissile	166	2978
Trimethylhexamethylenediamine	s 153	2327	Uranium hexafluoride, radioactive material, non	100	2910
Trimethylhexamethylene diisocyanate	156	2328	fissile or fissile-excepted Urea hydrogen peroxide	140	1511
Trimethyl phosphite	130	2329	Urea nitrate, wetted with not	113	3370
Trinitrobenzene, wetted with not less than 10% water	113	3367	less than 10% water Urea nitrate, wetted with not	113	1357
Trinitrobenzene, wetted with	113	1354	less than 20% water		
not less than 30% water			Valeraldehyde	129	2058
			Valeryl chloride	132	2502


Name of Material	Guide No.	ID No.	Name of Material	Suide No.	ID No.
Vanadium compound, n.o.s.	151	3285	Water-reactive liquid,	139	3130
Vanadium oxytrichloride	137	2443	poisonous, n.o.s.	400	0400
Vanadium pentoxide	151	2862	Water-reactive liquid, toxic, n.o.s.	139	3130
Vanadium tetrachloride	137	2444	Water-reactive solid, corrosive	, 138	3131
Vanadium trichloride	157	2475	n.o.s.		
Vanadyl sulfate	151	2931	Water-reactive solid, flammable, n.o.s.	138	3132
Vanadyl sulphate	151	2931	Water-reactive solid, n.o.s.	138	2813
Vehicle, flammable gas powered	115	3166	Water-reactive solid, oxidizing		3133
Vehicle, flammable liquid powered	128	3166	Water-reactive solid, poisonous, n.o.s.	139	3134
Vehicle, fuel cell, flammable gas powered	115	3166	Water-reactive solid, self- heating, n.o.s.	138	3135
Vehicle, fuel cell, flammable liquid powered	128	3166	Water-reactive solid, toxic,	139	3134
Vinyl acetate, stabilized	129P	1301	Wheelchair, electric, with	154	3171
Vinyl bromide, stabilized	116P	1085	batteries		
Vinyl butyrate, stabilized	129P	2838	White asbestos	171	2590
Vinyl chloride, stabilized	116P	1086	White phosphorus, dry or under water or in solution	136	1381
Vinyl chloroacetate	155	2589	White phosphorus, molten	136	2447
Vinyl ethyl ether, stabilized	127P	1302	Wood preservatives, liquid	129	1306
Vinyl fluoride, stabilized	116P	1860	Wool waste, wet	133	1387
Vinylidene chloride, stabilize		1303	Xanthates	135	3342
Vinyl isobutyl ether, stabilize		1304	Xenon	120	2036
Vinyl methyl ether, stabilized		1087	Xenon, compressed	120	2036
Vinylpyridines, stabilized	131P	3073	Xenon, refrigerated liquid	120	2591
Vinyltoluenes, stabilized	130P	2618	(cryogenic liquid)		
Vinyltrichlorosilane	155P	1305	Xylenes	130	1307
Vinyltrichlorosilane, stabilize		1305	Xylenols, liquid	153	3430
VX	153		Xylenols, solid	153	2261
Water-reactive liquid, corrosive, n.o.s.	138	3129	Xylidines, liquid	153	1711
Water-reactive liquid, n.o.s.	138	3148	Xylidines, solid	153	3452
			Xylyl bromide, liquid	152	1701
				-	450

				D No.
NO.	NO.		10.	NO.
152	3417		135	2009
136	1381	Zirconium hydride	138	1437
140	1512	Zirconium nitrate	140	2728
151	1712	Zirconium picramate, wetted	113	1517
151	1712	With not less than 20% water Zirconium powder, dry	135	2008
151	1712	Zirconium powder, wetted with	170	1358
151	1712		135	1932
138	1435	'		1308
		flammable liquid		
140	1513	Zirconium suspended in a liquid (flammable)	170	1308
154	2331		137	2503
154	1840			
151	1713			
171	1931			
138	1435			
138	1436			
151	2855			
171	1931			
171	1931			
140	1514			
140	1515			
143	1516			
139	1714			
138	1436			
138	1435			
133	2714			
151	2855			
138	1435			
170	2858			
	No. 152 136 140 151 151 151 151 138 140 140 154 154 151 171 138 138 151 171 140 140 143 139 138 138 133 151 138	152 3417 136 1381 140 1512 151 1712 151 1712 151 1712 151 1712 138 1435 140 2469 140 1513 154 2331 154 2331 154 1840 151 1713 171 1931 138 1435 138 1436 151 2855 171 1931 140 1514 140 1515 143 1516 139 1714 138 1435 138 1435 138 1435 131 1516 139 1714 138 1435 138 1435 138 1435 138 1435 138 1435	No. Zirconium, dry, finished sheets, strips or coiled wire 136 1381 140 1512 151 1712 151 1712 151 1712 151 1712 151 1712 151 1712 151 1712 151 1712 152 1712 153 1435 140 2469 140 1513 154 2331 154 1840 151 1713 171 1931 138 1435 138 1436 151 2855 171 1931 140 1515 143 1516 139 1714 138 1435 131 140 1515 143 1516 139 1714 138 1435 133 133 2714 151 2855	No. No. 152 3417 136 1381 140 1512 151 1712 151 1712 151 1712 151 1712 151 1712 151 1712 151 1712 151 1712 151 1712 152 2irconium picramate, wetted with not less than 20% water 2irconium powder, dry 135 2irconium powder, wetted with not less than 25% water 2irconium scrap 138 1435 140 2469 140 25% 151 1840 154 1840 151 1713 171 1931 138 1436 151 2855 171 1931 140 1515 143 1516 139 1714 138 1435 138 1435 139 1714 130 1714

NOTES

SUGGESTED OPERATIONS SHOULD ONLY BE PERFORMED BY ADEQUATELY TRAINED AND EQUIPPED PERSONNEL

HOW TO USE THE ORANGE GUIDES

1 GUIDE NUMBER AND TITLE

 The guide title identifies the general hazards associated with the materials in this Guide.

2 POTENTIAL HAZARDS

- Emergency responders should consult this section first!
- Describes the material hazard in terms of FIRE OR EXPLOSION and HEALTH
 effects upon exposure.
- · The primary potential hazard is listed first.
- Allows the responders to make decisions to protect the emergency response team, and the surrounding population.

Page 156 ERG 2020

SUGGESTED OPERATIONS SHOULD ONLY BE PERFORMED BY ADEQUATELY TRAINED AND EQUIPPED PERSONNEL

PUBLIC SAFETY

- This section is divided into three subsections:
 - General Information: describes initial precautionary measures to be taken by those first on the scene.
 - PROTECTIVE CLOTHING: provides general guidance on personal protective equipment requirements including respiratory protection. The protective clothing information is general and correct selection is situation dependent, after considering the physical and chemical properties of the material, weather conditions, spill versus fire, topography, etc.
 - EVACUATION: suggests protective distances for immediate precautionary measures defined for small and large spills, including suggested guidance for conditions where fire is present or likely (potential fragmentation hazard).
 - The term "isolate" indicates a zone of no entry that applies to the public and first responders who are not equipped, trained, and prepared to mitigate the incident.
 - The term "evacuate" indicates people should be removed from inside this zone, if it can be done safely. If removal is too risky, sheltering-inplace can also be considered in this zone. Evacuation aims to protect as many people as possible, and applies mainly to the public.
- Materials highlighted in green in the yellow-bordered and blue-bordered pages direct the reader to consult Table 1, detailing specific response distances for toxic inhalation hazard materials, water-reactive materials and chemical warfare agents (green-bordered pages).

If a Canadian flag appears in this section, and the incident is located in Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product.

EMERGENCY RESPONSE

- This section is divided into three subsections:
 - FIRE: provides extinguishing procedures for Small Fire, Large Fire, and/ or Fire Involving Tanks or Car/Trailer Loads
 - > SPILL OR LEAK: includes general recommendations, and may describe the response procedure for Small Spill and Large Spill
 - > **FIRST AID**: provides general guidance prior to seeking expert medical care.

GUIDE MIXED LOAD/UNIDENTIFIED CARGO

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- May explode from heat, shock, friction or contamination.
- · May react violently or explosively on contact with air, water or foam.
- · May be ignited by heat, sparks or flames.
- · Vapors may travel to source of ignition and flash back.
- Containers may explode when heated.
- · Ruptured cylinders may rocket.

HEALTH

- · Inhalation, ingestion or contact with substance may cause severe injury, infection, disease or death.
- · High concentration of gas may cause asphyxiation without warning.
- · Contact may cause burns to skin and eyes.
- · Fire or contact with water may produce irritating, toxic and/or corrosive gases.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Page 158 ERG 2020

MIXED LOAD/UNIDENTIFIED CARGO GUIDE

EMERGENCY RESPONSE

FIRE

CAUTION: Material may react with extinguishing agent.

Small Fire

• Dry chemical, CO2, water spray or regular foam.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks

- · Cool containers with flooding quantities of water until well after fire is out.
- · Do not get water inside containers.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- · Prevent entry into waterways, sewers, basements or confined areas.

Small Spill

 Pick up with sand or other non-combustible absorbent material and place into containers for later disposal.

Large Spill

Dike far ahead of liquid spill for later disposal.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Shower and wash with soap and water.
- · Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE EXPLOSIVES* - DIVISION 1.1, 1.2, 1.3 OR 1.5

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- MAY EXPLODE AND THROW FRAGMENTS 1600 METERS (1 MILE) OR MORE IF FIRE REACHES CARGO.
- · For information on "Compatibility Group" letters, refer to Glossary section.

HEALTH

· Fire may produce irritating, corrosive and/or toxic gases.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Move people out of line of sight of the scene and away from windows.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

• Isolate spill or leak area immediately for at least 500 meters (1/3 mile) in all directions.

Large Spill

Consider initial evacuation for 800 meters (1/2 mile) in all directions.

Fire

If rail car or trailer is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, initiate
evacuation including emergency responders for 1600 meters (1 mile) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

* FOR INFORMATION ON "COMPATIBILITY GROUP" LETTERS, REFER TO THE GLOSSARY SECTION.

EXPLOSIVES* - DIVISION 1.1, 1.2, 1.3 OR 1.5 GUIDE

EMERGENCY RESPONSE

FIRE

CARGO Fire

- DO NOT fight fire when fire reaches cargo! Cargo may EXPLODE!
- Stop all traffic and clear the area for at least 1600 meters (1 mile) in all directions and let burn.
- Do not move cargo or vehicle if cargo has been exposed to heat.

TIRE or VEHICLE Fire

- Use plenty of water FLOOD it! If water is not available, use CO₂, dry chemical or dirt.
- If possible, and WITHOUT RISK, use unmanned master stream devices or monitor nozzles from maximum distance to prevent fire from spreading to cargo area.
- Pay special attention to tire fires as re-ignition may occur. Stand by, at a safe distance, with extinguisher ready for possible re-ignition.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- DO NOT OPERATE RADIO TRANSMITTERS WITHIN 100 METERS (330 FEET) OF ELECTRIC DETONATORS.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

FIRST AID

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.

* FOR INFORMATION ON "COMPATIBILITY GROUP" LETTERS, REFER TO THE GLOSSARY SECTION.

GUIDE FLAMMABLE MATERIALS 113 (WET/DESENSITIZED EXPLOSIVE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Flammable/combustible material.
- · May be ignited by heat, sparks or flames.
- DRIED OUT material may explode if exposed to heat, flame, friction or shock; treat as an
 explosive (GUIDE 112).
- Keep material wet with water or treat as an explosive (GUIDE 112).
- Runoff to sewer may create fire or explosion hazard.

HEALTH

- Some are toxic and may be fatal if inhaled, ingested or absorbed through skin. Specifically, Dinitrophenol, wetted (UN1320); Dinitrophenolates, wetted (UN1321), Sodium dinitro-o-cresolate, wetted (UN1348); and Barium azide, wetted (UN1571) are known to be toxic.
- · Contact may cause burns to skin and eyes.
- · Fire may produce irritating, corrosive and/or toxic gases.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area immediately for at least 100 meters (330 feet) in all directions.

Large Spill

Consider initial evacuation for 500 meters (1/3 mile) in all directions.

Eiro

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FLAMMABLE MATERIALS (WET/DESENSITIZED EXPLOSIVE)

GUIDE 113

EMERGENCY RESPONSE

FIRE

CARGO Fire

- DO NOT fight fire when fire reaches cargo! Cargo may EXPLODE!
- Stop all traffic and clear the area for at least 1600 meters (1 mile) in all directions and let burn.
- · Do not move cargo or vehicle if cargo has been exposed to heat.

TIRE or VEHICLE Fire

- Use plenty of water FLOOD it! If water is not available, use CO₂, dry chemical or dirt.
- If possible, and WITHOUT RISK, use unmanned master stream devices or monitor nozzles from maximum distance to prevent fire from spreading to cargo area.
- Pay special attention to tire fires as re-ignition may occur. Stand by, at a safe distance, with extinguisher ready for possible re-ignition.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.

Small Spill

· Flush area with large amounts of water.

Large Spill

- · Wet down with water and dike for later disposal.
- KEEP "WETTED" PRODUCT WET BY SLOWLY ADDING FLOODING QUANTITIES OF WATER.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.

GUIDE EXPLOSIVES* - DIVISION 1.4 OR 1.6

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- MAY EXPLODE AND THROW FRAGMENTS 800 METERS (1/2 MILE) OR MORE IF FIRE REACHES CARGO.
- For information on "Compatibility Group" letters, refer to Glossary section.

HEALTH

· Fire may produce irritating, corrosive and/or toxic gases.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Move people out of line of sight of the scene and away from windows.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area immediately for at least 100 meters (330 feet) in all directions.

Large Spill

Consider initial evacuation for 250 meters (800 feet) in all directions.

Fire

- If rail car or trailer is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also initiate
 evacuation including emergency responders for 800 meters (1/2 mile) in all directions.
- If fire threatens cargo area containing packages bearing the 1.4S label or packages containing material classified as 1.4S, consider isolating at least 15 meters (50 feet) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

* FOR INFORMATION ON "COMPATIBILITY GROUP" LETTERS, REFER TO THE GLOSSARY SECTION.

EXPLOSIVES* - DIVISION 1.4 OR 1.6 GUIDE

EMERGENCY RESPONSE

FIRE

CARGO Fire

- DO NOT fight fire when fire reaches cargo! Cargo may EXPLODE!
- Stop all traffic and clear the area for at least 800 meters (1/2 mile) in all directions and let burn.
- · Do not move cargo or vehicle if cargo has been exposed to heat.

TIRE or VEHICLE Fire

- Use plenty of water FLOOD it! If water is not available, use CO₂, dry chemical or dirt.
- If possible, and WITHOUT RISK, use unmanned master stream devices or monitor nozzles from maximum distance to prevent fire from spreading to cargo area.
- Pay special attention to tire fires as re-ignition may occur. Stand by, at a safe distance, with extinguisher ready for possible re-ignition.

CLASS 1.4S Fire

- Packages bearing the 1.4S label or packages containing material classified as 1.4S are designed
 or packaged in such a manner that when involved in a fire, they may burn vigorously with localized
 detonations and projection of fragments.
- Effects are usually confined to immediate vicinity of packages.
- Fight fire with normal precautions from a reasonable distance.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- DO NOT OPERATE RADIO TRANSMITTERS WITHIN 100 METERS (330 FEET) OF ELECTRIC DETONATORS.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

FIRST AID

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.

* FOR INFORMATION ON "COMPATIBILITY GROUP" LETTERS, REFER TO THE GLOSSARY SECTION.

GUIDE GASES - FLAMMABLE 115 (INCLUDING REFRIGERATED LIQUIDS)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- EXTREMELY FLAMMABLE.
- · Will be easily ignited by heat, sparks or flames.
- · Will form explosive mixtures with air.
- · Vapors from liquefied gas are initially heavier than air and spread along ground.

CAUTION: Hydrogen (UN1049), Deuterium (UN1957), Hydrogen, refrigerated liquid (UN1966), Methane (UN1971) and Hydrogen and Methane mixture, compressed (UN2034) are lighter than air and will rise. Hydrogen and Deuterium fires are difficult to detect since they burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.)

- Vapors may travel to source of ignition and flash back.
- Cylinders exposed to fire may vent and release flammable gas through pressure relief devices.
- · Containers may explode when heated.
- · Ruptured cylinders may rocket.

HEALTH

- Vapors may cause dizziness or asphyxiation without warning.
- Some may be irritating if inhaled at high concentrations.
- Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- · Fire may produce irritating and/or toxic gases.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.
- Always wear thermal protective clothing when handling refrigerated/cryogenic liquids.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 800 meters (1/2 mile).

Fire

- If tank, rail car or tank truck is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions.
- In fires involving Liquefied Petroleum Gases (LPG) (UN1075), Butane (UN1011), Butylene (UN1012), Isobutylene (UN1055), Propylene (UN1077), Isobutane (UN1969), and Propane (UN1978), also refer to BLEVE – SAFETY PRECAUTIONS (Page 366).

Gases - Flammable GUIDE (Including Refrigerated Liquids) 115

EMERGENCY RESPONSE

FIRE

DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.

CAUTION: Hydrogen (UN1049), Deuterium (UN1957), Hydrogen, refrigerated liquid (UN1966) and Hydrogen and Methane mixture, compressed (UN2034) will burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.)

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray or fog.
- If it can be done safely, move undamaged containers away from the area around the fire.

CAUTION: For LNG - Liquefied natural gas (UN1972) pool fires, DO NOT USE water. Use dry chemical or high-expansion foam.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- Stop leak if you can do it without risk.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- · Do not direct water at spill or source of leak.

CAUTION: For **LNG - Liquefied natural gas (UN1972)**, DO NOT apply water, regular or alcohol-resistant foam directly on spill. Use a high-expansion foam if available to reduce vapors.

- Prevent spreading of vapors through sewers, ventilation systems and confined areas.
- · Isolate area until gas has dispersed.

CAUTION: When in contact with refrigerated/cryogenic liquids, many materials become brittle and are likely to break without warning.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- Clothing frozen to the skin should be thawed before being removed.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
 Keep victim calm and warm.

GUIDE Gases - Flammable (Unstable)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- EXTREMELY FLAMMABLE.
- · Will be easily ignited by heat, sparks or flames.
- Will form explosive mixtures with air. Acetylene (UN1001, UN3374) may react explosively even in the
 absence of air.
- · Silane (UN2203) will ignite spontaneously in air.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- Vapors from liquefied gas are initially heavier than air and spread along ground.
- · Vapors may travel to source of ignition and flash back.
- Cylinders exposed to fire may vent and release flammable gas through pressure relief devices.
- · Containers may explode when heated.
- · Ruptured cylinders may rocket.

HEALTH

- · Vapors may cause dizziness or asphyxiation without warning.
- · Some may be toxic if inhaled at high concentrations.
- · Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- Fire may produce irritating and/or toxic gases.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 800 meters (1/2 mile).

Fire

 If tank, rail car or tank truck is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions.

EMERGENCY RESPONSE

FIRE

DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray or fog.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Stop leak if you can do it without risk.
- · Do not touch or walk through spilled material.
- · Do not direct water at spill or source of leak.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- · Prevent entry into waterways, sewers, basements or confined areas.
- · Isolate area until gas has dispersed.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- · Keep victim calm and warm.

GUIDE GASES - TOXIC - FLAMMABLE 117 (EXTREME HAZARD)

POTENTIAL HAZARDS

HEALTH

- · TOXIC; Extremely Hazardous.
- · May be fatal if inhaled or absorbed through skin.
- · Initial odor may be irritating or foul and may deaden your sense of smell.
- Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- · These materials are extremely flammable.
- May form explosive mixtures with air.
- · May be ignited by heat, sparks or flames.
- Vapors from liquefied gas are initially heavier than air and spread along ground.
- · Vapors may travel to source of ignition and flash back.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- · Runoff may create fire or explosion hazard.
- Cylinders exposed to fire may vent and release toxic and flammable gas through pressure relief devices.
- · Containers may explode when heated.
- · Ruptured cylinders may rocket.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

llig2

See Table 1 - Initial Isolation and Protective Action Distances.

Fire

 If tank, rail car or tank truck is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions.

Gases - Toxic - Flammable GUIDE (Extreme Hazard) 117

EMERGENCY RESPONSE

FIRE

DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.

Small Fire

• Dry chemical, CO2, water spray or regular foam.

Large Fire

- Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- · Do not direct water at spill or source of leak.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Prevent entry into waterways, sewers, basements or confined areas.
- · Isolate area until gas has dispersed.
- Consider igniting spill or leak to eliminate toxic gas concerns.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- · Keep victim calm and warm.
- Keep victim under observation.
- · Effects of contact or inhalation may be delayed.

GUIDE Gases - Flammable - Corrosive 118

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- EXTREMELY FLAMMABLE.
- · May be ignited by heat, sparks or flames.
- · May form explosive mixtures with air.
- · Vapors from liquefied gas are initially heavier than air and spread along ground.
- Vapors may travel to source of ignition and flash back.
- · Some of these materials may react violently with water.
- Cylinders exposed to fire may vent and release flammable gas through pressure relief devices.
- · Containers may explode when heated.
- · Ruptured cylinders may rocket.

HEALTH

- May cause toxic effects if inhaled.
- · Vapors are extremely irritating.
- Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- · Fire will produce irritating, corrosive and/or toxic gases.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 800 meters (1/2 mile).

Fire

 If tank, rail car or tank truck is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions.

EMERGENCY RESPONSE

FIRE

DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · All equipment used when handling the product must be grounded.
- Do not touch or walk through spilled material.
- Stop leak if you can do it without risk.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- · Do not direct water at spill or source of leak.
- · Isolate area until gas has dispersed.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- · Keep victim calm and warm.
- Keep victim under observation.
- Effects of contact or inhalation may be delayed.

GUIDE GASES - TOXIC - FLAMMABLE

POTENTIAL HAZARDS

HEALTH

- TOXIC; may be fatal if inhaled or absorbed through skin. Some may cause severe skin burns and eye damage.
- Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- Flammable; may be ignited by heat, sparks or flames.
- May form explosive mixtures with air. Ethylene oxide (UN1040) may react explosively even in the absence
 of air.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- Vapors from liquefied gas are initially heavier than air and spread along ground.
- · Vapors may travel to source of ignition and flash back.
- · Some of these materials may react violently with water.
- Cylinders exposed to fire may vent and release toxic and flammable gas through pressure relief devices.
- · Containers may explode when heated.
- · Ruptured cylinders may rocket.
- · Runoff may create fire or explosion hazard.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

 If tank, rail car or tank truck is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions.

EMERGENCY RESPONSE

FIRE

DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.

Small Fire

Dry chemical, CO₂, water spray or alcohol-resistant foam.

Large Fire

- Water spray, fog or alcohol-resistant foam.
- FOR CHLOROSILANES, DO NOT USE WATER; use AFFF alcohol-resistant medium-expansion foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · All equipment used when handling the product must be grounded.
- Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- · Do not direct water at spill or source of leak.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- FOR CHLOROSILANES, use AFFF alcohol-resistant medium-expansion foam to reduce vapors.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Prevent entry into waterways, sewers, basements or confined areas.
- Isolate area until gas has dispersed.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- Keep victim calm and warm.
- Keep victim under observation.
- Effects of contact or inhalation may be delayed.

GUIDE GASES - INERT 120 (INCLUDING REFRIGERATED LIQUIDS)

POTENTIAL HAZARDS

HEALTH

- Vapors may cause dizziness or asphyxiation without warning.
- · Vapors from liquefied gas are initially heavier than air and spread along ground.
- Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.

FIRE OR EXPLOSION

- · Non-flammable gases.
- · Containers may explode when heated.
- · Ruptured cylinders may rocket.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.
- Always wear thermal protective clothing when handling refrigerated/cryogenic liquids or solids.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Page 176 ERG 2020

GASES - INERT GUIDE (INCLUDING REFRIGERATED LIQUIDS) 120

EMERGENCY RESPONSE

FIRE

- Use extinguishing agent suitable for type of surrounding fire.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- · Do not direct water at spill or source of leak.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Prevent entry into waterways, sewers, basements or confined areas.
- Allow substance to evaporate.
- Ventilate the area.

CAUTION: When in contact with refrigerated/cryogenic liquids, many materials become brittle and are likely to break without warning.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Clothing frozen to the skin should be thawed before being removed.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- · Keep victim calm and warm.

GUIDE 121

Page intentionally left blank
There are no materials that refer to this guide.

GUIDE 121

Page intentionally left blank
There are no materials that refer to this guide.

GUIDE GASES - OXIDIZING 122 (INCLUDING REFRIGERATED LIQUIDS)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Substance does not burn but will support combustion.
- · Some may react explosively with fuels.
- · May ignite combustibles (wood, paper, oil, clothing, etc.).
- · Vapors from liquefied gas are initially heavier than air and spread along ground.
- Runoff may create fire or explosion hazard.
- · Containers may explode when heated.
- Ruptured cylinders may rocket.

HEALTH

- · Vapors may cause dizziness or asphyxiation without warning.
- · Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- · Fire may produce irritating and/or toxic gases.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.
- Always wear thermal protective clothing when handling refrigerated/cryogenic liquids.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 500 meters (1/3 mile).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Gases - Oxidizing GUIDE (Including Refrigerated Liquids) 122

EMERGENCY RESPONSE

FIRE

Use extinguishing agent suitable for type of surrounding fire.

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Do not direct water at spill or source of leak.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Prevent entry into waterways, sewers, basements or confined areas.
- Allow substance to evaporate.
- · Isolate area until gas has dispersed.

CAUTION: When in contact with refrigerated/cryogenic liquids, many materials become brittle and are likely to break without warning.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- Clothing frozen to the skin should be thawed before being removed.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- · Keep victim calm and warm.

GUIDE GASES - TOXIC 123

POTENTIAL HAZARDS

HEALTH

- TOXIC; may be fatal if inhaled or absorbed through skin.
- Vapors may be irritating and/or corrosive.
- · Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- · Some may burn but none ignite readily.
- Vapors from liquefied gas are initially heavier than air and spread along ground.
- Cylinders exposed to fire may vent and release toxic and/or corrosive gas through pressure relief devices.
- · Containers may explode when heated.
- · Ruptured cylinders may rocket.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FIRE

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray, fog or regular foam.
- · Do not get water inside containers.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- Stop leak if you can do it without risk.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Prevent entry into waterways, sewers, basements or confined areas.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- · Do not direct water at spill or source of leak.
- · Isolate area until gas has dispersed.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.
- · Keep victim under observation.
- · Effects of contact or inhalation may be delayed.

GUIDE GASES - TOXIC AND/OR CORROSIVE - OXIDIZING

POTENTIAL HAZARDS

HEALTH

- TOXIC; may be fatal if inhaled or absorbed through skin.
- Fire will produce irritating, corrosive and/or toxic gases.
- · Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- · Substance does not burn but will support combustion.
- Vapors from liquefied gas are initially heavier than air and spread along ground.
- These are strong oxidizers and will react vigorously or explosively with many materials including fuels.
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- · Some will react violently with air, moist air and/or water.
- · Cylinders exposed to fire may vent and release toxic and/or corrosive gas through pressure relief devices.
- Containers may explode when heated.
- · Ruptured cylinders may rocket.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Spill

See Table 1 - Initial Isolation and Protective Action Distances.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Gases - Toxic and/or Corrosive - GUIDE Oxidizing 124

EMERGENCY RESPONSE

FIRE

Small Fire

CAUTION: These materials do not burn but will support combustion. Some will react violently with water.

- Contain fire and let burn. If fire must be fought, water spray or fog is recommended.
- Water only; no dry chemical, CO₂ or Halon[®].
- · Do not get water inside containers.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Do not direct water at spill or source of leak.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Prevent entry into waterways, sewers, basements or confined areas.
- Isolate area until gas has dispersed.
- Ventilate the area.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- Clothing frozen to the skin should be thawed before being removed.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Keep victim calm and warm.
- · Keep victim under observation.
- · Effects of contact or inhalation may be delayed.

GUIDE GASES - TOXIC AND/OR CORROSIVE 125

POTENTIAL HAZARDS

HEALTH

- TOXIC; may be fatal if inhaled, ingested or absorbed through skin.
- Vapors are extremely irritating and corrosive.
- · Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- · Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- · Some may burn but none ignite readily.
- Vapors from liquefied gas are initially heavier than air and spread along ground.
- · Some of these materials may react violently with water.
- Cylinders exposed to fire may vent and release toxic and/or corrosive gas through pressure relief devices.
- · Containers may explode when heated.
- · Ruptured cylinders may rocket.
- For UN1005: Anhydrous ammonia, at high concentrations in confined spaces, presents a flammability risk if a source of ignition is introduced.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

 If tank, rail car or tank truck is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions.

Gases - Toxic and/or Corrosive GUIDE

EMERGENCY RESPONSE

FIRE

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- · Do not get water inside containers.
- Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices: icing may occur.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Prevent entry into waterways, sewers, basements or confined areas.
- · Do not direct water at spill or source of leak.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- · Isolate area until gas has dispersed.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- In case of skin contact with hydrogen fluoride, anhydrous (UN1052), if calcium gluconate gel is available, rinse 5 minutes, then apply gel. Otherwise, continue rinsing until medical treatment is available.
- Keep victim calm and warm.
- · Keep victim under observation.
- Effects of contact or inhalation may be delayed.

GUIDE GASES - COMPRESSED OR LIQUEFIED 126 (INCLUDING REFRIGERANT GASES)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Some may burn but none ignite readily.
- · Containers may explode when heated.
- Ruptured cylinders may rocket.

CAUTION: Aerosols (UN1950) may contain a flammable propellant.

HEALTH

- · Vapors may cause dizziness or asphyxiation without warning.
- Vapors from liquefied gas are initially heavier than air and spread along ground.
- Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- · Fire may produce irritating, corrosive and/or toxic gases.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 500 meters (1/3 mile).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Page 188 ERG 2020

Gases - Compressed or Liquefied GUIDE (Including Refrigerant Gases) 126

EMERGENCY RESPONSE

FIRE

Use extinguishing agent suitable for type of surrounding fire.

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- · Damaged cylinders should be handled only by specialists.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- · Some of these materials, if spilled, may evaporate leaving a flammable residue.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- · Do not direct water at spill or source of leak.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Prevent entry into waterways, sewers, basements or confined areas.
- · Allow substance to evaporate.
- · Ventilate the area.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- · Keep victim calm and warm.

GUIDE FLAMMABLE LIQUIDS 127 (WATER-MISCIBLE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames.

CAUTION: Ethanol (UN1170) can burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.)

- · Vapors may form explosive mixtures with air.
- · Vapors may travel to source of ignition and flash back.
- Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Vapor explosion hazard indoors, outdoors or in sewers.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- Runoff to sewer may create fire or explosion hazard.
- · Containers may explode when heated.
- Many liquids will float on water.

HEALTH

- Inhalation or contact with material may irritate or burn skin and eyes.
- Fire may produce irritating, corrosive and/or toxic gases.
- · Vapors may cause dizziness or asphyxiation.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 300 meters (1000 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FIRE

CAUTION: The majority of these products have a very low flash point. Use of water spray when fighting fire may be inefficient.

CAUTION: For fire involving UN1170, UN1987 or UN3475, alcohol-resistant foam should be used. CAUTION: Ethanol (UN1170) can burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.)

Small Fire

• Dry chemical, CO₂, water spray or alcohol-resistant foam.

Large Fire

- Water spray, fog or alcohol-resistant foam.
- Avoid aiming straight or solid streams directly onto the product.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- Prevent entry into waterways, sewers, basements or confined areas.
- · A vapor-suppressing foam may be used to reduce vapors.
- Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- Use clean, non-sparking tools to collect absorbed material.

Large Spill

- Dike far ahead of liquid spill for later disposal.
- Water spray may reduce vapor, but may not prevent ignition in closed spaces.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Wash skin with soap and water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- · Keep victim calm and warm.

GUIDE FLAMMABLE LIQUIDS 128 (WATER-IMMISCIBLE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames.
- · Vapors may form explosive mixtures with air.
- Vapors may travel to source of ignition and flash back.
- Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Vapor explosion hazard indoors, outdoors or in sewers.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- Runoff to sewer may create fire or explosion hazard.
- Containers may explode when heated.
- · Many liquids will float on water.
- Substance may be transported hot.
- For hybrid vehicles, GUIDE 147 (lithium ion batteries) or GUIDE 138 (sodium batteries) should also be consulted.
- · If molten aluminum is involved, refer to GUIDE 169.

HEALTH

CAUTION: Petroleum crude oil (UN1267) may contain TOXIC hydrogen sulphide gas.

- Inhalation or contact with material may irritate or burn skin and eyes.
- Fire may produce irritating, corrosive and/or toxic gases.
- Vapors may cause dizziness or asphyxiation.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 300 meters (1000 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FIRE

CAUTION: The majority of these products have a very low flash point. Use of water spray when fighting fire may be inefficient.

CAUTION: For mixtures containing alcohol or polar solvent, alcohol-resistant foam may be more effective.

Small Fire

Dry chemical, CO₂, water spray or regular foam.

Large Fire

- · Water spray, fog or regular foam.
- Avoid aiming straight or solid streams directly onto the product.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- For petroleum crude oil, do not spray water directly into a breached tank car. This can lead to a
 dangerous boil over.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- Stop leak if you can do it without risk.
- Prevent entry into waterways, sewers, basements or confined areas.
- A vapor-suppressing foam may be used to reduce vapors.
- · Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- Use clean, non-sparking tools to collect absorbed material.

Large Spill

- Dike far ahead of liquid spill for later disposal.
- Water spray may reduce vapor, but may not prevent ignition in closed spaces.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Wash skin with soap and water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- Keep victim calm and warm.

GUIDE FLAMMABLE LIQUIDS 129 (WATER-MISCIBLE/NOXIOUS)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames.
- · Vapors may form explosive mixtures with air.
- · Vapors may travel to source of ignition and flash back.
- Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Vapor explosion hazard indoors, outdoors or in sewers.
- · Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- · Runoff to sewer may create fire or explosion hazard.
- · Containers may explode when heated.
- · Many liquids will float on water.

HEALTH

- · May cause toxic effects if inhaled or absorbed through skin.
- · Inhalation or contact with material may irritate or burn skin and eyes.
- Fire will produce irritating, corrosive and/or toxic gases.
- · Vapors may cause dizziness or asphyxiation.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 300 meters (1000 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FIRE

CAUTION: The majority of these products have a very low flash point. Use of water spray when fighting fire may be inefficient.

Small Fire

- Dry chemical, CO₂, water spray or alcohol-resistant foam.
- Do not use dry chemical extinguishers to control fires involving nitromethane (UN1261) or nitroethane (UN2842).

Large Fire

- · Water spray, fog or alcohol-resistant foam.
- Avoid aiming straight or solid streams directly onto the product.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.
- A vapor-suppressing foam may be used to reduce vapors.
- Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- Use clean, non-sparking tools to collect absorbed material.

Large Spill

- Dike far ahead of liquid spill for later disposal.
- Water spray may reduce vapor, but may not prevent ignition in closed spaces.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Wash skin with soap and water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE FLAMMABLE LIQUIDS 130 (WATER-IMMISCIBLE/NOXIOUS)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames.
- · Vapors may form explosive mixtures with air.
- Vapors may travel to source of ignition and flash back.
- Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Vapor explosion hazard indoors, outdoors or in sewers.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- · Runoff to sewer may create fire or explosion hazard.
- Containers may explode when heated.
- · Many liquids will float on water.

HEALTH

- · May cause toxic effects if inhaled or absorbed through skin.
- · Inhalation or contact with material may irritate or burn skin and eyes.
- Fire will produce irritating, corrosive and/or toxic gases.
- · Vapors may cause dizziness or asphyxiation.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 300 meters (1000 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Page 196 ERG 2020

FIRE

CAUTION: The majority of these products have a very low flash point. Use of water spray when fighting fire may be inefficient.

Small Fire

Dry chemical, CO₂, water spray or regular foam.

Large Fire

- · Water spray, fog or regular foam.
- · Avoid aiming straight or solid streams directly onto the product.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.
- A vapor-suppressing foam may be used to reduce vapors.
- Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- Use clean, non-sparking tools to collect absorbed material.

Large Spill

- · Dike far ahead of liquid spill for later disposal.
- Water spray may reduce vapor, but may not prevent ignition in closed spaces.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20
 minutes.
- · Wash skin with soap and water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- · Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE FLAMMABLE LIQUIDS - TOXIC 131

POTENTIAL HAZARDS

HEALTH

- TOXIC; may be fatal if inhaled, ingested or absorbed through skin.
- Inhalation or contact with some of these materials will irritate or burn skin and eyes.
- · Fire will produce irritating, corrosive and/or toxic gases.
- · Vapors may cause dizziness or asphyxiation.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

· HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames.

CAUTION: Methanol (UN1230) will burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.)

- · Vapors may form explosive mixtures with air.
- Vapors may travel to source of ignition and flash back.
- Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Vapor explosion and poison hazard indoors, outdoors or in sewers.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- Runoff to sewer may create fire or explosion hazard.
- · Containers may explode when heated.
- · Many liquids will float on water.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

 If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FIRE

CAUTION: The majority of these products have a very low flash point. Use of water spray when fighting fire may be inefficient.

CAUTION: Methanol (UN1230) will burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.)

Small Fire

Dry chemical, CO₂, water spray or alcohol-resistant foam.

Large Fire

- · Water spray, fog or alcohol-resistant foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.
- Avoid aiming straight or solid streams directly onto the product.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- Prevent entry into waterways, sewers, basements or confined areas.
- A vapor-suppressing foam may be used to reduce vapors.

Small Spill

- Absorb with earth, sand or other non-combustible material and transfer to containers for later disposal.
- Use clean, non-sparking tools to collect absorbed material.

Large Spill

- Dike far ahead of liquid spill for later disposal.
- Water spray may reduce vapor, but may not prevent ignition in closed spaces.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
 Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Wash skin with soap and water.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
 Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE FLAMMABLE LIQUIDS - CORROSIVE 132

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- · Flammable/combustible material.
- · May be ignited by heat, sparks or flames.
- · Vapors may form explosive mixtures with air.
- · Vapors may travel to source of ignition and flash back.
- Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Vapor explosion hazard indoors, outdoors or in sewers.
- · Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- Runoff to sewer may create fire or explosion hazard.
- · Containers may explode when heated.
- · Many liquids will float on water.

HEALTH

- · May cause toxic effects if inhaled or ingested.
- Contact with substance may cause severe burns to skin and eyes.
- Fire will produce irritating, corrosive and/or toxic gases.
- · Vapors may cause dizziness or asphyxiation.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FIRE

· Some of these materials may react violently with water.

Small Fire

Dry chemical, CO₂, water spray or alcohol-resistant foam.

Large Fire

- Water spray, fog or alcohol-resistant foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.
- · Do not get water inside containers.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- Prevent entry into waterways, sewers, basements or confined areas.
- · A vapor-suppressing foam may be used to reduce vapors.
- · Absorb with earth, sand or other non-combustible material.
- For **hydrazine**, absorb with DRY sand or inert absorbent (vermiculite or absorbent pads).
- Use clean, non-sparking tools to collect absorbed material.

Large Spill

- Dike far ahead of liquid spill for later disposal.
- Water spray may reduce vapor, but may not prevent ignition in closed spaces.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE FLAMMABLE SOLIDS

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- · Flammable/combustible material.
- · May be ignited by friction, heat, sparks or flames.
- · Some may burn rapidly with flare-burning effect.
- · Powders, dusts, shavings, borings, turnings or cuttings may explode or burn with explosive violence.
- Substance may be transported in a molten form at a temperature that may be above its flash point.
- · May re-ignite after fire is extinguished.

HEALTH

- · Fire may produce irritating and/or toxic gases.
- · Contact may cause burns to skin and eyes.
- · Contact with molten substance may cause severe burns to skin and eyes.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

• Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FIRE

Small Fire

• Dry chemical, CO₂, sand, earth, water spray or regular foam.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Metal Pigments or Pastes (e.g. "Aluminum Paste")

 Aluminum Paste fires should be treated as a combustible metal fire. Use DRY sand, graphite powder, dry sodium chloride-based extinguishers or class D extinguishers. Also, see GUIDE 170.

Fire Involving Tanks or Car/Trailer Loads

- · Cool containers with flooding quantities of water until well after fire is out.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Do not touch or walk through spilled material.

Small Dry Spill

 With clean shovel, place material into clean, dry container and cover loosely; move containers from spill area.

Large Spill

- Wet down with water and dike for later disposal.
- Prevent entry into waterways, sewers, basements or confined areas.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Removal of solidified molten material from skin requires medical assistance.
- · Keep victim calm and warm.

GUIDE FLAMMABLE SOLIDS - TOXIC AND/OR 134

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Flammable/combustible material.
- · May be ignited by heat, sparks or flames.
- When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards.
- · Contact with metals may evolve flammable hydrogen gas.
- · Containers may explode when heated.

HEALTH

- TOXIC; inhalation, ingestion or skin contact with material may cause severe injury or death.
- · Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Stay upwind, uphill and/or upstream.
- · Keep unauthorized personnel away.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

· Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Eiro

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FLAMMABLE SOLIDS - TOXIC AND/OR GUIDE CORROSIVE 134

EMERGENCY RESPONSE

FIRE

Small Fire

• Dry chemical, CO₂, water spray or alcohol-resistant foam.

Large Fire

- Water spray, fog or alcohol-resistant foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- · Avoid aiming straight or solid streams directly onto the product.
- · Do not get water inside containers.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Stop leak if you can do it without risk.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- Prevent entry into waterways, sewers, basements or confined areas.
- Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · For minor skin contact, avoid spreading material on unaffected skin.
- · Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE SUBSTANCES - SPONTANEOUSLY COMBUSTIBLE 135

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Flammable/combustible material.
- · May ignite on contact with moist air or moisture.
- · May burn rapidly with flare-burning effect.
- · Some react vigorously or explosively on contact with water.
- Some may decompose explosively when heated or involved in a fire.
- · May re-ignite after fire is extinguished.
- · Runoff may create fire or explosion hazard.
- · Containers may explode when heated.

HEALTH

- · Fire will produce irritating, corrosive and/or toxic gases.
- Inhalation of decomposition products may cause severe injury or death.
- · Contact with substance may cause severe burns to skin and eyes.
- Runoff from fire control or dilution water may cause environmental contamination.

CAUTION: Pentaborane (UN1380) is highly toxic and may be fatal if inhaled, ingested or absorbed through skin.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Stay upwind, uphill and/or upstream.
- Keep unauthorized personnel away.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FIRE

- DO NOT USE WATER, CO, OR FOAM ON MATERIAL ITSELF.
- · Some of these materials may react violently with water.

CAUTION: For Xanthates, UN3342 and for Dithionite (Hydrosulfite/Hydrosulphite) UN1384, UN1923 and UN1929, USE FLOODING AMOUNTS OF WATER for SMALL AND LARGE fires to stop the reaction. Smothering will not work for these materials, they do not need air to burn.

Small Fire

- Dry chemical, soda ash, lime or DRY sand, EXCEPT for UN1384, UN1923, UN1929 and UN3342.
 Large Fire
- DRY sand, dry chemical, soda ash or lime EXCEPT for UN1384, UN1923, UN1929 and UN3342, or withdraw from area and let fire burn.

CAUTION: UN3342 when flooded with water will continue to evolve flammable Carbon disulfide/Carbon disulphide vapors.

• If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Do not get water inside containers or in contact with substance.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.

Small Spill

CAUTION: For spills of Xanthates, UN3342 and for Dithionite (Hydrosulfite/Hydrosulphite), UN1384, UN1923 and UN1929, dissolve in 5 parts water and collect for proper disposal.

CAUTION: UN3342 when flooded with water will continue to evolve flammable Carbon disulfide/Carbon disulphide vapors.

- Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.
- · Prevent entry into waterways, sewers, basements or confined areas.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20
 minutes
- Keep victim calm and warm.

GUIDE SUBSTANCES - SPONTANEOUSLY COMBUSTIBLE 136 TOXIC AND/OR CORROSIVE (AIR-REACTIVE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Extremely flammable; will ignite itself if exposed to air.
- · Burns rapidly, releasing dense, white, irritating fumes.
- Substance may be transported in a molten form.
- · May re-ignite after fire is extinguished.
- · Corrosive substances in contact with metals may produce flammable hydrogen gas.
- · Containers may explode when heated.

HEALTH

- Fire will produce irritating, corrosive and/or toxic gases.
- TOXIC; ingestion of substance or inhalation of decomposition products will cause severe injury or death.
- · Contact with substance may cause severe burns to skin and eves.
- · Some effects may be experienced due to skin absorption.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Stay upwind, uphill and/or upstream.
- · Keep unauthorized personnel away.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.
- For Phosphorus (UN1381): Special aluminized protective clothing should be worn when direct contact with the substance is possible.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

Consider initial downwind evacuation for at least 300 meters (1000 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

GUIDE SUBSTANCES - SPONTANEOUSLY COMBUSTIBLE -TOXIC AND/OR CORROSIVE (AIR-REACTIVE)

EMERGENCY RESPONSE

FIRE

Small Fire

· Water spray, wet sand or wet earth.

Large Fire

- Water spray or fog.
- · Do not scatter spilled material with high-pressure water streams.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Do not touch or walk through spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- Stop leak if you can do it without risk.

Small Spill

• Cover with water, sand or earth. Shovel into metal container and keep material under water.

Large Spill

- · Dike for later disposal and cover with wet sand or earth.
- Prevent entry into waterways, sewers, basements or confined areas.

FIRST AID

- · Call 911 or emergency medical service.
- · Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- In case of contact with substance, keep exposed skin areas immersed in water or covered with wet bandages until medical attention is received.
- Removal of solidified molten material from skin requires medical assistance.
- Remove and isolate contaminated clothing and shoes at the site and place in metal container filled with water. Fire hazard if allowed to dry.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.
- Keep victim calm and warm.

136

GUIDE Substances - Water-Reactive - Corrosive 137

POTENTIAL HAZARDS

HEALTH

- CORROSIVE and/or TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance
 may cause severe injury, burns or death.
- Fire will produce irritating, corrosive and/or toxic gases.
- · Reaction with water may generate much heat that will increase the concentration of fumes in the air.
- · Contact with molten substance may cause severe burns to skin and eyes.
- · Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- EXCEPT FOR ACETIC ANHYDRIDE (UN1715), THAT IS FLAMMABLE, some of these materials may burn, but none ignite readily.
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- Substance will react with water (some violently), releasing corrosive and/or toxic gases and runoff.
- Flammable/toxic gases may accumulate in confined areas (basement, tanks, hopper/tank cars, etc.).
- Contact with metals may evolve flammable hydrogen gas.
- · Containers may explode when heated or if contaminated with water.
- Substance may be transported in a molten form.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Substances - Water-Reactive - Corrosive GUIDE 137

EMERGENCY RESPONSE

FIRE

When material is not involved in fire, do not use water on material itself.

Small Fire

- Dry chemical or CO₂.
- If it can be done safely, move undamaged containers away from the area around the fire.

Large Fire

 Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply, responders should withdraw.

Fire Involving Tanks or Car/Trailer Loads

- · Cool containers with flooding quantities of water until well after fire is out.
- · Do not get water inside containers.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors; do not put water directly on leak, spill area or inside container.
- Keep combustibles (wood, paper, oil, etc.) away from spilled material.

Small Spill

- Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.
- Prevent entry into waterways, sewers, basements or confined areas.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · For minor skin contact, avoid spreading material on unaffected skin.
- Removal of solidified molten material from skin requires medical assistance.
- Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE SUBSTANCES - WATER-REACTIVE (EMITTING FLAMMABLE GASES)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Produce flammable gases on contact with water.
- · May ignite on contact with water or moist air.
- · Some react vigorously or explosively on contact with water.
- · May be ignited by heat, sparks or flames.
- · May re-ignite after fire is extinguished.
- · Some are transported in highly flammable liquids.
- Runoff may create fire or explosion hazard.

HEALTH

- Inhalation or contact with vapors, substance or decomposition products may cause severe injury or death.
- May produce corrosive solutions on contact with water.
- Fire will produce irritating, corrosive and/or toxic gases.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

GUIDE 138

EMERGENCY RESPONSE

FIRE

· DO NOT USE WATER OR FOAM.

Small Fire

· Dry chemical, soda ash, lime or sand.

Large Fire

- DRY sand, dry chemical, soda ash or lime or withdraw from area and let fire burn.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Metals or Powders (Aluminum, Lithium, Magnesium, etc.)

 Use dry chemical, DRY sand, sodium chloride powder, graphite powder or class D extinguishers; in addition, for Lithium you may use Lith-X® powder or copper powder. Also, see GUIDE 170.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- DO NOT GET WATER on spilled substance or inside containers.

Small Spill

- Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- Dike for later disposal; do not apply water unless directed to do so.

Powder Spill

- Cover powder spill with plastic sheet or tarp to minimize spreading and keep powder dry.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, wipe from skin immediately; flush skin or eyes with running water for at least 20 minutes.
- Keep victim calm and warm.

GUIDE SUBSTANCES - WATER-REACTIVE 139 (EMITTING FLAMMABLE AND TOXIC GASES)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Produce flammable and toxic gases on contact with water.
- · May ignite on contact with water or moist air.
- · Some react vigorously or explosively on contact with water.
- · May be ignited by heat, sparks or flames.
- · May re-ignite after fire is extinguished.
- · Some are transported in highly flammable liquids.
- · Containers may explode when heated.
- · Runoff may create fire or explosion hazard.

HEALTH

- Highly toxic: contact with water produces toxic gas, may be fatal if inhaled.
- Inhalation or contact with vapors, substance or decomposition products may cause severe injury or death.
- · May produce corrosive solutions on contact with water.
- Fire will produce irritating, corrosive and/or toxic gases.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Substances - Water-Reactive GUIDE (Emitting Flammable And Toxic Gases) 139

EMERGENCY RESPONSE

FIRE

• DO NOT USE WATER OR FOAM. (FOAM MAY BE USED FOR CHLOROSILANES, SEE BELOW)
Small Fire

· Dry chemical, soda ash, lime or sand.

Large Fire

- DRY sand, dry chemical, soda ash or lime or withdraw from area and let fire burn.
- FOR CHLORÓSILANES, DO NOT USE WATER; use AFFF alcohol-resistant medium-expansion foam; DO NOT USE dry chemicals, soda ash or lime on chlorosilane fires (large or small) as they may release large quantities of hydrogen gas that may explode.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- · Do not get water inside containers.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- · DO NOT GET WATER on spilled substance or inside containers.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- FOR CHLOROSILANES, use AFFF alcohol-resistant medium-expansion foam to reduce vapors.

Small Spill

- Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- Dike for later disposal; do not apply water unless directed to do so.

Powder Spill

- · Cover powder spill with plastic sheet or tarp to minimize spreading and keep powder dry.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, wipe from skin immediately; flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.

GUIDE OXIDIZERS

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- These substances will accelerate burning when involved in a fire.
- Some may decompose explosively when heated or involved in a fire.
- · May explode from heat or contamination.
- Some will react explosively with hydrocarbons (fuels).
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- · Containers may explode when heated.
- · Runoff may create fire or explosion hazard.

HEALTH

- Inhalation, ingestion or contact (skin, eyes) with vapors or substance may cause severe injury, burns or death.
- Fire may produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

- If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.
- If ammonium nitrate is in a tank, rail car or tank truck and involved in a fire, ISOLATE for 1600 meters
 (1 mile) in all directions; also, initiate evacuation including emergency responders for 1600 meters
 (1 mile) in all directions.

EMERGENCY RESPONSE

FIRE

Small Fire

• Use water. Do not use dry chemicals or foams. CO₂ or Halon® may provide limited control.

Large Fire

- · Flood fire area with water from a distance.
- Do not move cargo or vehicle if cargo has been exposed to heat.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- · Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- · Do not get water inside containers.

Small Dry Spill

 With clean shovel, place material into clean, dry container and cover loosely; move containers from spill area.

Small Liquid Spill

 Use a non-combustible material like vermiculite or sand to soak up the product and place into a container for later disposal.

Large Spill

· Dike far ahead of liquid spill for later disposal.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- · Contaminated clothing may be a fire risk when dry.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Keep victim calm and warm.

GUIDE OXIDIZERS - TOXIC

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- These substances will accelerate burning when involved in a fire.
- · May explode from heat or contamination.
- · Some may burn rapidly.
- Some will react explosively with hydrocarbons (fuels).
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- · Containers may explode when heated.
- · Runoff may create fire or explosion hazard.

HEALTH

- · Toxic by ingestion.
- · Inhalation of dust is toxic.
- · Fire may produce irritating, corrosive and/or toxic gases.
- Contact with substance may cause severe burns to skin and eyes.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

EMERGENCY RESPONSE

FIRE

Small Fire

• Use water. Do not use dry chemicals or foams. CO₂ or Halon® may provide limited control.

Large Fire

- · Flood fire area with water from a distance.
- Do not move cargo or vehicle if cargo has been exposed to heat.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- · Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.

Small Dry Spill

 With clean shovel, place material into clean, dry container and cover loosely; move containers from spill area.

Large Spill

· Dike far ahead of spill for later disposal.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- · Contaminated clothing may be a fire risk when dry.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Keep victim calm and warm.

GUIDE OXIDIZERS - TOXIC (LIQUID) 142

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- These substances will accelerate burning when involved in a fire.
- May explode from heat or contamination.
- · Some will react explosively with hydrocarbons (fuels).
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- Containers may explode when heated.
- Runoff may create fire or explosion hazard.

HEALTH

- TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors or substance may cause severe injury, burns or death.
- Fire may produce irritating, corrosive and/or toxic gases.
- Toxic/flammable fumes may accumulate in confined areas (basement, tanks, tank cars, etc.).
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

OXIDIZERS - TOXIC (LIQUID) GUIDE 142

EMERGENCY RESPONSE

FIRE

Small Fire

• Use water. Do not use dry chemicals or foams. CO₂ or Halon® may provide limited control.

Large Fire

- · Flood fire area with water from a distance.
- Do not move cargo or vehicle if cargo has been exposed to heat.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- · Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors or divert vapor cloud drift.
- · Do not get water inside containers.

Small Liquid Spill

 Use a non-combustible material like vermiculite or sand to soak up the product and place into a container for later disposal.

Large Spill

· Dike far ahead of liquid spill for later disposal.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- · Contaminated clothing may be a fire risk when dry.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.

GUIDE OXIDIZERS (UNSTABLE) 143

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- May explode from friction, heat or contamination.
- These substances will accelerate burning when involved in a fire.
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- Some will react explosively with hydrocarbons (fuels).
- Containers may explode when heated.
- Runoff may create fire or explosion hazard.

HEALTH

- TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe
 injury, burns or death.
- Fire may produce irritating and/or toxic gases.
- Toxic fumes or dust may accumulate in confined areas (basement, tanks, hopper/tank cars, etc.).
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

EMERGENCY RESPONSE

FIRE

Small Fire

• Use water. Do not use dry chemicals or foams. CO₂ or Halon® may provide limited control.

Large Fire

- · Flood fire area with water from a distance.
- Do not move cargo or vehicle if cargo has been exposed to heat.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Do not get water inside containers: a violent reaction may occur.

Fire Involving Tanks or Car/Trailer Loads

- · Cool containers with flooding quantities of water until well after fire is out.
- · Dike runoff from fire control for later disposal.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

SPILL OR LEAK

- · Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- Use water spray to reduce vapors or divert vapor cloud drift.
- Prevent entry into waterways, sewers, basements or confined areas.

Small Spill

· Flush area with large amounts of water.

Large Spill

• DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- Contaminated clothing may be a fire risk when dry.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.

GUIDE OXIDIZERS (WATER-REACTIVE) 144

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- May ignite combustibles (wood, paper, oil, clothing, etc.).
- · React vigorously and/or explosively with water.
- Produce toxic and/or corrosive substances on contact with water.
- Flammable/toxic gases may accumulate in tanks and hopper cars.
- Some may produce flammable hydrogen gas upon contact with metals.
- · Containers may explode when heated.
- · Runoff may create fire or explosion hazard.

HEALTH

- TOXIC; inhalation or contact with vapor, substance, or decomposition products may cause severe injury or death.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Oxidizers (Water-Reactive) GUIDE

EMERGENCY RESPONSE

FIRE

· DO NOT USE WATER OR FOAM.

Small Fire

· Dry chemical, soda ash or lime.

Large Fire

- DRY sand, dry chemical, soda ash or lime or withdraw from area and let fire burn.
- Do not move cargo or vehicle if cargo has been exposed to heat.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- · DO NOT GET WATER on spilled substance or inside containers.

Small Spill

 Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.

Large Spill

DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- · Contaminated clothing may be a fire risk when dry.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.
- · Keep victim under observation.
- Effects of contact or inhalation may be delayed.

GUIDE ORGANIC PEROXIDES 145 (HEAT AND CONTAMINATION SENSITIVE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- May explode from heat or contamination.
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- · May be ignited by heat, sparks or flames.
- · May burn rapidly with flare-burning effect.
- Containers may explode when heated.
- · Runoff may create fire or explosion hazard.

HEALTH

- · Fire may produce irritating, corrosive and/or toxic gases.
- Ingestion or contact (skin, eyes) with substance may cause severe injury or burns.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Large Spill

Consider initial evacuation for at least 250 meters (800 feet) in all directions.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Page 226 ERG 2020

Organic Peroxides (Heat and Contamination Sensitive)

GUIDE 145

EMERGENCY RESPONSE

FIRE

Small Fire

Water spray or fog is preferred; if water not available use dry chemical, CO₂ or regular foam.

Large Fire

- · Flood fire area with water from a distance.
- Use water spray or fog: avoid aiming straight or solid streams directly onto the product.
- Do not move cargo or vehicle if cargo has been exposed to heat.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Keep substance wet using water spray.
- · Stop leak if you can do it without risk.

Small Spill

 Pick up with inert, damp, non-combustible material using clean, non-sparking tools and place into loosely covered plastic containers for later disposal.

Large Spill

- Wet down with water and dike for later disposal.
- Prevent entry into waterways, sewers, basements or confined areas.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Administer oxvaen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- Contaminated clothing may be a fire risk when dry.
- · Remove material from skin immediately.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Keep victim calm and warm.

GUIDE ORGANIC PEROXIDES 146 (HEAT, CONTAMINATION AND FRICTION SENSITIVE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- May explode from heat, shock, friction or contamination.
- · May ignite combustibles (wood, paper, oil, clothing, etc.).
- · May be ignited by heat, sparks or flames.
- · May burn rapidly with flare-burning effect.
- Containers may explode when heated.
- · Runoff may create fire or explosion hazard.

HEALTH

- · Fire may produce irritating, corrosive and/or toxic gases.
- Ingestion or contact (skin, eyes) with substance may cause severe injury or burns.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Large Spill

Consider initial evacuation for at least 250 meters (800 feet) in all directions.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

ORGANIC PEROXIDES (HEAT, CONTAMINATION AND FRICTION SENSITIVE)

GUIDE 146

EMERGENCY RESPONSE

FIRE

Small Fire

Water spray or fog is preferred; if water not available use dry chemical, CO₂ or regular foam.

Large Fire

- · Flood fire area with water from a distance.
- Use water spray or fog; avoid aiming straight or solid streams directly onto the product.
- Do not move cargo or vehicle if cargo has been exposed to heat.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Keep substance wet using water spray.
- · Stop leak if you can do it without risk.

Small Spill

 Pick up with inert, damp, non-combustible material using clean, non-sparking tools and place into loosely covered plastic containers for later disposal.

Large Spill

- Wet down with water and dike for later disposal.
- Prevent entry into waterways, sewers, basements or confined areas.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Administer oxvaen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- Contaminated clothing may be a fire risk when dry.
- · Remove material from skin immediately.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Keep victim calm and warm.

GUIDE LITHIUM ION BATTERIES

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Lithium ion batteries contain flammable liquid electrolyte that may vent, ignite and produce sparks when subjected to high temperatures (> 150°C (302°F)), when damaged or abused (e.g., mechanical damage or electrical overcharging).
- May burn rapidly with flare-burning effect.
- May ignite other batteries in close proximity.

HEALTH

- Contact with battery electrolyte may be irritating to skin, eyes and mucous membranes.
- Fire will produce irritating, corrosive and/or toxic gases.
- Burning batteries may produce toxic hydrogen fluoride gas (see GUIDE 125).
- · Fumes may cause dizziness or asphyxiation.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Large Spill

· Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

If rail car or trailer is involved in a fire, ISOLATE for 500 meters (1/3 mile) in all directions; also initiate
evacuation including emergency responders for 500 meters (1/3 mile) in all directions.

Page 230 ERG 2020

LITHIUM ION BATTERIES GUIDE 147

EMERGENCY RESPONSE

FIRE

Small Fire

• Dry chemical, CO₂, water spray or regular foam.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Do not touch or walk through spilled material.
- · Absorb with earth, sand or other non-combustible material.
- · Leaking batteries and contaminated absorbent material should be placed in metal containers.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.

GUIDE ORGANIC PEROXIDES (HEAT AND CONTAMINATION 148 SENSITIVE/TEMPERATURE CONTROLLED)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- May explode from heat, contamination or loss of temperature control.
- These materials are particularly sensitive to temperature rises. Above a given "Control Temperature" they
 decompose violently and catch fire.
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- · May ignite spontaneously if exposed to air.
- · May be ignited by heat, sparks or flames.
- May burn rapidly with flare-burning effect.
- Containers may explode when heated.
- Runoff may create fire or explosion hazard.

HEALTH

- Fire may produce irritating, corrosive and/or toxic gases.
- Ingestion or contact (skin, eyes) with substance may cause severe injury or burns.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Large Spill

Consider initial evacuation for at least 250 meters (800 feet) in all directions.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

ORGANIC PEROXIDES (HEAT AND CONTAMINATION SENSITIVE/TEMPERATURE CONTROLLED)

GUIDE 148

EMERGENCY RESPONSE

FIRE

 The temperature of the substance must be maintained at or below the "Control Temperature" at all times.

Small Fire

Water spray or fog is preferred; if water not available use dry chemical, CO₂ or regular foam.

Large Fire

- Flood fire area with water from a distance.
- Use water spray or fog; avoid aiming straight or solid streams directly onto the product.
- · Do not move cargo or vehicle if cargo has been exposed to heat.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- BEWARE OF POSSIBLE CONTAINER EXPLOSION.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- DO NOT allow the substance to warm up. Use a coolant agent such as dry ice or ice (wear thermal
 protective gloves). If this is not possible or none can be obtained, evacuate the area immediately.
- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.

Small Spill

 Pick up with inert, damp, non-combustible material using clean, non-sparking tools and place into loosely covered plastic containers for later disposal.

Large Spill

- · Dike far ahead of liquid spill for later disposal.
- · Prevent entry into waterways, sewers, basements or confined areas.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- Contaminated clothing may be a fire risk when dry.
- · Remove material from skin immediately.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes
- · Keep victim calm and warm.

GUIDE SUBSTANCES (SELF-REACTIVE) 149

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Self-decomposition, self-polymerization, or self-ignition may be triggered by heat, chemical reaction, friction or impact.
- May be ignited by heat, sparks or flames.
- · Some may decompose explosively when heated or involved in a fire.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- May burn violently. Decomposition or polymerization may be self-accelerating and produce large amounts
 of gases.
- · Vapors or dust may form explosive mixtures with air.

HEALTH

- Inhalation or contact with vapors, substance or decomposition products may cause severe injury or death.
- May produce irritating, toxic and/or corrosive gases.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Large Spill

Consider initial evacuation for at least 250 meters (800 feet) in all directions.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

SUBSTANCES (SELF-REACTIVE) GUIDE

EMERGENCY RESPONSE

FIRE

Small Fire

• Dry chemical, CO₂, water spray or regular foam.

Large Fire

- · Flood fire area with water from a distance.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- BEWARE OF POSSIBLE CONTAINER EXPLOSION.
- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.

Small Spill

- Pick up with inert, damp, non-combustible material using clean, non-sparking tools and place into loosely covered plastic containers for later disposal.
- · Prevent entry into waterways, sewers, basements or confined areas.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.

GUIDE SUBSTANCES (SELF-REACTIVE/ 150 TEMPERATURE CONTROLLED)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Self-decomposition, self-polymerization, or self-ignition may be triggered by heat, chemical reaction, friction or impact.
- Self-accelerating decomposition may occur if the specific control temperature is not maintained.
- These materials are particularly sensitive to temperature rises. Above a given "Control Temperature" they
 decompose or polymerize violently and may catch fire.
- May be ignited by heat, sparks or flames.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- · Some may decompose explosively when heated or involved in a fire.
- May burn violently. Decomposition or polymerization may be self-accelerating and produce large amounts of gases.
- · Vapors or dust may form explosive mixtures with air.

HEALTH

- Inhalation or contact with vapors, substance or decomposition products may cause severe injury or death
- · May produce irritating, toxic and/or corrosive gases.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Large Spill

Consider initial evacuation for at least 250 meters (800 feet) in all directions.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

GUIDE SUBSTANCES (SELF-REACTIVE/ TEMPERATURE CONTROLLED)

EMERGENCY RESPONSE

FIRE

 The temperature of the substance must be maintained at or below the "Control Temperature" at all times.

Small Fire

Dry chemical, CO₂, water spray or regular foam.

Large Fire

- Flood fire area with water from a distance.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

- BEWARE OF POSSIBLE CONTAINER EXPLOSION.
- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- DO NOT allow the substance to warm up. Use a coolant agent such as dry ice or ice (wear thermal protective gloves). If this is not possible or none can be obtained, evacuate the area immediately.
- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Do not touch or walk through spilled material.
- Stop leak if you can do it without risk.

Small Spill

- · Pick up with inert, damp, non-combustible material using clean, non-sparking tools and place into loosely covered plastic containers for later disposal.
- Prevent entry into waterways, sewers, basements or confined areas.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

FIRST AID

- Call 911 or emergency medical service.
- · Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.

150

GUIDE SUBSTANCES - TOXIC (NON-COMBUSTIBLE)

POTENTIAL HAZARDS

HEALTH

- Highly toxic, may be fatal if inhaled, ingested or absorbed through skin.
- · Avoid any skin contact.
- · Effects of contact or inhalation may be delayed.
- Fire may produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

FIRE OR EXPLOSION

- Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes.
- · Containers may explode when heated.
- · Runoff may pollute waterways.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

SUBSTANCES - TOXIC (NON-COMBUSTIBLE) GUIDE 151

EMERGENCY RESPONSE

FIRE

Small Fire

Dry chemical, CO₂ or water spray.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.
- Avoid aiming straight or solid streams directly onto the product.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

SPILL OR LEAK

- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- Prevent entry into waterways, sewers, basements or confined areas.
- · Cover with plastic sheet to prevent spreading.
- Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- DO NOT GET WATER INSIDE CONTAINERS.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20
 minutes.
- · For minor skin contact, avoid spreading material on unaffected skin.
- · Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE SUBSTANCES - TOXIC (COMBUSTIBLE) 152

POTENTIAL HAZARDS

HEALTH

- Highly toxic, may be fatal if inhaled, ingested or absorbed through skin.
- · Contact with molten substance may cause severe burns to skin and eyes.
- · Avoid any skin contact.
- Effects of contact or inhalation may be delayed.
- Fire may produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

FIRE OR EXPLOSION

- · Combustible material: may burn but does not ignite readily.
- · Containers may explode when heated.
- · Runoff may pollute waterways.
- Substance may be transported in a molten form.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

SUBSTANCES - TOXIC (COMBUSTIBLE) GUIDE 152

EMERGENCY RESPONSE

FIRE

Small Fire

• Dry chemical, CO₂ or water spray.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.
- Avoid aiming straight or solid streams directly onto the product.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.
- Cover with plastic sheet to prevent spreading.
- Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- DO NOT GET WATER INSIDE CONTAINERS.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- For minor skin contact, avoid spreading material on unaffected skin.
- · Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE SUBSTANCES - TOXIC AND/OR CORROSIVE 153 (COMBUSTIBLE)

POTENTIAL HAZARDS

HEALTH

- TOXIC; inhalation, ingestion or skin contact with material may cause severe injury or death.
- Contact with molten substance may cause severe burns to skin and eves.
- · Avoid any skin contact.
- · Effects of contact or inhalation may be delayed.
- Fire may produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

FIRE OR EXPLOSION

- · Combustible material: may burn but does not ignite readily.
- When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- Contact with metals may evolve flammable hydrogen gas.
- · Containers may explode when heated.
- · Runoff may pollute waterways.
- · Substance may be transported in a molten form.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Substances - Toxic and/or Corrosive (Combustible)

EMERGENCY RESPONSE

FIRE

Small Fire

Dry chemical, CO₂ or water spray.

Large Fire

- Dry chemical, CO₂, alcohol-resistant foam or water spray.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.
- Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- DO NOT GET WATER INSIDE CONTAINERS.

FIRST AID

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes
- · For minor skin contact, avoid spreading material on unaffected skin.
- · Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE

GUIDE SUBSTANCES - TOXIC AND/OR CORROSIVE (NON-COMBUSTIBLE)

POTENTIAL HAZARDS

HEALTH

- TOXIC: inhalation, ingestion or skin contact with material may cause severe injury or death.
- Contact with molten substance may cause severe burns to skin and eves.
- · Avoid any skin contact.
- Effects of contact or inhalation may be delayed.
- Fire may produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

FIRE OR EXPLOSION

- Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes.
- Some are oxidizers and may ignite combustibles (wood, paper, oil, clothing, etc.).
- · Contact with metals may evolve flammable hydrogen gas.
- Containers may explode when heated.
- For electric vehicles or equipment, GUIDE 147 (lithium ion batteries) or GUIDE 138 (sodium batteries) should also be consulted.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

IliaS

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

SUBSTANCES - TOXIC AND/OR CORROSIVE GUIDE (Non-Combustible) 154

EMERGENCY RESPONSE

FIRE

Small Fire

Dry chemical, CO₂ or water spray.

Large Fire

- Dry chemical, CO₂, alcohol-resistant foam or water spray.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.
- Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- DO NOT GET WATER INSIDE CONTAINERS.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes
- · For minor skin contact, avoid spreading material on unaffected skin.
- · Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE SUBSTANCES - TOXIC AND/OR CORROSIVE 155 (FLAMMABLE/WATER-SENSITIVE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames.
- Vapors form explosive mixtures with air: indoors, outdoors and sewers explosion hazards.
- Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Vapors may travel to source of ignition and flash back.
- Those substances designated with a (P) may polymerize explosively when heated or involved in a fire.
- Substance will react with water (some violently) releasing flammable, toxic or corrosive gases and runoff.
- Contact with metals may evolve flammable hydrogen gas.
- Containers may explode when heated or if contaminated with water.

HEALTH

- TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe
 injury, burns or death.
- Bromoacetates and chloroacetates are extremely irritating/lachrymators (cause eye irritation and flow of tears).
- Reaction with water or moist air will release toxic, corrosive or flammable gases.
- Reaction with water may generate much heat that will increase the concentration of fumes in the air.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

 If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Substances - Toxic and/or Corrosive (Flammable/Water-Sensitive)

GUIDE 155

EMERGENCY RESPONSE

FIRE

Note: Most foams will react with the material and release corrosive/toxic gases.

CAUTION: For Acetyl chloride (UN1717), use CO₂ or dry chemical only.

Small Fire

• CO₂, dry chemical, dry sand, alcohol-resistant foam.

Large Fire

- · Water spray, fog or alcohol-resistant foam.
- FOR CHLOROSILANES, DO NOT USE WATER; use AFFF alcohol-resistant medium-expansion foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- · Avoid aiming straight or solid streams directly onto the product.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · All equipment used when handling the product must be grounded.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- A vapor-suppressing foam may be used to reduce vapors.
- FOR CHLOROSILANES, use AFFF alcohol-resistant medium-expansion foam to reduce vapors.
- DO NOT GET WATER on spilled substance or inside containers.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Prevent entry into waterways, sewers, basements or confined areas.

Small Spill

- Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- For minor skin contact, avoid spreading material on unaffected skin.
- Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE/WATER-SENSITIVE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Combustible material: may burn but does not ignite readily.
- · Substance will react with water (some violently) releasing flammable, toxic or corrosive gases and runoff.
- When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards.
- Most vapors are heavier than air. They will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Vapors may travel to source of ignition and flash back.
- · Contact with metals may evolve flammable hydrogen gas.
- · Containers may explode when heated or if contaminated with water.

HEALTH

- TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe
 injury, burns or death.
- Contact with molten substance may cause severe burns to skin and eyes.
- Reaction with water or moist air will release toxic, corrosive or flammable gases.
- · Reaction with water may generate much heat that will increase the concentration of fumes in the air.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Substances - Toxic and/or Corrosive (Combustible/Water-Sensitive)

GUIDE 156

EMERGENCY RESPONSE

FIRE

Note: Most foams will react with the material and release corrosive/toxic gases.

Small Fire

• CO₂, dry chemical, dry sand, alcohol-resistant foam.

Large Fire

- Water spray, fog or alcohol-resistant foam.
- FOR CHLOROSILANES, DO NOT USE WATER; use AFFF alcohol-resistant medium-expansion foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- · Avoid aiming straight or solid streams directly onto the product.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- · Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · All equipment used when handling the product must be grounded.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- Stop leak if you can do it without risk.
- A vapor-suppressing foam may be used to reduce vapors.
- FOR CHLOROSILANES, use AFFF alcohol-resistant medium-expansion foam to reduce vapors.
- · DO NOT GET WATER on spilled substance or inside containers.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Prevent entry into waterways, sewers, basements or confined areas.

Small Spill

- Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- · In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · For minor skin contact, avoid spreading material on unaffected skin.
- · Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE SUBSTANCES - TOXIC AND/OR CORROSIVE (NON-COMBUSTIBLE/WATER-SENSITIVE)

POTENTIAL HAZARDS

HEALTH

- TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe
 injury, burns or death.
- Reaction with water or moist air may release toxic, corrosive or flammable gases.
- Reaction with water may generate much heat that will increase the concentration of fumes in the air.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

FIRE OR EXPLOSION

- Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes.
- UN1796, UN1802, UN1826, UN2032, UN3084, UN3085, and, at concentrations above 65%, UN2031 may act as oxidizers. Also consult GUIDE 140.
- Vapors may accumulate in confined areas (basement, tanks, hopper/tank cars, etc.).
- Substance may react with water (some violently), releasing corrosive and/or toxic gases and runoff.
- · Contact with metals may evolve flammable hydrogen gas.
- Containers may explode when heated or if contaminated with water.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Substances - Toxic and/or Corrosive (Non-Combustible/Water-Sensitive)

GUIDE 157

EMERGENCY RESPONSE

FIRE

Note: Some foams will react with the material and release corrosive/toxic gases.

Small Fire

CO₂ (except for Cyanides), dry chemical, dry sand, alcohol-resistant foam.

Large Fire

- Water spray, fog or alcohol-resistant foam.
- · If it can be done safely, move undamaged containers away from the area around the fire.
- Avoid aiming straight or solid streams directly onto the product.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Do not get water inside containers.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · All equipment used when handling the product must be grounded.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- Stop leak if you can do it without risk.
- · A vapor-suppressing foam may be used to reduce vapors.
- DO NOT GET WATER INSIDE CONTAINERS.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Prevent entry into waterways, sewers, basements or confined areas.

Small Spill

- Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eves with running water for at least 20 minutes.
- In case of skin contact with Hydrofluoric acid (UN1790), if calcium gluconate gel is available, rinse 5 minutes, then apply gel. Otherwise, continue rinsing until medical treatment is available.
- For minor skin contact, avoid spreading material on unaffected skin.
- Keep victim calm and warm.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.

GUIDE Infectious Substances 158

POTENTIAL HAZARDS

HEALTH

- Inhalation or contact with substance may cause infection, disease or death.
- Category A Infectious Substances (UN2814, UN2900 or UN3549) are more hazardous, or are in a more hazardous form, than infectious substances shipped as Category B Biological Substances (UN3373) or clinical waste/medical waste (UN3291).
- Runoff from fire control or dilution water may cause environmental contamination.
- Damaged packages containing solid CO₂ as a refrigerant may produce water or frost from condensation
 of air. Do not touch this liquid as it could be contaminated by the contents of the parcel.
- Contact with solid CO₂ may cause burns, severe injury and/or frostbite.

FIRE OR EXPLOSION

- · Some of these materials may burn, but none ignite readily.
- · Some may be transported in flammable liquids.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Consult the shipping paper to identify the substance involved.

PROTECTIVE CLOTHING

- Use judgement based on the amount of material present and the possible routes of exposure to select protective clothing.
- Wear appropriate respiratory protection, such as fit-tested N95 respirator (at minimum), powered air purifying respirator (PAPR), or positive pressure self-contained breathing apparatus (SCBA).
- Wear full coverage body protection (e.g., Tyvek suit), faceshield, and disposable fluid-resistant gloves (e.g., latex or nitrile).
- Wear appropriate footwear; disposable shoe covers can be worn to protect against contamination.
- Puncture- and cut-resistant gloves should be worn over fluid-resistant gloves if sharp objects (e.g., broken glass, needles) are present.
- Wear insulated gloves (e.g. cryo gloves) over fluid-resistant gloves when handling dry ice (UN1845).
- Decontaminate protective clothing and personal protective equipment after use and before cleaning or disposal with a compatible chemical disinfectant (e.g., 10% solution of bleach, equivalent to 0.5% sodium hypochlorite) or through a validated decontamination technology (e.g., autoclave) or process.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.
- For more information on decontamination, consult p. 362

EVACUATION

Immediate precautionary measure

• Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

EMERGENCY RESPONSE

FIRE

Small Fire

Dry chemical, soda ash, lime or sand.

Large Fire

- · Use extinguishing agent suitable for type of surrounding fire.
- Do not scatter spilled material with high-pressure water streams.
- If it can be done safely, move undamaged containers away from the area around the fire.

SPILL OR LEAK

- Do not touch or walk through spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Absorb with earth, sand or other non-combustible material.
- Cover damaged package or spilled material with absorbent material such as paper towel, towel or rag to
 absorb any liquids, and, beginning from outside edge, pour liquid bleach or other chemical disinfectant to
 saturate. Keep wet with liquid bleach or other disinfectant.
- DO NOT CLEAN-UP OR DISPOSE OF, EXCEPT UNDER SUPERVISION OF A SPECIALIST.

FIRST AID

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to a safe isolated area if it can be done safely.

CAUTION: Victim may be a source of contamination.

- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush eyes with running water and wash skin with soap and water for at least 20 minutes. Take caution not to break the skin.
- Effects of exposure (inhalation, ingestion, injection/inoculation or skin contact) to substance may be delayed. Victim should consult medical professional for information regarding symptoms and treatment.
- · For further assistance, contact your local Poison Control Center.

GUIDE SUBSTANCES (IRRITATING) 159

POTENTIAL HAZARDS

HEALTH

- Inhalation of vapors or dust is extremely irritating.
- May cause burning of eyes and lachrymation (flow of tears).
- · May cause coughing, difficult breathing and nausea.
- · Brief exposure effects last only a few minutes.
- Exposure in an enclosed area may be very harmful.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- · Some of these materials may burn, but none ignite readily.
- · Containers may explode when heated.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

EMERGENCY RESPONSE

FIRE

Small Fire

• Dry chemical, CO₂, water spray or regular foam.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw
 from area and let fire burn.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.

Small Spill

 Pick up with sand or other non-combustible absorbent material and place into containers for later disposal.

Large Spill

- Dike far ahead of liquid spill for later disposal.
- Prevent entry into waterways, sewers, basements or confined areas.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20
 minutes
- · For minor skin contact, avoid spreading material on unaffected skin.
- Keep victim calm and warm.
- Effects should disappear after individual has been exposed to fresh air for approximately 10 minutes.

GUIDE HALOGENATED SOLVENTS

POTENTIAL HAZARDS

HEALTH

- Toxic by ingestion.
- · Vapors may cause dizziness or asphyxiation.
- · Exposure in an enclosed area may be very harmful.
- · Contact may irritate or burn skin and eyes.
- Fire may produce irritating and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- · Some of these materials may burn, but none ignite readily.
- Most vapors are heavier than air.
- · Air/vapor mixtures may explode when ignited.
- · Container may explode in heat of fire.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Keep unauthorized personnel away.
- Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

EMERGENCY RESPONSE

FIRE

Small Fire

• Dry chemical, CO2 or water spray.

Large Fire

- Dry chemical, CO₂, alcohol-resistant foam or water spray.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Stop leak if you can do it without risk.

Small Liquid Spill

Pick up with sand, earth or other non-combustible absorbent material.

Large Spill

- · Dike far ahead of liquid spill for later disposal.
- · Prevent entry into waterways, sewers, basements or confined areas.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · For minor skin contact, avoid spreading material on unaffected skin.
- Wash skin with soap and water.
- · Keep victim calm and warm.

GUIDE RADIOACTIVE MATERIALS 161 (LOW LEVEL RADIATION)

POTENTIAL HAZARDS

HEALTH

- Radiation presents minimal risk to transport workers, emergency response personnel and the public during transportation accidents. Packaging durability increases as potential hazard of radioactive content increases.
- Very low levels of contained radioactive materials and low radiation levels outside packages result in low risks to people. Damaged packages may release measurable amounts of radioactive material, but the resulting risks are expected to be low.
- Some radioactive materials cannot be detected by commonly available instruments.
- Packages do not have RADIOACTIVE I, II, or III labels. Some may have EMPTY labels or may have the
 word "Radioactive" in the package marking.

FIRE OR EXPLOSION

- · Some of these materials may burn, but most do not ignite readily.
- Many have cardboard outer packaging; content (physically large or small) can be of many different physical forms.
- Radioactivity does not change flammability or other properties of materials.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Priorities for rescue, life-saving, first aid, fire control and other hazards are higher than the
 priority for measuring radiation levels.
- Radiation Authority must be notified of accident conditions. Radiation Authority is usually responsible for decisions about radiological consequences and closure of emergencies.
- · Stay upwind, uphill and/or upstream.
- Keep unauthorized personnel away.
- Detain or isolate uninjured persons or equipment suspected to be contaminated; delay decontamination and cleanup until instructions are received from Radiation Authority.

PROTECTIVE CLOTHING

 Positive pressure self-contained breathing apparatus (SCBA) and structural firefighters' protective clothing will provide adequate protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

 When a large quantity of this material is involved in a major fire, consider an initial evacuation distance of 300 meters (1000 feet) in all directions.

Page 258 ERG 2020

161

EMERGENCY RESPONSE

FIRE

- Presence of radioactive material will not influence the fire control processes and should not influence selection of techniques.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Do not move damaged packages; move undamaged packages out of fire zone.

Small Fire

• Dry chemical, CO2, water spray or regular foam.

Large Fire

Water spray, fog (flooding amounts).

SPILL OR LEAK

- Do not touch damaged packages or spilled material.
- Cover liquid spill with sand, earth or other non-combustible absorbent material.
- Cover powder spill with plastic sheet or tarp to minimize spreading.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Medical problems take priority over radiological concerns.
- · Use first aid treatment according to the nature of the injury.
- · Do not delay care and transport of a seriously injured person.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Injured persons contaminated by contact with released material are not a serious hazard to health care personnel, equipment or facilities.

GUIDE RADIOACTIVE MATERIALS 162 (LOW TO MODERATE LEVEL RADIATION)

POTENTIAL HAZARDS

HEALTH

- Radiation presents minimal risk to transport workers, emergency response personnel and the public during transportation accidents. Packaging durability increases as potential hazard of radioactive content increases.
- Undamaged packages are safe. Contents of damaged packages may cause higher external radiation
 exposure, or both external and internal radiation exposure if contents are released.
- Low radiation hazard when material is inside container. If material is released from package or bulk
 container, hazard will vary from low to moderate. Level of hazard will depend on the type and amount of
 radioactivity, the kind of material it is in, and/or the surfaces it is on.
- Some material may be released from packages during accidents of moderate severity but risks to people
 are not great.
- Released radioactive materials or contaminated objects usually will be visible if packaging fails.
- Some exclusive use shipments of bulk and packaged materials will not have "RADIOACTIVE" labels.
 Placards, markings and shipping papers provide identification.
- Some packages may have a "RADIOACTIVE" label and a second hazard label. The second hazard is
 usually greater than the radiation hazard; so follow this GUIDE as well as the response GUIDE for the
 second hazard class label.
- · Some radioactive materials cannot be detected by commonly available instruments.
- Runoff from control of cargo fire may cause low-level pollution.

FIRE OR EXPLOSION

- Some of these materials may burn, but most do not ignite readily.
- Uranium and Thorium metal cuttings may ignite spontaneously if exposed to air (see GUIDE 136).
- Nitrates are oxidizers and may ignite other combustibles (see GUIDE 141).

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not
 available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Priorities for rescue, life-saving, first aid, fire control and other hazards are higher than the priority for measuring radiation levels.
- Radiation Authority must be notified of accident conditions. Radiation Authority is usually responsible for decisions about radiological consequences and closure of emergencies.
- Stay upwind, uphill and/or upstream.
- · Keep unauthorized personnel away.
- Detain or isolate uninjured persons or equipment suspected to be contaminated; delay decontamination and cleanup until instructions are received from Radiation Authority.

PROTECTIVE CLOTHING

 Positive pressure self-contained breathing apparatus (SCBA) and structural firefighters' protective clothing will provide adequate protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Large Spill

· Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

 When a large quantity of this material is involved in a major fire, consider an initial evacuation distance of 300 meters (1000 feet) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

Page 260 ERG 2020

RADIOACTIVE MATERIALS (LOW TO MODERATE LEVEL RADIATION)

GUIDE 162

EMERGENCY RESPONSE

FIRE

- Presence of radioactive material will not influence the fire control processes and should not influence selection of techniques.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Do not move damaged packages; move undamaged packages out of fire zone.

Small Fire

• Dry chemical, CO₂, water spray or regular foam.

Large Fire

- · Water spray, fog (flooding amounts).
- · Dike runoff from fire control for later disposal.

SPILL OR LEAK

- Do not touch damaged packages or spilled material.
- Cover liquid spill with sand, earth or other non-combustible absorbent material.
- · Dike to collect large liquid spills.
- · Cover powder spill with plastic sheet or tarp to minimize spreading.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Medical problems take priority over radiological concerns.
- Use first aid treatment according to the nature of the injury.
- Do not delay care and transport of a seriously injured person.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- In case of contact with substance, wipe from skin immediately; flush skin or eyes with running water for at least 20 minutes
- Injured persons contaminated by contact with released material are not a serious hazard to health care personnel, equipment or facilities.

GUIDE RADIOACTIVE MATERIALS 163 (LOW TO HIGH LEVEL RADIATION)

POTENTIAL HAZARDS

HEALTH

- Radiation presents minimal risk to transport workers, emergency response personnel and the public during transportation accidents. Packaging durability increases as potential hazard of radioactive content increases.
- Undamaged packages are safe. Contents of damaged packages may cause higher external radiation exposure, or both external and internal radiation exposure if contents are released.
- Type A packages (cartons, boxes, drums, articles, etc.) identified as "Type A" by marking on packages or by shipping papers contain non-life-endangering amounts. Partial releases might be expected if "Type A" packages are damaged in moderately severe accidents.
- Type B packages, and the rarely occurring Type C packages (large and small, usually metal), contain
 the most hazardous amounts. They can be identified by package markings or by shipping papers.
 Life-threatening conditions may exist only if contents are released or package shielding fails. Because
 of design, evaluation and testing of packages, these conditions would be expected only for accidents of
 utmost severity.
- The rarely occurring "Special Arrangement" shipments may be of Type A, Type B or Type C packages.
 Package type will be marked on packages, and shipment details will be on shipping papers.
- Radioactive White-I labels indicate radiation levels outside single, isolated, undamaged packages are very low (less than 0.005 mSv/h (0.5 mrem/h)).
- Radioactive Yellow-II and Yellow-III labeled packages have higher radiation levels. The transport index
 (TI) on the label identifies the maximum radiation level in mrem/h one meter from a single, isolated,
 undamaged package.
- Some radioactive materials cannot be detected by commonly available instruments.
- · Water from cargo fire control may cause pollution.

FIRE OR EXPLOSION

- · Some of these materials may burn, but most do not ignite readily.
- Radioactivity does not change flammability or other properties of materials.
- Type B packages are designed and evaluated to withstand total engulfment in flames at temperatures of 800°C (1475°F) for a period of 30 minutes.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Priorities for rescue, life-saving, first aid, fire control and other hazards are higher than the priority for measuring radiation levels.
- Radiation Authority must be notified of accident conditions. Radiation Authority is usually responsible for decisions about radiological consequences and closure of emergencies.
- Stay upwind, uphill and/or upstream.
 Keep unauthorized personnel away.
- Detain or isolate uninjured persons or equipment suspected to be contaminated; delay decontamination and cleanup until instructions are received from Radiation Authority.

PROTECTIVE CLOTHING

 Positive pressure self-contained breathing apparatus (SCBA) and structural firefighters' protective clothing will provide adequate protection against internal radiation exposure, but not external radiation exposure.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

 When a large quantity of this material is involved in a major fire, consider an initial evacuation distance of 300 meters (1000 feet) in all directions.

Page 262 ERG 2020

RADIOACTIVE MATERIALS GUIDE (LOW TO HIGH LEVEL RADIATION) 163

EMERGENCY RESPONSE

FIRE

- Presence of radioactive material will not influence the fire control processes and should not influence selection of techniques.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Do not move damaged packages; move undamaged packages out of fire zone.

Small Fire

• Dry chemical, CO₂, water spray or regular foam.

Large Fire

- Water spray, fog (flooding amounts).
- · Dike runoff from fire control for later disposal.

SPILL OR LEAK

- Do not touch damaged packages or spilled material.
- Damp surfaces on undamaged or slightly damaged packages are seldom an indication of packaging failure. Most packaging for liquid content have inner containers and/or inner absorbent materials.
- Cover liquid spill with sand, earth or other non-combustible absorbent material.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Medical problems take priority over radiological concerns.
- Use first aid treatment according to the nature of the injury.
- Do not delay care and transport of a seriously injured person.
- · Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes
- Injured persons contaminated by contact with released material are not a serious hazard to health care
 personnel, equipment or facilities.

GUIDE RADIOACTIVE MATERIALS (SPECIAL FORM/ LOW TO HIGH LEVEL EXTERNAL RADIATION)

POTENTIAL HAZARDS

HEALTH

- Radiation presents minimal risk to transport workers, emergency response personnel and the public during transportation accidents. Packaging durability increases as potential hazard of radioactive content increases.
- Undamaged packages are safe; contents of damaged packages may cause external radiation exposure, and much higher external exposure if contents (source capsules) are released.
- Contamination and internal radiation hazards are not expected, but not impossible.
- Type A packages (cartons, boxes, drums, articles, etc.) identified as "Type A" by marking on packages
 or by shipping papers contain non-life-endangering amounts. Radioactive sources may be released if
 "Type A" packages are damaged in moderately severe accidents.
- Type B packages, and the rarely occurring Type C packages, (large and small, usually metal) contain
 the most hazardous amounts. They can be identified by package markings or by shipping papers.
 Life-threatening conditions may exist only if contents are released or package shielding fails. Because
 of design, evaluation and testing of packages, these conditions would be expected only for accidents of
 utmost severity.
- Radioactive White-I labels indicate radiation levels outside single, isolated, undamaged packages are very low (less than 0.005 mSv/h (0.5 mrem/h)).
- Radioactive Yellow-III and Yellow-III labeled packages have higher radiation levels. The transport index
 (TI) on the label identifies the maximum radiation level in mrem/h one meter from a single, isolated,
 undamaged package.
- Radiation from the package contents, usually in durable metal capsules, can be detected by most radiation instruments.
- · Water from cargo fire control is not expected to cause pollution.

FIRE OR EXPLOSION

- Packagings can burn completely without risk of content loss from sealed source capsule.
- Radioactivity does not change flammability or other properties of materials.
- Radioactive source capsules and Type B packages are designed and evaluated to withstand total
 engulfment in flames at temperatures of 800°C (1475°F) for a period of 30 minutes.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Priorities for rescue, life-saving, first aid, fire control and other hazards are higher than the priority for measuring radiation levels.
- Radiation Authority must be notified of accident conditions. Radiation Authority is usually responsible for decisions about radiological consequences and closure of emergencies.
- Stay upwind, uphill and/or upstream.
 Keep unauthorized personnel away.
- Delay final cleanup until instructions or advice is received from Radiation Authority.

PROTECTIVE CLOTHING

Positive pressure self-contained breathing apparatus (SCBA) and structural firefighters' protective clothing
will provide adequate protection against internal radiation exposure. but not external radiation exposure.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

 When a large quantity of this material is involved in a major fire, consider an initial evacuation distance of 300 meters (1000 feet) in all directions.

Page 264 ERG 2020

RADIOACTIVE MATERIALS (SPECIAL FORM/ LOW TO HIGH LEVEL EXTERNAL RADIATION)

GUIDE 164

EMERGENCY RESPONSE

FIRE

- Presence of radioactive material will not influence the fire control processes and should not influence selection of techniques.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Do not move damaged packages; move undamaged packages out of fire zone.

Small Fire

• Dry chemical, CO₂, water spray or regular foam.

Large Fire

Water spray, fog (flooding amounts).

SPILL OR LEAK

- Do not touch damaged packages or spilled material.
- Damp surfaces on undamaged or slightly damaged packages are seldom an indication of packaging failure. Contents are seldom liquid. Content is usually a metal capsule, easily seen if released from package.
- If source capsule is identified as being out of package, DO NOT TOUCH. Stay away and await advice from Radiation Authority.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Medical problems take priority over radiological concerns.
- Use first aid treatment according to the nature of the injury.
- Do not delay care and transport of a seriously injured person.
- Persons exposed to special form sources are not likely to be contaminated with radioactive material.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Injured persons contaminated by contact with released material are not a serious hazard to health care personnel, equipment or facilities.

GUIDE RADIOACTIVE MATERIALS 165 (FISSILE/LOW TO HIGH LEVEL RADIATION)

POTENTIAL HAZARDS

HEALTH

- Radiation presents minimal risk to transport workers, emergency response personnel and the public during transportation accidents. Packaging durability increases as potential radiation and criticality hazards of the content increase.
- Undamaged packages are safe. Contents of damaged packages may cause higher external radiation exposure, or both external and internal radiation exposure if contents are released.
- Type AF or IF packages, identified by package markings, do not contain life-threatening amounts of material.
 External radiation levels are low and packages are designed, evaluated and tested to control releases and to prevent a fission chain reaction under severe transport conditions.
- Type B(U)F, B(M)F and CF packages (identified by markings on packages or shipping papers) contain potentially
 life-endangering amounts. Because of design, evaluation and testing of packages, fission chain reactions are
 prevented and releases are not expected to be life-endangering for all accidents except those of utmost severity.
- The rarely occurring "Special Arrangement" shipments may be of Type AF, BF or CF packages. Package type will be marked on packages, and shipment details will be on shipping papers.
- The transport index (TI) shown on labels or a shipping paper might not indicate the radiation level at one meter
 from a single, isolated, undamaged package; instead, it might relate to controls needed during transport because
 of the fissile properties of the materials. Alternatively, the fissile nature of the contents may be indicated by a
 criticality safety index (CSI) on a special FISSILE label or on the shipping paper.
- Some radioactive materials cannot be detected by commonly available instruments.
- Water from cargo fire control is not expected to cause pollution.

FIRE OR EXPLOSION

- · These materials are seldom flammable. Packages are designed to withstand fires without damage to contents.
- Radioactivity does not change flammability or other properties of materials.
- Type AF, IF, B(U)F, B(M)F and CF packages are designed and evaluated to withstand total engulfment in flames at temperatures of 800°C (1475°F) for a period of 30 minutes.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Priorities for rescue, life-saving, first aid, fire control and other hazards are higher than the priority
 for measuring radiation levels.
 Radiation Authority must be notified of accident conditions. Radiation
 Authority is usually responsible for decisions about radiological consequences and closure of emergencies.
- Stay upwind, uphill and/or upstream.
 Keep unauthorized personnel away.
- Detain or isolate uninjured persons or equipment suspected to be contaminated; delay decontamination and cleanup until instructions are received from Radiation Authority.

PROTECTIVE CLOTHING

Positive pressure self-contained breathing apparatus (SCBA) and structural firefighters' protective clothing will
provide adequate protection against internal radiation exposure, but not external radiation exposure.

EVACUATION

Immediate precautionary measure

• Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

 When a large quantity of this material is involved in a major fire, consider an initial evacuation distance of 300 meters (1000 feet) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

Page 266 ERG 2020

RADIOACTIVE MATERIALS GUIDE (FISSILE/LOW TO HIGH LEVEL RADIATION) 165

EMERGENCY RESPONSE

FIRE

- Presence of radioactive material will not influence the fire control processes and should not influence selection of techniques.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Do not move damaged packages; move undamaged packages out of fire zone.

Small Fire

• Dry chemical, CO₂, water spray or regular foam.

Large Fire

Water spray, fog (flooding amounts).

SPILL OR LEAK

- Do not touch damaged packages or spilled material.
- Damp surfaces on undamaged or slightly damaged packages are seldom an indication of packaging failure. Most packaging for liquid content have inner containers and/or inner absorbent materials.

Liquid Spill

Package contents are seldom liquid. If any radioactive contamination resulting from a liquid release is
present, it probably will be low-level.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Medical problems take priority over radiological concerns.
- Use first aid treatment according to the nature of the injury.
- Do not delay care and transport of a seriously injured person.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20
 minutes.
- Injured persons contaminated by contact with released material are not a serious hazard to health care personnel, equipment or facilities.

GUIDE RADIOACTIVE MATERIALS - CORROSIVE 166 (URANIUM HEXAFLUORIDE/WATER-SENSITIVE)

POTENTIAL HAZARDS

HEALTH

- Radiation presents minimal risk to transport workers, emergency response personnel and the public during transportation accidents. Packaging durability increases as potential radiation and criticality hazards of the content increase.
- · Chemical hazard greatly exceeds radiation hazard.
- Substance reacts with water and water vapor in air to form toxic and corrosive hydrogen fluoride gas, hydrofluoric acid, and an extremely irritating and corrosive, white-colored, water-soluble residue.
- If inhaled, may be fatal.
 Direct contact causes burns to skin, eyes, and respiratory tract.
- Low-level radioactive material; very low radiation hazard to people.
- · Runoff from control of cargo fire may cause low-level pollution.

FIRE OR EXPLOSION

- Substance does not burn.
 The material may react violently with fuels.
- Product will decompose to produce toxic and/or corrosive fumes.
- Containers in protective overpacks (horizontal cylindrical shape with short legs for tie-downs), are identified with "AF", "B(U)F" or "H(U)" on shipping papers or by markings on the overpacks. They are designed and evaluated to withstand severe conditions including total engulfment in flames at temperatures of 800°C (1475°F) for a period of 30 minutes.
- Bare filled cylinders, identified with UN2978 as part of the marking (may also be marked H(U) or H(M)), may rupture in heat of engulfing fire; bare empty (except for residue) cylinders will not rupture in fires.
- Radioactivity does not change flammability or other properties of materials.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Priorities for rescue, life-saving, first aid, fire control and other hazards are higher than the priority for measuring radiation levels.
- Radiation Authority must be notified of accident conditions. Radiation Authority is usually responsible for decisions about radiological consequences and closure of emergencies.
- Stay upwind, uphill and/or upstream.
 Keep unauthorized personnel away.
- Detain or isolate uninjured persons or equipment suspected to be contaminated; delay decontamination and cleanup until instructions are received from Radiation Authority.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

• Isolate spill or leak area for at least 25 meters (75 feet) in all directions.

Spill

· See Table 1 - Initial Isolation and Protective Action Distances.

Fire

 When a large quantity of this material is involved in a major fire, consider an initial evacuation distance of 300 meters (1000 feet) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

Page 268 ERG 2020

RADIOACTIVE MATERIALS - CORROSIVE (URANIUM HEXAFLUORIDE/WATER-SENSITIVE)

GUIDE 166

EMERGENCY RESPONSE

FIRE

- DO NOT USE WATER OR FOAM ON MATERIAL ITSELF.
- If it can be done safely, move undamaged containers away from the area around the fire.

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray, fog or regular foam.
- · Cool containers with flooding quantities of water until well after fire is out.
- If this is impossible, withdraw from area and let fire burn.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- · Do not touch damaged packages or spilled material.
- · DO NOT GET WATER INSIDE CONTAINERS.
- Without fire or smoke, leak will be evident by visible and irritating vapors and residue forming at the point
 of release.
- Use fine water spray to reduce vapors; do not put water directly on point of material release from container.
- · Residue buildup may self-seal small leaks.
- · Dike far ahead of spill to collect runoff water.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Medical problems take priority over radiological concerns.
- Use first aid treatment according to the nature of the injury.
- In case of skin contact with hydrogen fluoride gas and/or Hydrofluoric acid, if calcium gluconate
 gel is available, rinse 5 minutes, then apply gel. Otherwise, continue rinsing until medical treatment is
 available.
- Do not delay care and transport of a seriously injured person.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.
- · Keep victim calm and warm.

GUIDE 167

Page intentionally left blank
There are no materials that refer to this guide.

GUIDE 167

Page intentionally left blank
There are no materials that refer to this guide.

GUIDE CARBON MONOXIDE (REFRIGERATED LIQUID) 168

POTENTIAL HAZARDS

HEALTH

- TOXIC; Extremely Hazardous.
- · Inhalation extremely dangerous; may be fatal.
- · Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- · Odorless, will not be detected by sense of smell.

FIRE OR EXPLOSION

EXTREMELY FLAMMABLE.

CAUTION: Flame can be invisible. Use an alternate method of detection (thermal camera, broom handle, etc.)

- · May be ignited by heat, sparks or flames.
- Containers may explode when heated.
- Vapor explosion and poison hazard indoors, outdoors or in sewers.
- Vapors from liquefied gas are initially heavier than air and spread along ground.
- · Vapors may travel to source of ignition and flash back.
- Runoff may create fire or explosion hazard.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.
- Always wear thermal protective clothing when handling refrigerated/cryogenic liquids.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Spill

See Table 1 - Initial Isolation and Protective Action Distances.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Page 272 ERG 2020

EMERGENCY RESPONSE

FIRE

CAUTION: Flame can be invisible. Use an alternate method of detection (thermal camera, broom handle, etc.)

DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.

Small Fire

• Dry chemical, CO₂ or water spray.

Large Fire

- · Water spray, fog or regular foam.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Do not direct water at source of leak or safety devices; icing may occur.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Do not direct water at spill or source of leak.
- If possible, turn leaking containers so that gas escapes rather than liquid.
- Prevent entry into waterways, sewers, basements or confined areas.
- · Isolate area until gas has dispersed.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes
- In case of contact with liquefied gas, thaw frosted parts with lukewarm water.
- · Keep victim calm and warm.
- · Keep victim under observation.
- · Effects of contact or inhalation may be delayed.

GUIDE ALUMINUM (MOLTEN)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Substance is transported in molten form at a temperature above 705°C (1300°F).
- Violent reaction with water; contact may cause an explosion or may produce a flammable gas.
- Will ignite combustible materials (wood, paper, oil, debris, etc.).
- · Contact with nitrates or other oxidizers may cause an explosion.
- Contact with containers or other materials, including cold, wet or dirty tools, may cause an explosion.
- Contact with concrete will cause spalling and small pops.

HEALTH

- Contact causes severe burns to skin and eyes.
- Fire may produce irritating and/or toxic gases.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Stay upwind, uphill and/or upstream.
- · Keep unauthorized personnel away.
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear flame-retardant structural firefighters' protective clothing, including faceshield, helmet and gloves, as this will provide limited thermal protection.

EVACUATION

Immediate precautionary measure

• Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

EMERGENCY RESPONSE

FIRE

- Do not use water, except in life-threatening situations and then only in a fine spray.
- · Do not use halogenated extinguishing agents or foam.
- Move combustibles out of path of advancing pool if you can do so without risk.
- Extinguish fires started by molten material by using appropriate method for the burning material; keep water, halogenated extinguishing agents and foam away from the molten material.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- Do not attempt to stop leak, due to danger of explosion.
- · Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Substance is very fluid, spreads quickly, and may splash. Do not try to stop it with shovels or other
 objects.
- Dike far ahead of spill; use dry sand to contain the flow of material.
- Where possible allow molten material to solidify naturally.
- Avoid contact even after material solidifies. Molten, heated and cold aluminum look alike; do not touch unless you know it is cold.
- Clean up under the supervision of an expert after material has solidified.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- For severe burns, immediate medical attention is required.
- Removal of solidified molten material from skin requires medical assistance.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.

GUIDE METALS (POWDERS, DUSTS, SHAVINGS, BORINGS, 170 TURNINGS, OR CUTTINGS, ETC.)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- May react violently or explosively on contact with water.
- · Some are transported in flammable liquids.
- · May be ignited by friction, heat, sparks or flames.
- · Some of these materials will burn with intense heat.
- · Dusts or fumes may form explosive mixtures in air.
- · Containers may explode when heated.
- · May re-ignite after fire is extinguished.

HEALTH

- Oxides from metallic fires are a severe health hazard.
- Inhalation or contact with substance or decomposition products may cause severe injury or death.
- · Fire may produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Stay upwind, uphill and/or upstream.
- · Keep unauthorized personnel away.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Large Spill

Consider initial downwind evacuation for at least 50 meters (160 feet).

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

Metals (Powders, Dusts, Shavings, Borings, Turnings, or Cuttings, etc.)

GUIDE 170

EMERGENCY RESPONSE

FIRE

- DO NOT USE WATER, FOAM OR CO₂.
- Dousing metallic fires with water will generate hydrogen gas, an extremely dangerous explosion hazard, particularly if fire is in a confined environment (i.e., building, cargo hold, etc.).
- Use DRY sand, graphite powder, dry sodium chloride-based extinguishers, or class D extinguishers.
- · Confining and smothering metal fires is preferable rather than applying water.
- If it can be done safely, move undamaged containers away from the area around the fire.

Fire Involving Tanks or Car/Trailer Loads

If impossible to extinguish, protect surroundings and allow fire to burn itself out.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Keep victim calm and warm.

GUIDE SUBSTANCES (LOW TO MODERATE HAZARD)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Some may burn but none ignite readily.
- · Containers may explode when heated.
- · Some may be transported hot.
- For UN3508, Capacitor, asymmetric, be aware of possible short circuiting as this product is transported in a charged state.
- Polymeric beads, expandable (UN2211) may evolve flammable vapours.

HEALTH

- · Inhalation of material may be harmful.
- · Contact may cause burns to skin and eyes.
- Inhalation of Asbestos dust may have a damaging effect on the lungs.
- Fire may produce irritating, corrosive and/or toxic gases.
- Some liquids produce vapors that may cause dizziness or asphyxiation.
- · Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Substances (Low to Moderate Hazard) GUIDE 171

EMERGENCY RESPONSE

FIRE

Small Fire

• Dry chemical, CO₂, water spray or regular foam.

Large Fire

- · Water spray, fog or regular foam.
- Do not scatter spilled material with high-pressure water streams.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks

- · Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- · Prevent dust cloud.
- For Asbestos, avoid inhalation of dust. Cover spill with plastic sheet or tarp to minimize spreading. Do not clean up or dispose of, except under supervision of a specialist.

Small Dry Spill

 With clean shovel, place material into clean, dry container and cover loosely; move containers from spill area.

Small Spill

 Pick up with sand or other non-combustible absorbent material and place into containers for later disposal.

Large Spill

- Dike far ahead of liquid spill for later disposal.
- Cover powder spill with plastic sheet or tarp to minimize spreading.
- Prevent entry into waterways, sewers, basements or confined areas.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.

GUIDE GALLIUM AND MERCURY 172

POTENTIAL HAZARDS

HEALTH

- Inhalation of vapors or contact with substance will result in contamination and potential harmful effects.
- Fire will produce irritating, corrosive and/or toxic gases.

FIRE OR EXPLOSION

- Non-combustible, substance itself does not burn but may react upon heating to produce corrosive and/or toxic fumes.
- · Runoff may pollute waterways.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Stay upwind, uphill and/or upstream.
- Keep unauthorized personnel away.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 50 meters (150 feet) in all directions.

Large Spill

Consider initial downwind evacuation for at least 100 meters (330 feet).

Fire

When any large container is involved in a fire, consider initial evacuation for 500 meters (1/3 mile) in all
directions

Page 280 ERG 2020

EMERGENCY RESPONSE

FIRE

- Use extinguishing agent suitable for type of surrounding fire.
- · Do not direct water at the heated metal.

SPILL OR LEAK

- Do not touch or walk through spilled material.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.
- Do not use steel or aluminum tools or equipment.
- Cover with earth, sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- · For mercury, use a mercury spill kit.
- Mercury spill areas may be subsequently treated with calcium sulphide/calcium sulfide or with sodium thiosulphate/sodium thiosulfate wash to neutralize any residual mercury.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes
- · Keep victim calm and warm.

GUIDE Adsorbed Gases - Toxic*

POTENTIAL HAZARDS

HEALTH

- TOXIC; may be fatal if inhaled or absorbed through skin.
- · Vapors may be irritating.
- · Contact with gas may cause burns and injury.
- Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION

- Some gases may burn or be ignited by heat, sparks or flames.
- · May form explosive mixtures with air.
- Oxidizers may ignite combustibles (wood, paper, oil, clothing, etc.) but NOT readily due to low transportation pressures.
- Vapors may travel to source of ignition and flash back.
- · Some of these materials may react violently with water.
- Cylinders exposed to fire may vent and release toxic and flammable gas through pressure relief devices.
- · Runoff may create fire hazard.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- Wear chemical protective clothing that is specifically recommended by the manufacturer when there is NO RISK OF FIRE.
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Spill

See Table 1 - Initial Isolation and Protective Action Distances.

Fire

 If several small packages (inside a railcar or trailer) are involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

* SOME SUBSTANCES MAY ALSO BE FLAMMABLE, CORROSIVE AND/OR OXIDIZING

Adsorbed Gases - Toxic* GUIDE 173

EMERGENCY RESPONSE

FIRE

DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.

Small Fire

- Dry chemical, CO₂, water spray or alcohol-resistant foam.
- For UN3515, UN3518, UN3520, use water only; no dry chemical, CO₂ or Halon®.

Large Fire

- Water spray, fog or alcohol-resistant foam.
- · Do not get water inside containers.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Damaged cylinders should be handled only by specialists.

Fire Involving Several Small Packages (inside a railcar or trailer)

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- · Do not direct water at source of leak or safety devices.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- ALWAYS stay away from tanks engulfed in fire.

SPILL OR LEAK

- Some gases may be flammable. ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- For flammable gases, all equipment used when handling the product must be grounded.
- For oxidizing substances, keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- · Do not direct water at spill or source of leak.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Prevent entry into waterways, sewers, basements or confined areas.
- Isolate area until gas has dispersed.

- · Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- Move victim to fresh air if it can be done safely.
- Give artificial respiration if victim is not breathing.
- Do not perform mouth-to-mouth resuscitation if victim ingested or inhaled the substance; wash
 face and mouth before giving artificial respiration. Use a pocket mask equipped with a one-way
 valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- · Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- · Keep victim calm and warm.
- Keep victim under observation.
- · Effects of contact or inhalation may be delayed.

GUIDE Adsorbed Gases - Flammable or Oxidizing 174

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Some gases will be ignited by heat, sparks or flames.
- · Substance does not burn but will support combustion.
- · Vapors may travel to source of ignition and flash back.
- Cylinders exposed to fire may vent and release flammable gas through pressure relief devices.
- Containers may explode when exposed to prolonged direct flame impingement.

HEALTH

- · Vapors may cause dizziness or asphyxiation without warning.
- · Some may be irritating if inhaled at high concentrations.
- · Contact with gas may cause burns and injury.
- · Fire may produce irritating and/or toxic gases.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Many gases are heavier than air and will spread along the ground and collect in low or confined areas (sewers, basements, tanks, etc.).
- · Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- · Wear positive pressure self-contained breathing apparatus (SCBA).
- Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

· Isolate spill or leak area for at least 100 meters (330 feet) in all directions.

Large Spill

• Consider initial downwind evacuation for at least 800 meters (1/2 mile).

Fire

 If several small packages (inside a railcar or trailer) are involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions.

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the ERAP Program Section (page 390).

EMERGENCY RESPONSE

FIRE

- DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.
- Use extinguishing agent suitable for type of surrounding fire.

Small Fire

Dry chemical or CO₂.

Large Fire

- · Water spray or fog.
- If it can be done safely, move undamaged containers away from the area around the fire.
- · Damaged cylinders should be handled only by specialists.

Fire Involving Several Small Packages (inside a railcar or trailer)

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Cool containers with flooding quantities of water until well after fire is out.
- · Do not direct water at source of leak or safety devices.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks engulfed in fire.
- For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

SPILL OR LEAK

- For flammable gases, ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- For oxidizing substances, keep combustibles (wood, paper, oil, etc.) away from spilled material.
- All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material.
- Do not direct water at spill or source of leak.
- Prevent spreading of vapors through sewers, ventilation systems and confined areas.
- Ventilate the area
- · Isolate area until gas has dispersed.

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves.
- · Move victim to fresh air if it can be done safely.
- · Give artificial respiration if victim is not breathing.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin.
- Keep victim calm and warm.

INTRODUCTION TO GREEN TABLES

TABLE 1 - INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES

This table suggests distances useful to protect people from vapors/gases resulting from spills involving:

- materials that are considered toxic by inhalation (TIH) (PIH in the US)
- materials that produce toxic gases upon contact with water
- chemical warfare agents

This table provides first responders with initial guidance until technically qualified emergency response personnel are available. For each material, first responders will find distances for the following zones:

- The Initial Isolation Zone defines an area surrounding the incident in which people may be exposed to dangerous (upwind) and life-threatening (downwind) concentrations of material.
- The Protective Action Zone defines an area downwind from the incident in which
 people may become incapacitated and unable to take protective action and/or incur
 serious or irreversible health effects. Table 1 provides specific guidance for small and
 large spills occurring day or night.

Adjusting distances for a specific incident involves many interdependent variables. These adjustments should only be made by technically qualified personnel. For this reason, no precise guidance can be provided in this document to aid in adjusting the table distances; however, general guidance follows.

Factors that May Change the Protective Action Distances

Fire

In the **orange-bordered pages**, under **EVACUATION**—**Fire**, the evacuation distance required to protect against fragmentation hazard of a large container is clearly indicated. If involved in a fire, the toxic hazard may be less dangerous than the fire or explosion hazard.

In these cases, the **fire hazard distance should be used** as an isolation distance and Table 1 should be used to protect downwind for residual material release.

Worst-case scenario: terrorism, sabotage or catastrophic accident

Initial isolation and protective action distances are derived from historical data on transportation incidents and the use of statistical models. For worst-case scenarios involving the instantaneous release of the entire contents of a package (e.g., as a result of terrorism, sabotage or catastrophic accident), the distances may increase substantially.

For such events, **doubling** the initial isolation and protective action distances is appropriate in absence of other information.

When more than one large package is leaking

If more than one rail car, tank truck, tank or large cylinder, containing TIH materials is leaking, large spill distances may need to be increased.

Other factors that can increase the protective action distance:

- If a material has a protective action distance of 11.0+ km (7.0+ miles), the actual distance can be larger in certain atmospheric conditions.
- If the material's vapor plume is channeled in a valley or between many tall buildings, protective action distances may be larger than shown due to less mixing of the plume with the atmosphere.
- If there is a daytime spill in a region with known strong temperature inversions
 or snow cover, or it occurs near sunset, this may require an increase of the
 protective action distance because airborne contaminants mix and disperse more
 slowly and may travel much farther downwind.
 - In such cases, the nighttime protective action distances may be more appropriate.
- If the temperature of the liquid spill or the outdoor temperature exceeds 30°C (86°F), the protective action distance may be larger.

Water-reactive materials

Materials that react with water to produce large amounts of toxic gases are included in Table 1. Some of these materials have 2 entries in Table 1. They are identified by (when spilled on land) since they are TIH products and (when spilled in water) because they produce additional toxic gases when spilled in water.

Choose the larger protective action distance if:

- · it is not clear whether the spill is on land or in water
- · the spill occurs both on land and in water

TABLE 2 - WATER-REACTIVE MATERIALS WHICH PRODUCE TOXIC GASES

This table lists materials that produce large amounts of Toxic Inhalation Hazard gases (TIH) when spilled in water as well as the TIH gases that are produced.

NOTE: The produced TIH gases indicated in Table 2 are for information purposes only. In Table 1, the initial isolation and protective action distances have already taken into consideration the produced TIH gas.

When a water-reactive TIH-producing material is spilled into a river or stream, the source of the toxic gas may flow downstream for a great distance.

TABLE 3 - INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES FOR LARGE SPILLS FOR DIFFERENT QUANTITIES OF SIX COMMON TIH (PIH IN THE US) GASES

This table lists materials that may be more commonly encountered. These materials are:

- UN1005 Ammonia, anhydrous
- UN1017 Chlorine
- UN1040 Ethylene oxide and UN1040 Ethylene oxide with nitrogen

- UN1050 Hydrogen chloride, anhydrous and UN2186 Hydrogen chloride, refrigerated liquid
- UN1052 Hydrogen fluoride, anhydrous
- UN1079 Sulfur dioxide/Sulphur dioxide

This table provides initial isolation and protective action distances for large spills (more than 208 liters or 55 US gallons):

- involving different container types (therefore different volume capacities)
- for daytime and nighttime situations
- for different wind speeds (low, moderate and high)

PROTECTIVE ACTIONS

Protective actions are the steps taken to preserve the health and safety of emergency responders and the public during an incident involving releases of hazardous materials/dangerous goods.

Table 1 - Initial Isolation and Protective Action Distances (green-bordered pages) predicts the size of the area that could be affected by a cloud of toxic gas. People in this area should be evacuated and/or sheltered-in-place inside buildings.

Isolate hazard area and deny entry means to keep everybody away from the area if they are not directly involved in emergency response operations. Unprotected emergency responders should not be allowed to enter the isolation zone.

This "isolation" task is done to establish control over the area of operations. This is the first step for any protective actions that may follow.

Evacuate means to move all people from a threatened area to a safer place. To perform an evacuation, there must be enough time for people to be warned, get ready, and leave an area. If there is enough time, evacuation is the best protective action.

Begin evacuating people nearby and those who are outdoors in direct view of the scene. When additional help arrives, expand the area to be evacuated downwind and crosswind to at least the extent recommended in this guidebook.

Even after people move to the distances recommended, they may not be completely safe from harm. They should not be permitted to gather at such distances. Send evacuees to a definite place, by a specific route, far enough away so they will not have to be moved again if the wind shifts

Shelter-in-place means people should seek shelter inside a building and remain inside until the danger passes. It is vital for first responders to maintain communications with sheltered-in-place people so that they are advised about changing conditions.

Sheltering-in-place is used either when:

- · evacuating the public would cause greater risk than staying where they are
- an evacuation cannot be performed

Direct the people inside to:

- close all doors and windows
- · shut off all ventilating, heating and cooling systems
- stay far from windows to avoid shattered glass and projectile metal fragments in the event of a fire and/or explosion
- tune in to local radio or TV stations, and stay inside until told it is safe to leave by first responders

Shelter-in-place may not be the best option if:

· the vapors are flammable

- · it will take a long time for the gas to clear the area
- buildings cannot be closed tightly

Vehicles can offer some protection for a short period if the windows are closed and the ventilation systems are shut off. Vehicles are not as effective as buildings for in-place protection.

NOTE: Every hazardous materials/dangerous goods incident is different. Each will have special problems and concerns. Actions to protect the public must be carefully selected. These pages can help with **initial** decisions on how to protect the public. Officials must continue to gather information and monitor the situation until the threat is removed.

PROTECTIVE ACTION DECISION FACTORS TO CONSIDER

The choice of protective actions for a given situation depends on a number of factors. For some cases, evacuation may be the best option; in others, sheltering-in-place may be the best course. Sometimes, these two actions may be used in combination. In any emergency, officials need to quickly give the public instructions. The public will need continuing information and instructions while being evacuated or sheltered-in-place.

Proper evaluation of the factors listed below will determine the effectiveness of evacuation or in-place protection (shelter-in-place). The importance of these factors can vary with emergency conditions. In specific emergencies, other factors may need to be identified and considered as well. This list indicates what kind of information may be needed to make the initial decision.

The hazardous materials/dangerous goods:

- degree of health hazard
- · chemical and physical properties
- amount involved
- containment/control of release
- · rate of vapor movement

The population threatened:

- location
- number of people
- time available to evacuate or shelter-in-place
- · ability to control evacuation or shelter-in-place
- building types and availability
- special institutions or populations, e.g., nursing homes, hospitals, prisons

The weather conditions:

- · effect on vapor and cloud movement
- · potential for change
- · effect on evacuation or shelter-in-place

BACKGROUND ON TABLE 1 – INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES

Initial isolation and protective action distances in this guidebook were determined for small and large spills occurring during day or night. The overall analysis, statistical in nature, was conducted using:

- state-of-the-art emission rate and dispersion models
- statistical release data from the U.S. Department of Transportation (DOT) Hazardous Materials Information System (HMIS) database
- meteorological observations from more than 120 locations in the United States, Canada, and Mexico
- the most current toxicological exposure guidelines

For each chemical, thousands of hypothetical releases were modeled to account for the statistical variance in both release amount and atmospheric conditions. Based on this statistical sample, they selected the 90th percentile protective action distance for each chemical and category to appear in the table. A brief description of the analysis is provided below.

A detailed report outlining the methodology and data used to generate the initial isolation and protective action distances may be obtained from the U.S. DOT, Pipeline and Hazardous Materials Safety Administration (PHMSA).

DESCRIPTION OF THE ANALYSIS

Release amounts and emission rates into the atmosphere were statistically modeled based on:

- data from the U.S. DOT HMIS database
- container types and sizes authorized for transport as specified in 49 CFR §172.101 and Part 173
- physical properties of the individual materials
- · atmospheric data from a historical database

For liquefied gases, which can flash to form both a vapor/aerosol mixture and an evaporating pool, the emission model calculated one or both of:

- the release of vapor due to evaporation of pools on the ground
- · direct release of vapors from the container

The emission model also calculated the emission of toxic vapor by-products generated from spilling water-reactive materials in water.

Small spills involve 208 liters (55 US gallons) or less.

Large spills involve greater quantities.

The exceptions are the entries at the beginning of Table 1 marked (when used as a weapon). The volumes used for these calculations varies, but in most cases:

- Small spills include releases up to 2 kg (4.4 lbs.).
- Large spills include releases up to 25 kg (55 lbs.).

Downwind dispersion of the vapor was estimated for each case modeled. Using a database containing hourly meteorological data from 120 American, Canadian, and Mexican cities, the atmospheric parameters affecting the dispersion and the emission rate were selected.

The dispersion calculation accounted for both the:

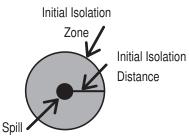
- time-dependent emission rate from the source
- density of the vapor plume (i.e., heavy gas effects)

Since atmospheric mixing is less effective at dispersing vapor plumes during nighttime, day and night were separated in the analysis.

In the table:

- day refers to time periods after sunrise and before sunset
- · night includes all hours between sunset and sunrise

Toxicological short-term exposure guidelines for the materials were applied to determine the downwind distance to which people may:

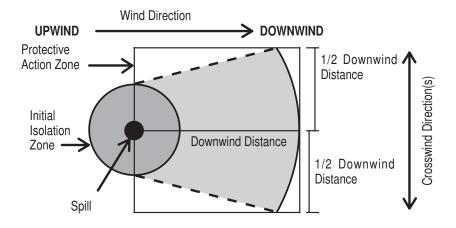

- become incapacitated and unable to take protective action
- incur serious health effects after a single, or rare, exposure

When available, toxicological exposure guidelines were chosen from AEGL-2 or ERPG-2 emergency response guidelines. AEGL-2 values were the first choice.

For materials without AEGL-2 or ERPG-2 values, emergency response guidelines were estimated based on lethal concentration limits derived from animal-based-studies. This approach was recommended by an independent panel of toxicological experts from industry and academia.

HOW TO USE TABLE 1 – INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES

- (1) The responder should already have:
 - identified the material by its ID number and name (if you cannot find an ID number, use the Name of Material index in the blue-bordered pages to find that number);
 - confirmed that the material is highlighted in green in the yellow or blue-bordered pages. If not, Table 1 doesn't apply;
 - found the three-digit guide for the material, in order to consult emergency actions it recommends along with this table; and
 - noted the wind direction
- (2) Look in Table 1 (green-bordered pages) for the ID number and name of the material involved. Some ID numbers have more than one shipping name listed. Look for the specific name of the material. If you do not know the shipping name and Table 1 lists more than one name for the same ID number, use the entry with the largest distances.
- (3) Determine if the incident involves a SMALL or LARGE spill and if it is DAY or NIGHT. A SMALL SPILL consists of a release of 208 liters (55 US gallons) or less. This generally corresponds to a spill from a single small package (for example, a drum), a small cylinder, or a small leak from a large package. A LARGE SPILL consists of a release of more than 208 liters (55 US gallons). This usually involves a spill from a large package, or multiple spills from many small packages. DAY is any time after sunrise and before sunset. NIGHT is any time between sunset and sunrise.
- (4) Look up the INITIAL ISOLATION DISTANCE. This distance defines the radius of a zone (initial isolation zone) surrounding the spill in ALL DIRECTIONS. In this zone, protective clothing and respiratory protection is required. Evacuate the general public in a direction perpendicular to wind direction (crosswind) and away from the spill.



(5) Look up the PROTECTIVE ACTION DISTANCE.

For a given material, spill size, and whether day or night, Table 1 gives the downwind distance—in kilometers and miles—from the spill or leak source, for which you should consider protective actions. For practical purposes, the protective action zone (i.e., the area in which people are at risk of harmful exposure) is a square. Its length and width are the same as the downwind distance shown in Table 1. Protective actions are the

- steps you take to preserve the health and safety of emergency responders and the public. People in this area should be evacuated and/or sheltered-in-place. Consult pages 289-291.
- (6) Initiate protective actions beginning with those closest to the spill site and working away in a downwind direction. When a water-reactive TIH (PIH in the US) producing material is spilled into a river or stream, the source of the toxic gas may move with the current or stretch from the spill point downstream for a large distance.

In the figure below, the spill is located at the center of the small black circle. The larger circle represents the initial isolation zone around the spill. The square (the protective action zone) is the area in which you should take protective actions.

- Note 1: For factors that may change the protective action distances, see "Introduction to Green Tables" (page 286).
- Note 2: When a product in Table 1 has the mention (when spilled in water), you can refer to Table 2 for the list of gases produced when these materials are spilled in water. The TIH gases indicated in Table 2 are for information purposes only.

For more information on the material, safety precautions and mitigation procedures, call the emergency response telephone number listed on the shipping paper or the appropriate response agency as soon as possible.

			(From a s	SMALL SPILLS (From a small package or small leak from a large package)	SMALL SPILLS kage or small leak fr	SPILLS all leak fro	ım a large	package)		ım a large p	LARGE Dackage or	LARGE SPILLS (From a large package or from many small packages)	small packé	(sebt
			ISOL	First ISOLATE	l ed	Then PROTECT Dersons Downwind during	Then PROTECT Is Downwind du	rina	. OSI	First ISOLATE		Then PROTECT Dersons Downwind during	en T ECT nwind durir	D
ი გ	Guide	NAME OF MATERIAL	Meters	(Feet)	D/ Kilometer	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)	Meters	s (Feet)	Kilomet	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)
	117	AC (when used as a weapon)	m 09	(200 ft)	0.3 km	(0.2 mi)	1.0 km	(0.6 mi)	1000 m	(3000 ft)	3.7 km	(2.3 mi)	8.4 km	(5.3 mi)
	154	Adamsite (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	m 09	(200 ft)	0.3 km	(0.2 mi)	1.4 km	(im 6.0)
	153	Buzz (when used as a weapon)	m 09	(200 ft)	0.4 km	(0.2 mi)	1.7 km	(1.1 mi)	400 m	(1250 ft)	2.2 km	(1.4 mi)	8.1 km	(5.0 mi)
	153	BZ (when used as a weapon)	m 09	(200 ft)	0.4 km	(0.2 mi)	1.7 km	(1.1 mi)	400 m	(1250 ft)	2.2 km	(1.4 mi)	8.1 km	(5.0 mi)
	159	CA (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	100 m	(300 ft)	0.5 km	(0.4 mi)	2.6 km	(1.6 mi)
	125	CG (when used as a weapon)	150 m	(500 ft)	0.8 km	(0.5 mi)	3.2 km	(2.0 mi)	1000 m	(3000 ft)	7.5 km	(4.7 mi)	11.0+ km	(7.0+ mi)
	125	CK (when used as a weapon)	30 m	(100 ft)	0.2 km	(0.2 mi)	1.4 km	(0.9 mi)	300 m	(1000 ft)	1.4 km	(0.9 mi)	6.1 km	(3.8 mi)
	153	CN (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	m 09	(200 ft)	0.3 km	(0.2 mi)	1.2 km	(0.8 mi)
	153	CS (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.6 km	(0.4 mi)	100 m	(300 ft)	0.4 km	(0.3 mi)	1.9 km	(1.2 mi)
	154	CX (when used as a weapon)	e0 m	(200 ft)	0.2 km	(0.2 mi)	1.1 km	(0.7 mi)	200 m	(e00 ft)	1.2 km	(0.7 mi)	5.1 km	(3.2 mi)
	121	DA (when used as a weapon)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.8 km	(0.5 mi)	300 m	(1000 ft)	1.9 km	(1.2 mi)	7.5 km	(4.7 mi)
	153	DC (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.6 km	(0.4 mi)	m 09	(200 ft)	0.4 km	(0.3 mi)	1.8 km	(1.1 mi)
	154	DM (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	m 09	(200 ft)	0.3 km	(0.2 mi)	1.4 km	(0.9 mi)
	125	DP (when used as a weapon)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.7 km	(0.4 mi)	200 m	(e00 ft)	1.0 km	(0.7 mi)	2.4 km	(1.5 mi)
	151	ED (when used as a weapon)	150 m	(500 ft)	0.9 km	(0.6 mi)	2.1 km	(1.3 mi)	1000 m	(3000 ft)	5.9 km	(3.7 mi)	8.3 km	(5.2 mi)
	153	GA (when used as a weapon)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	100 m	(300 ft)	0.5 km	(0.4 mi)	0.6 km	(0.4 mi)

	153 GE	GB (when used as a weapon)	e0 m	(200 ft)	0.4 km	(0.3 mi)	1.1 km	(0.7 mi)	400 m	(1250 ft)	2.1 km	(1.3 mi)	4.9 km	(3.0 mi)
	153 GE	GD (when used as a weapon)	ш 09	(200 ft)	0.4 km	(0.3 mi)	0.7 km	(0.5 mi)	300 m	(1000 ft)	1.8 km	(1.1 mi)	2.7 km	(1.7 mi)
	153 GF	GF (when used as a weapon)	30 m	(100 ft)	0.2 km	(0.2 mi)	0.3 km	(0.2 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	1.0 km	(0.6 mi)
1	153 H (H (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	m 09	(200 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
	153 HC	HD (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
	153 HL	HL (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	0.5 km	(0.3 mi)	1.0 km	(0.6 mi)
	153 HN (1	HN-1 (when used as a weapon)	m 09	(200 ft)	0.3 km	(0.2 mi)	0.5 km	(0.3 mi)	200 m	(600 ft)	1.1 km	(0.7 mi)	1.8 km	(1.1 mi)
	153 HN (1	HN-2 (when used as a weapon)	m 09	(200 ft)	0.3 km	(0.2 mi)	0.6 km	(0.4 mi)	300 m	(1000 ft)	1.3 km	(0.8 mi)	2.1 km	(1.3 mi)
	153 HN (1	HN-3 (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.3 km	(0.2 mi)	0.3 km	(0.2 mi)
	153 L (L (Lewisite) (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	0.5 km	(0.3 mi)	1.0 km	(0.6 mi)
	153 Le ₁ (1	Lewisite (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	0.5 km	(0.3 mi)	1.0 km	(0.6 mi)
	152 ME	MD (when used as a weapon)	300 m	(1000 ft)	1.6 km	(1.0 mi)	4.3 km	(2.7 mi)	1000 m	(3000 ft)	11.0+ km	(7.0+ mi)	11.0+ km	(7.0+ mi)
	153 Mu (1	Mustard (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	e0 m	(200 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
	153 Mu (1	Mustard Lewisite (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	0.5 km	(0.3 mi)	1.0 km	(0.6 mi)
	152 PD	PD (when used as a weapon)	m 09	(200 ft)	0.4 km	(0.3 mi)	0.4 km	(0.3 mi)	300 m	(1000 ft)	1.6 km	(1.0 mi)	1.6 km	(1.0 mi)
	11 9 SA	SA (when used as a weapon)	300 m	(1000 ft)	1.9 km	(1.2 mi)	5.7 km	(3.6 mi)	1000 m	(3000 ft)	8.9 km	(5.6 mi)	11.0+ km	(7.0+ mi)
	1 53 Sa (1	Sarin (when used as a weapon)	e0 m	(200 ft)	0.4 km	(0.3 mi)	1.1 km	(0.7 mi)	400 m	(1250 ft)	2.1 km	(1.3 mi)	4.9 km	(3.0 mi)
		;												

			(From a s	S small pack	SMALL SPILLS kage or small leak from	SPILLS all leak fro	om a large	SMALL SPILLS (From a small package or small leak from a large package)	(Fro	m a large p	LARGE SPILLS (From a large package or from many small packages)	LARGE SPILLS ckage or from many s	mall packa	ges)
			ISOL ISOL	First ISOLATE in all Directions	De d	Then PROTECT persons Downwind during	Then PROTECT s Downwind du	ring	ISO ISO	First ISOLATE In all Directions	8.	Then PROTECT persons Downwind during	ECT	5
o §	Guide	NAME OF MATERIAL	Meters (Feet)	(Feet)	D/ Kilometer	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	HT s (Miles)
	153	Soman (when used as a weapon)	m 09	(200 ft)	0.4 km	(0.3 mi)	0.7 km	(0.5 mi)	300 m	(1000 ft)	1.8 km	(1.1 mi)	2.7 km	(1.7 mi)
	153	Tabun (when used as a weapon)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	100 m	(300 ft)	0.5 km	(0.4 mi)	0.6 km	(0.4 mi)
	153	Thickened GD (when used as a weapon)	e0 m	(200 ft)	0.4 km	(0.3 mi)	0.7 km	(0.5 mi)	300 m	(1000 ft)	1.8 km	(1.1 mi)	2.7 km	(1.7 mi)
	153	VX (when used as a weapon)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.4 km	(0.2 mi)	0.3 km	(0.2 mi)
1005	125 125	Ammonia, anhydrous Anhydrous ammonia	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)			Refer to	Refer to table 3		
1008	125 125	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.7 km	(0.5 mi)	400 m	(1250 ft)	2.3 km	(1.4 mi)	5.1 km	(3.2 mi)
1016	119	Carbon monoxide Carbon monoxide, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	200 m	(H 009)	1.2 km	(0.7 mi)	4.3 km	(2.7 mi)
1017	124	Chlorine	e0 m	(200 ft)	0.3 km	(0.2 mi)	1.4 km	(im 6.0)			Refer to	Refer to table 3		
1026	119	Cyanogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	m 09	(200 ft)	0.3 km	(0.2 mi)	1.1 km	(0.7 mi)
1040	119P 119P	Ethylene oxide Ethylene oxide with Nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)			Refer to	Refer to table 3		
1045	124 124	Fluorine Fluorine, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	100 m	(300 ft)	0.5 km	(0.3 mi)	2.3 km	(1.4 mi)
1048	125	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	150 m	(500 ft)	1.0 km	(0.6 mi)	3.4 km	(2.1 mi)
1050	125	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)			Refer to table	table 3		

(1.1 mi)		(3.9 mi)	(1.3 mi)	(0.5 mi)	(2.6 mi)	(2.1 mi)	(6.7 mi)	(5.7 mi)		(0.5 mi)	(6.7 mi)	(1.4 mi)	(0.8 mi)	(0.1 mi)	(0.5 mi)	
1.7 km		6.3 km	2.1 km	0.8 km	4.1 km	3.3 km	10.8 km	9.2 km		0.8 km	10.8 km	2.3 km	1.2 km	0.1 km	0.7 km	
(0.5 mi)	Refer to table 3	(1.4 mi)	(0.4 mi)	(0.2 mi)	(0.8 mi)	(im 6.0)	(2.7 mi)	(1.8 mi)	Refer to table 3	(0.2 mi)	(3.8 mi)	(0.8 mi)	(0.5 mi)	(0.1 mi)	(0.3 mi)	TABLE 1
0.7 km	Refer t	2.2 km	0.7 km	0.3 km	1.3 km	1.4 km	4.3 km	2.9 km	Refer t	0.4 km	6.1 km	1.2 km	0.7 km	0.1 km	0.5 km	_
(000 ft)		(1250 ft)	(t) (e00)	(500 ft)	(H 009)	(1250 ft)	(2500 ft)	(1500 ft)		(200 ft)	(1500 ft)	(300 ft)	(200 ft)	(100 ft)	(200 ft)	
200 m		400 m	200 m	150 m	200 m	400 m	800 m	500 m		ш 09	500 m	100 m	m 09	30 m	m 09	
(0.4 mi)	(0.3 mi)	(0.3 mi)	(0.1 mi)	(0.1 mi)	(0.2 mi)	(0.3 mi)	(0.6 mi)	(1.5 mi)	(1.6 mi)	(0.1 mi)	(2.1 mi)	(0.4 mi)	(0.2 mi)	(0.1 mi)	(0.1 mi)	
0.6 km	0.5 km	0.5 km	0.2 km	0.1 km	0.3 km	0.4 km	1.0 km	2.4 km	2.5 km	0.1 km	3.3 km	0.6 km	0.3 km	0.1 km	0.2 km	nditions
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.2 mi)	(0.4 mi)	(0.4 mi)	(0.1 mi)	(0.8 mi)	(0.2 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	heric co
0.2 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.2 km	0.6 km	0.6 km	0.1 km	1.2 km	0.2 km	0.2 km	0.1 km	0.1 km	atmosp
(200 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(300 ft)	(300 ft)	(100 ft)	(300 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	in certair
m 09	30 m	30 m	30 m	30 m	30 m	30 m	30 m	100 m	100 m	30 m	100 m	30 m	30 m	30 m	30 m	e larger
Hydrogen cyanide, anhydrous, stabilized Hydrogen cyanide, stabilized	Hydrogen fluoride, anhydrous	Hydrogen sulfide Hydrogen sulphide	Methylamine, anhydrous	Methyl bromide	Methyl mercaptan	Dinitrogen tetroxide Nitrogen dioxide	Nitrosyl chloride	Phosgene	Sulfur dioxide Sulphur dioxide	Refrigerant gas R-1113 Trifluorochloroethylene, stabilized	Acrolein, stabilized	Acrylonitrile, stabilized	Allyl alcohol	Ethylene chlorohydrin	Crotonaldehyde Crotonaldehyde, stabilized	"+" means distance can be larger in certain atmospheric conditions
117P 117P	125	117	118	123	117	124 124	125	125	125 125	119P 119P	131P	131P	131	131	131P 131P	
1051	1052	1053 1053	1061	1062	1064	1067 1067	1069	1076	1079	1082	1092	1093	1098	1135	1143	

			(From a s	S small pack	SMALL SPILLS skage or small leak fro	SPILLS all leak fro	om a large	SMALL SPILLS (From a small package or small leak from a large package)	(Fro	m a large p	LARGE SPILLS (From a large package or from many small packages)	LARGE SPILLS lokage or from many s	small packa	(səb)
			Fil ISOL	First ISOLATE in all Directions	De d	Then PROTECT persons Downwind during	Then PROTECT Is Downwind du	ring	ISO I	First ISOLATE in all Directions	8.	Then PROTECT persons Downwind during	en ECT wind durin	5
<u>0</u> &	Guide	NAME OF MATERIAL	Meters	(Feet)	D/ Kilometer	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)
1162	155	Dimethyldichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	m 09	(200 ft)	0.6 km	(0.4 mi)	1.8 km	(1.1 mi)
1163	131	Dimethylhydrazine, unsymmetrical	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	100 m	(300 ft)	1.0 km	(0.6 mi)	1.8 km	(1.1 mi)
1182	155	Ethyl chloroformate	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	m 09	(200 ft)	0.6 km	(0.4 mi)	0.9 km	(0.6 mi)
1183	139	Ethyldichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.6 km	(0.4 mi)	2.0 km	(1.3 mi)
1185	131P	Ethyleneimine, stabilized	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	200 m	(600 ft)	0.9 km	(0.6 mi)	1.8 km	(1.1 mi)
1196	155	Ethyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	200 m	(600 ft)	2.1 km	(1.3 mi)	5.8 km	(3.6 mi)
1238	155	Methyl chloroformate	30 m	(100 ft)	0.2 km	(0.2 mi)	0.5 km	(0.4 mi)	150 m	(500 ft)	1.1 km	(0.7 mi)	2.1 km	(1.3 mi)
1239	131	Methyl chloromethyl ether	m 09	(200 ft)	0.5 km	(0.3 mi)	1.5 km	(0.9 mi)	300 m	(1000 ft)	3.1 km	(2.0 mi)	5.8 km	(3.6 mi)
1242	139	Methyldichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.8 km	(0.5 mi)	2.3 km	(1.5 mi)
1244	131	Methylhydrazine	30 m	(100 ft)	0.3 km	(0.2 mi)	0.6 km	(0.4 mi)	100 m	(300 ft)	1.4 km	(0.9 mi)	2.1 km	(1.3 mi)
1250	155	Methyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.8 km	(0.5 mi)	2.5 km	(1.6 mi)
1251	131P	Methyl vinyl ketone, stabilized	100 m	(300 ft)	0.3 km	(0.2 mi)	0.7 km	(0.4 mi)	m 008	(2500 ft)	1.6 km	(1.0 mi)	2.8 km	(1.8 mi)
1259	131	Nickel carbonyl	100 m	(300 ft)	1.3 km	(0.8 mi)	5.0 km	(3.1 mi)	1000 m	(3000 ft)	10.8 km	(6.8 mi)	11.0+ km	(7.0+ mi)

=	
Э.	
=	
=	
2	
=	
?	
•	
2	
=	
D	
=	
2	
allinospilei ic	
Э.	
=	
=	
D	
=	
D	
=	
D	
5	
פנומו	
=	
D	
<u>.</u>	
<u> </u>	
a g	
a Ige	
ज्यापुर	
2	
2	
2	
Call De	
distance can be	
means distance can be larger	
Illealls distalice call be	
distance can be	

| (1.3 mi) | (0.9 mi) | | (IIII 7:1) |
 | (0.9 mi)
 | (2.2 mi)
 | (3.9 mi) |
 | (1.6 mi) |
 | (1.4 mi) | (4.0 mi) | | |
|---|--|--|---
--
---|---
--
--|---
--
--|--|--|---|--|--
---|
| 2.1 km | 1.4 km | \$
C |
S |
 | 1.4 km
 | 3.5 km
 | 6.2 km |
 | 2.5 km |
 | 2.2 km | 6.5 km | | |
| (0.4 mi) | (0.3 mi) | | (0.4 IIII) |
 | (0.2 mi)
 | (0.6 mi)
 | (1.7 mi) |
 | (0.4 mi) |
 | (0.4 mi) | (1.2 mi) | | |
| 0.6 km | 0.5 km | \$ \frac{8}{2} | O.O KITI |
 | 0.3 km
 | 1.0 km
 | 2.7 km |
 | 0.6 km |
 | 0.6 km | 2.0 km | | ۱ |
| (200 ft) | (200 ft) | (| (1007) |
 | (200 ft)
 | (1000 ft)
 | (600 ft) |
 | (200 ft) |
 | (200 ft) | (1500 ft) | | |
| e0 m | e0 m | § | II 00 |
 | m 09
 | 300 m
 | 200 m |
 | ш 09 |
 | e0 m | 500 m | | |
| (0.1 mi) | (0.1 mi) | | (0.1 IIII) |
 | (0.1 mi)
 | (0.3 mi)
 | (1.2 mi) |
 | (0.3 mi) |
 | (0.2 mi) | (0.5 mi) | | |
| 0.1 km | 0.1 km | | |
 | 0.1 km
 | 0.4 km
 | 1.9 km |
 | 0.4 km |
 | 0.3 km | 0.7 km | | ndition |
| (0.1 mi) | (0.1 mi) | ı | |
 | (0.1 mi)
 | (0.1 mi)
 | (0.4 mi) |
 | (0.1 mi) |
 | (0.1 mi) | (0.1 mi) | | horio oo |
| 0.1 km | 0.1 km | ÷ | |
 | 0.1 km
 | 0.1 km
 | 0.6 km |
 | |
 | 0.1 km | 0.1 km | | otmoon |
| (100 ft) | (100 ft) | £ | (110011) |
 | (100 ft)
 | (100 ft)
 | (200 ft) |
 | (100 ft) |
 | (100 ft) | (100 ft) | | n correir |
| 30 m | 30 m | 5 | 000 |
 | 30 m
 | 30 m
 | e0 m |
 | 30 m |
 | 30 m | 30 m | | TONACL C |
| Trichlorosilane (when spilled in water) | Trimethylchlorosilane (when spilled in water) | Vinyltrichlorosilane (when spilled in water) | Vinyltrichlorosilane, stabilized (when spilled in water) | Phosphorus pentasulfide,
free from yellow and
white Phosphorus
 | (when spilled in water) Phosphorus pentasulphide, free from yellow and white Phosphorus (when spilled in water)
 | Calcium phosphide (when spilled in water)
 | Pentaborane | Sodium dithionite (when spilled in water)
 | Sodium hydrosulfite (when spilled in water) | Sodium hydrosulphite (when spilled in water)
 | Alkali metal amides
(when spilled in water) | Aluminum phosphide (when spilled in water) | | "+" moone distance on he larger in cortain atmospheric anditions |
| 139 | 155 | 155P | 155P | 139
 | 139
 | 139
 | 135 | 135
 | 135 | 135
 | 139 | 139 | | |
| 1295 | 1298 | 1305 | 1305 | 1340
 | 1340
 | 1360
 | 1380 | 1384
 | 1384 | 1384
 | 1390 | 1397 | | |
| | 139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 2.1 km | 139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.3 mi) 1.4 km | 139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.0 km (200 ft) 0.5 km (0.3 mi) 1.4 km 155P Vinyltrichlorosilane (when spilled in water) 0.0 km (100 ft) 0.1 km (0.1 mi) 0.1 km | 139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) </th <th>139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.6 km (0.4 mi) 2.1 km 155 Vinyltrichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 1.9 km 139 Phosphorus pentasulfide, free from yellow and white Phosphorus 139 Phosphorus 130 m (100 ft) 130 m (100 ft)</th> <th>139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi)<!--</th--><th>139 Triothlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.0 mi)<</th><th>139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi)<!--</th--><th>139 (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.0 mi) 0.1 km (0.0 mi) 1.0 km (0.0 mi) 1.0 km (0.0 mi) 1.2 km 135 Pentaborane 60 m (200 ft) 0.5 km (0.0 ft) 0.5 km (1.2 mi) 0.0 m (1000 ft) 1.0 km (0.0 mi) 1.0 km (0.2 mi) 1.2 km (1.2 mi) 135 Sodum dithionite 60 m (200 ft) 1.9 km (1.2 mi) 1.9 km (1.2 mi) 1.</th><th> 139 Trichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km</th><th> 136 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.4 km 155 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.4 km 155 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.9 km 136 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 3.5 km 3.5 km</th><th> 136 Trichlorosilane 130 (When spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.6 km (0.4 mi) 2.1 km 155</th><th> 155 Trichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km</th><th> 155 Trichlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.3 m) 1.4 km 155 Trimethylorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.3 m) 1.4 km 156 Vinylirchlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.4 m) 1.9 km 158 Vinylirchlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.3 km (0.2 m) 1.4 km 157 Prospiorus pentasulpide, free from yellow and white Prospiorus 30 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.3 km (0.2 m) 3.5 km 158 Sodium difficial in water) 30 m (100 ft) 0.1 km (0.1 m) 0.3 km (0.2 m) 300 m (100 ft) 2.0 km (0.4 m) 2.2 km 159 Alkali metal amides 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 300 m (1500 ft)</th></th></th> | 139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.6 km (0.4 mi) 2.1 km 155 Vinyltrichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 1.9 km 139 Phosphorus pentasulfide, free from yellow and white Phosphorus 139 Phosphorus 130 m (100 ft) 130 m (100 ft) | 139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) </th <th>139 Triothlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.0 mi)<</th> <th>139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi)<!--</th--><th>139 (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.0 mi) 0.1 km (0.0 mi) 1.0 km (0.0 mi) 1.0 km (0.0 mi) 1.2 km 135 Pentaborane 60 m (200 ft) 0.5 km (0.0 ft) 0.5 km (1.2 mi) 0.0 m (1000 ft) 1.0 km (0.0 mi) 1.0 km (0.2 mi) 1.2 km (1.2 mi) 135 Sodum dithionite 60 m (200 ft) 1.9 km (1.2 mi) 1.9 km (1.2 mi) 1.</th><th> 139 Trichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km</th><th> 136 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.4 km 155 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.4 km 155 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.9 km 136 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 3.5 km 3.5 km</th><th> 136 Trichlorosilane 130 (When spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.6 km (0.4 mi) 2.1 km 155</th><th> 155 Trichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km</th><th> 155 Trichlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.3 m) 1.4 km 155 Trimethylorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.3 m) 1.4 km 156 Vinylirchlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.4 m) 1.9 km 158 Vinylirchlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.3 km (0.2 m) 1.4 km 157 Prospiorus pentasulpide, free from yellow and white Prospiorus 30 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.3 km (0.2 m) 3.5 km 158 Sodium difficial in water) 30 m (100 ft) 0.1 km (0.1 m) 0.3 km (0.2 m) 300 m (100 ft) 2.0 km (0.4 m) 2.2 km 159 Alkali metal amides 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 300 m (1500 ft)</th></th> | 139 Triothlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.0 mi)< | 139 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) </th <th>139 (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.0 mi) 0.1 km (0.0 mi) 1.0 km (0.0 mi) 1.0 km (0.0 mi) 1.2 km 135 Pentaborane 60 m (200 ft) 0.5 km (0.0 ft) 0.5 km (1.2 mi) 0.0 m (1000 ft) 1.0 km (0.0 mi) 1.0 km (0.2 mi) 1.2 km (1.2 mi) 135 Sodum dithionite 60 m (200 ft) 1.9 km (1.2 mi) 1.9 km (1.2 mi) 1.</th> <th> 139 Trichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km</th> <th> 136 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.4 km 155 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.4 km 155 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.9 km 136 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 3.5 km 3.5 km</th> <th> 136 Trichlorosilane 130 (When spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.6 km (0.4 mi) 2.1 km 155</th> <th> 155 Trichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km</th> <th> 155 Trichlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.3 m) 1.4 km 155 Trimethylorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.3 m) 1.4 km 156 Vinylirchlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.4 m) 1.9 km 158 Vinylirchlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.3 km (0.2 m) 1.4 km 157 Prospiorus pentasulpide, free from yellow and white Prospiorus 30 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.3 km (0.2 m) 3.5 km 158 Sodium difficial in water) 30 m (100 ft) 0.1 km (0.1 m) 0.3 km (0.2 m) 300 m (100 ft) 2.0 km (0.4 m) 2.2 km 159 Alkali metal amides 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 300 m (1500 ft)</th> | 139 (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.0 mi) 0.1 km (0.0 mi) 1.0 km (0.0 mi) 1.0 km (0.0 mi) 1.2 km 135 Pentaborane 60 m (200 ft) 0.5 km (0.0 ft) 0.5 km (1.2 mi) 0.0 m (1000 ft) 1.0 km (0.0 mi) 1.0 km (0.2 mi) 1.2 km (1.2 mi) 135 Sodum dithionite 60 m (200 ft) 1.9 km (1.2 mi) 1.9 km (1.2 mi) 1. | 139 Trichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km | 136 Trichlorosilane (when spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.4 km 155 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.4 km 155 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.5 km (0.4 mi) 1.9 km 136 Vinythrichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 0.1 km (0.1 mi) 0.4 km (0.3 mi) 300 m (100 ft) 3.5 km 3.5 km | 136 Trichlorosilane 130 (When spilled in water) 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi) 60 m (200 ft) 0.6 km (0.4 mi) 2.1 km 155 | 155 Trichlorosilane 30 m (100 ft) 0.1 km (0.1 mi) 0.1 km | 155 Trichlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.3 m) 1.4 km 155 Trimethylorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.3 m) 1.4 km 156 Vinylirchlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.5 km (0.4 m) 1.9 km 158 Vinylirchlorosilare (When spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.1 km (0.1 m) 60 m (200 ft) 0.3 km (0.2 m) 1.4 km 157 Prospiorus pentasulpide, free from yellow and white Prospiorus 30 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.4 km (0.3 m) 300 m (100 ft) 0.1 km (0.1 m) 0.3 km (0.2 m) 3.5 km 158 Sodium difficial in water) 30 m (100 ft) 0.1 km (0.1 m) 0.3 km (0.2 m) 300 m (100 ft) 2.0 km (0.4 m) 2.2 km 159 Alkali metal amides 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 2.0 km (1.2 m) 6.5 km (when spilled in water) 30 m (100 ft) 0.1 km (0.1 m) 0.7 km (0.5 m) 300 m (1500 ft) 300 m (1500 ft) |

			(From a	SMALL SPILLS (From a small package or small leak from a large package)	SMALL age or sm	SMALL SPILLS kage or small leak from	om a large	package)	(Fro	n a large p	LARGE SPILLS (From a large package or from many small packages)	LARGE SPILLS ckage or from many s	mall packa	ges)
				First ISOLATE	ed	Then PROTECT Dersons Downwind during	Then PROTECT Is Downwind dur	ina	7 0SI	First ISOLATE	90	Then PROTECT Dersons Downwind during	ECT	
2 ي	Guide	Guide NAME OF MATERIAL	Meters	(Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	i HT 's (Miles)	Meters	Meters (Feet)	Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	HT 's (Miles)
1419	139	Magnesium aluminum phosphide (when spilled in water)	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi)	0.6 km (0.4 mi)	(0.4 mi)	500 m	500 m (1500 ft)	1.8 km	(1.1 mi)	5.8 km	(3.6 mi)
1432	139	Sodium phosphide (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.2 mi)	300 m	(1000 ft)	1.3 km	(0.8 mi)	3.8 km	(2.4 mi)
1510	143	Tetranitromethane	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	30 m	(100 ft)	0.4 km	(0.3 mi)	0.7 km	(0.4 mi)
1541	155	Acetone cyanohydrin, stabilized (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	m 09	(200 ft)	0.2 km	(0.2 mi)	0.8 km	(0.5 mi)
1556	152	Methyldichloroarsine	100 m	(300 ft)	1.4 km	(0.9 mi)	2.1 km	(1.3 mi)	300 m	(1000 ft)	3.8 km	(2.4 mi)	5.2 km	(3.3 mi)
1560 1560	157 157	Arsenic chloride Arsenic trichloride	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	1.0 km	(0.6 mi)	1.5 km	(1.0 mi)
1569	131	Bromoacetone	30 m	(100 ft)	0.4 km	(0.3 mi)	1.2 km	(0.7 mi)	150 m	(500 ft)	1.6 km	(1.0 mi)	3.2 km	(2.0 mi)
1580	154	Chloropicrin	60 m	(200 ft)	0.5 km	(0.3 mi)	1.2 km	(0.8 mi)	200 m	(600 ft)	2.2 km	(1.4 mi)	3.6 km	(2.3 mi)
1581	123	Chloropicrin and Methyl bromide mixture Methyl bromide and Chloropicrin mixture	30 m	(100 ft)	0.1 km	(0.1 mi) 0.6 km (0.4 mi)	0.6 km	(0.4 mi)	300 m	300 m (1000 ft)	2.1 km	(1.3 mi)	5.9 km	(3.7 mi)
1582	119	Chloropicrin and Methyl chloride mixture Methyl chloride and Chloropicrin mixture	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	ш 09	(200 ft)	0.4 km	(0.2 mi)	1.7 km	(1.1 mi)
1583	154	Chloropicrin mixture, n.o.s.	m 09	(200 ft)	0.5 km	(0.3 mi)	1.2 km	(0.8 mi)	200 m	(600 ft)	2.2 km	(1.4 mi)	3.6 km	(2.3 mi)

(7.0+ mi)	(0.4 mi)	(0.1 mi)		(5.1 mi)		(0.7 mi)	(0.9 mi)		(0.5 mi)	(1.4 mi)	(0.8 mi)	(0.4 mi)	(0.6 mi)	(0.7 mi)	
11.0+ km	0.6 km	0.2 km		8.1 km		1.1 km	1.5 km		0.8 km	2.2 km	1.2 km	0.7 km	1.0 km	1.2 km	
(6.0 mi)	(0.3 mi)	(0.1 mi)		(2.2 mi)		(0.3 mi)	(0.3 mi)		(0.2 mi)	(0.4 mi)	(0.5 mi)	(0.3 mi)	(0.2 mi)	(0.2 mi)	
9.7 km	0.5 km	0.1 km		3.5 km		0.5 km	0.5 km		0.3 km	0.6 km	0.8 km	0.5 km	0.2 km	0.3 km	
(3000 ft)	(200 ft)	(100 ft)		(1250 ft)		(300 ft)	(500 ft)		(200 ft)	(300 ft)	(300 ft)	(200 ft)	(200 ft)	(300 ft)	
1000 m	m 09	30 m		400 m		100 m	150 m		150 m	100 m	100 m	m 09	ш 09	100 m	
(4.0 mi)	(0.1 mi)	(0.1 mi)		(1.7 mi)		(0.1 mi)	(0.4 mi)		(0.1 mi)	(0.4 mi)	(0.2 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	
6.4 km	0.2 km	0.1 km		2.7 km		0.1 km	0.6 km		0.1 km	0.6 km	0.4 km	0.2 km	0.1 km	0.1 km	
(1.2 mi)	(0.1 mi)	(0.1 mi)		(0.5 mi)		(0.1 mi)	(0.1 mi)		0.1 km (0.1 mi)	(0.1 mi)	(0.2 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	
1.8 km	0.2 km	0.1 km		0.8 km		0.1 km	0.2 km		0.1 km	0.1 km	0.2 km	0.2 km	0.1 km	0.1 km	
(1000 ft)	(100 ft)	(100 ft)		(300 ft)		(100 ft)	(200 ft)		(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	
300 m	30 m	30 m		100 m		30 m	m 09		30 m	30 m	30 m	30 m	30 m	30 m	
Cyanogen chloride, stabilized	Dimethyl sulfate Dimethyl sulphate	Ethylene dibromide	Compressed gas and hexaethyl	Hexaethyl tetraphosphate and compressed gas mixture	Hydrocyanic acid, aqueous solution, with not more than	20% Hydrogen cyanide Hydrogen cyanide, aqueous solution, with not more than 20% Hydrogen cyanide	Hydrogen cyanide, stabilized (absorbed)	Ethylene dibromide and Methyl	bromide mixture, liquid Methyl bromide and Ethylene dibromide mixture, liquid	Nitric oxide Nitric oxide, compressed	Perchloromethyl mercaptan	Phenylcarbylamine chloride	Potassium cyanide, solid (when spilled in water)	Sodium cyanide, solid (when spilled in water)	
125	156 156	154	123	123	154	154	152	121	151	124 124	157	151	157	157	
1589	1595 1595	1605	1612	1612	1613	1613	1614	1647	1647	1660 1660	1670	1672	1680	1689	

			(From a s	S mall pack	SMALL SPILLS kage or small leak fr	SPILLS all leak fro	om a large	SMALL SPILLS From a small package or small leak from a large package)	(Fro	m a large p	LARGE SPILLS (From a large package or from many small packages)	LARGE SPILLS ckage or from many s	imall packa	(seb)
			First ISOLATE in all Directions	First ISOLATE	led	TF PRO: Sons Dow	Then PROTECT persons Downwind during	ring	1 SO	First ISOLATE in all Directions	<u>a</u>	Then PROTECT persons Downwind during	en ECT wind durir	D
₽ġ	Guide	NAME OF MATERIAL	Meters (Feet)	(Feet)	DAY Kilometers	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)
1695	131	Chloroacetone, stabilized	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	m 09	(200 ft)	0.4 km	(0.3 mi)	0.6 km	(0.4 mi)
1716	156	Acetyl bromide (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.9 km	(0.6 mi)
1717	155	Acetyl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	100 m	(300 ft)	0.9 km	(0.6 mi)	2.6 km	(1.6 mi)
1722	155 155	Allyl chlorocarbonate Allyl chloroformate	100 m	(300 ft)	0.3 km	(0.2 mi)	0.8 km	(0.5 mi)	400 m	(1250 ft)	1.4 km	(im 6:0)	2.4 km	(1.5 mi)
1724	155	Allytrichlorosilane, stabilized (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.5 km	(0.3 mi)	1.7 km	(1.1 mi)
1725	137	Aluminum bromide, anhydrous (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)
1726	137	Aluminum chloride, anhydrous (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	m 09	(200 ft)	0.5 km	(0.3 mi)	2.0 km	(1.2 mi)
1728	155	Amyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	m 09	(200 ft)	0.5 km	(0.3 mi)	1.7 km	(1.0 mi)
1732	157	Antimony pentafluoride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	1.1 km	(0.7 mi)	3.9 km	(2.4 mi)
1741	125	Boron trichloride (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	0.6 km	(0.4 mi)	1.4 km	(0.9 mi)
1741	125	Boron trichloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	1.2 km	(0.8 mi)	3.6 km	(2.2 mi)

_	
Ц	
_	Į
Ω	
<	Ĺ
H	

1744 1744 1744	154 154 154	Bromine Bromine, solution Bromine, solution (Inhalation Hazard Zone A)	60 m	(200 ft)	0.8 km	(0.5 mi)	2.3 km	2.3 km (1.5 mi)	300 m	300 m (1000 ft)	3.8 km	(2.4 mi)	7.5 km	(4.7 mi)
1744	154	Bromine, solution (Inhalation Hazard Zone B)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.5 km	(0.3 mi)
1745	144	Bromine pentafluoride (when spilled on land)	100 m	(300 ft)	0.9 km	(0.5 mi)	2.5 km	(1.6 mi)	400 m	(1250 ft)	5.4 km	(3.3 mi)	10.7 km	(6.6 mi)
1745	144	Bromine pentafluoride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	150 m	(500 ft)	1.2 km	(0.7 mi)	4.0 km	(2.5 mi)
1746	144	Bromine trifluoride (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
1746	144	Bromine trifluoride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	1.0 km	(0.7 mi)	3.7 km	(2.3 mi)
1747	155	Butyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.5 km	(0.3 mi)	1.6 km	(1.0 mi)
1749	124	Chlorine trifluoride	e0 m	(200 ft)	0.3 km	(0.2 mi)	1.1 km	(0.7 mi)	200 m	(e00 ft)	1.4 km	(0.9 mi)	3.6 km	(2.3 mi)
1752	156	Chloroacetyl chloride (when spilled on land)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.6 km	(0.4 mi)	100 m	(300 ft)	1.1 km	(0.7 mi)	1.9 km	(1.2 mi)
1752	156	Chloroacetyl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 08	(100 ft)	0.2 km	(0.1 mi)	0.6 km	(0.4 mi)
1753	156	Chlorophenyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.2 mi)	0.8 km	(0.5 mi)
1754	137	Chlorosulfonic acid (with or without sulfur trioxide) (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.2 mi)	0.3 km	(0.2 mi)
		"+" means distance can be larger in certain atmospheric conditions	larger	in certain	atmosp	oheric co	nditions				_	TABLE 1		

			(From a s	small pack	SMALL SPILLS kage or small leak fre	SPILLS all leak fro	ım a large	SMALL SPILLS (From a small package or small leak from a large package)	(Fro	m a large p	LARGE	LARGE SPILLS (From a large package or from many small packages)	mall packa	(seb)
			First ISOLATE in all Directions	First ISOLATE	be	TF PRO rsons Dow	Then PROTECT persons Downwind during	ring	л ISO	First ISOLATE	90	Then PROTECT persons Downwind during	ECT Wind durin	D
№	Guide	Guide NAME OF MATERIAL	Meters (Feet)	(Feet)	D/ Kilometer	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)	Meters	Meters (Feet)	Kilomet	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	NIGHT neters (Miles)
1754	137	Chlorosulfonic acid (with or without sulfur trioxide) (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km (0.1 mi) 0.1 km (0.1 mi)	(0.1 mi)	e0 m	(200 ft)	0.7 km	(0.4 mi)	2.3 km (1.4 mi)	(1.4 mi)
1754	137	Chlorosulphonic acid (with or without sulphur trioxide) (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi) 0.1 km	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.2 mi)	0.3 km	(0.2 mi)
1754	137	Chlorosulphonic acid (with or without sulphur trioxide) (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	e0 m	(200 ft)	0.7 km	(0.4 mi)	2.3 km	(1.4 mi)
1758	137	Chromium oxychloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)
1762	156	Cyclohexenyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	1.2 km	(0.7 mi)
1763	156	Cyclohexyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	1.2 km	(0.7 mi)
1765	156	Dichloroacetyl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.7 km	(0.5 mi)
1766	156	Dichlorophenyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi) 0.1 km	0.1 km	(0.1 mi)	60 m	(200 ft)	0.5 km	(0.4 mi)	2.0 km	(1.2 mi)
1767	155	Diethyldichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.9 km	(0.5 mi)

Т	
ш	
Ξ	
α	1
<	ľ
H	
-	

_	
7	
=	
0	
=	
=	
3	
≡	
5	
Τ,	
_	
د	
=	
ī	
=	
₹	
H	3
2	
=	
=	
v	
_	
=	
₹	
٧,	
=	
υ	
د	
_	
≡	
=	
=======================================	
	,
	,
	,
	,
ne larder	
De larder III	
means distance can be larder in certain	

		L	-	_			ndition	o oivod	-	ziotzoo a	largar.	"+" means distance and he larger in certain atmospheric conditions		
(1.5 mi)	2.4 km	(0.4 mi)	0.7 km	(200 ft)	ш 09	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Phosphorus trichloride (when spilled in water)	137	
(1.3 mi)	2.1 km	(0.7 mi)	1.0 km	(300 ft)	100 m	(0.4 mi)	0.6 km	(0.2 mi)	0.2 km	(100 ft)	30 m	Phosphorus trichloride (when spilled on land)	137	
(im 6.0)	1.5 km	(0.3 mi)	0.4 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Phosphorus tribromide (when spilled in water)	137	
(0.8 mi)	1.3 km	(0.2 mi)	0.3 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Phosphorus pentachloride (when spilled in water)	137	
(0.8 mi)	1.3 km	(0.2 mi)	0.4 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Phenyltrichlorosilane (when spilled in water)	156	
(im 6.0)	1.4 km	(0.3 mi)	0.4 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Octyltrichlorosilane (when spilled in water)	156	
(0.8 mi)	1.3 km	(0.3 mi)	0.4 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Octadecyltrichlorosilane (when spilled in water)	156	
(0.9 mi)	1.4 km	(0.3 mi)	0.4 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Nonyltrichlorosilane (when spilled in water)	156	
(0.8 mi)	1.3 km	(0.2 mi)	0.4 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Hexyltrichlorosilane (when spilled in water)	156	
(0.3 mi)	0.4 km	(0.1 mi)	0.1 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Hexadecyltrichlorosilane (when spilled in water)	156	
(0.3 mi)	0.5 km	(0.1 mi)	0.2 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Fluorosulfonic acid (when spilled in water) Fluorosulphonic acid (when spilled in water)	137	
(0.8 mi)	1.2 km	(0.3 mi)	0.4 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Dodecyltrichlorosilane (when spilled in water)	156	
(0.7 mi)	1.1 km	(0.2 mi)	0.3 km	(100 ft)	30 m	(0.1 mi)	0.1 km	(0.1 mi)	0.1 km	(100 ft)	30 m	Diphenyldichlorosilane (when spilled in water)	156	

			(From a s	S small pack	SMALL SPILLS :kage or small leak from	SPILLS all leak fro	ım a large	SMALL SPILLS (From a small package or small leak from a large package)	(Fro	m a large p	LARGE SPILLS (From a large package or from many small packages)	LARGE SPILLS Ickage or from many s	mall packa	(səbi
			li SOI	First ISOLATE		PRO⊒	Then		SSI	First SOLATE	,	Then	ECT	
			in all Di	in all Directions	led	persons Downwind during	mwind du	ring	in all D	in all Directions	ed	persons Downwind during	wind durin	g
<u>.</u> 2 ≥	Guide	NAME OF MATERIAL	Meters (Feet)	(Feet)	DAY Kilometers (DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	i HT rs (Miles)
1810	137	Phosphorus oxychloride (when spilled on land)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.6 km	(0.4 mi)	100 m	(300 ft)	1.0 km	(0.7 mi)	1.9 km	(1.2 mi)
1810	137	Phosphorus oxychloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	m 09	(200 ft)	0.6 km	(0.4 mi)	2.1 km	(1.3 mi)
1815	132	Propionyl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)
1816	155	Propyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	m 09	(200 ft)	0.5 km	(0.3 mi)	1.9 km	(1.2 mi)
1818	157	Silicon tetrachloride (when spilled in water)	ш 08	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	m 09	(200 ft)	0.8 km	(0.5 mi)	2.7 km	(1.7 mi)
1828	137	Sulfur chlorides (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	e0 m	(200 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
1828	137	Sulfur chlorides (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	1.0 km	(0.6 mi)
1828	137	Sulphur chlorides (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	m 09	(200 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
1828	137	Sulphur chlorides (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	1.0 km	(0.6 mi)
1829 1829	137 137	Sulfur trioxide, stabilized Sulphur trioxide, stabilized	e0 m	(200 ft)	0.4 km	(0.2 mi)	1.0 km	(0.6 mi)	300 m	(1000 ft)	2.9 km	(1.8 mi)	6.3 km	(4.0 mi)
1831	137 137	Sulfuric acid, fuming Sulphuric acid, fuming	m 09	(200 ft)	0.4 km	(0.2 mi)	1.0 km	(0.6 mi)	300 m	(1000 ft)	2.9 km	(1.8 mi)	6.3 km	(4.0 mi)

1834	137	Sulfuryl chloride (when spilled on land)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.4 km	(0.3 mi)	e0 m	(200 ft)	0.8 km	(0.5 mi)	1.5 km	(0.9 mi)
1834	137	Sulfuryl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.3 mi)	1.6 km	(1.0 mi)
1834	137	Sulphuryl chloride (when spilled on land)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.4 km	(0.3 mi)	ш 09	(200 ft)	0.8 km	(0.5 mi)	1.5 km	(im 6.0)
1834	137	Sulphuryl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.3 mi)	1.6 km	(1.0 mi)
1836	137	Thionyl chloride (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.5 km	(0.3 mi)
1836	137	Thionyl chloride (when spilled in water)	100 m	(300 ft)	0.9 km	(0.6 mi)	2.9 km	(1.8 mi)	800 m	(2500 ft)	9.7 km	(6.0 mi)	11.0+ km (7.0+ mi)	(7.0+ mi)
1838	137	Titanium tetrachloride (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.5 km	(0.3 mi)
1838	137	Titanium tetrachloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	ш 09	(200 ft)	0.5 km	(0.3 mi)	1.7 km	(1.0 mi)
1859 1859	125 125	Silicon tetrafluoride Silicon tetrafluoride, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.8 km	(0.5 mi)	100 m	(300 ft)	0.5 km	(0.3 mi)	1.8 km	(1.2 mi)
1892	151	Ethyldichloroarsine	150 m	(500 ft)	1.5 km	(0.9 mi)	2.1 km	(1.3 mi)	400 m	(1250 ft)	4.6 km	(2.9 mi)	6.4 km	(4.0 mi)
1898	156	Acetyl iodide (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.3 mi)	1.1 km	(0.7 mi)
1911	119 119	Diborane Diborane, compressed Diborane mixtures	m 09	(200 ft)	0.3 km	(0.2 mi)	1.2 km	(0.7 mi)	300 m	(1000 ft)	1.5 km	(1.0 mi)	4.6 km	(2.9 mi)
		"+" means distance can be larger in certain atmospheric conditions	larger	in certair	atmost	pheric co	nditions			-				

" means distance can be larger in certain atmospheric conditions

			SMALL SPILLS (From a small package or small leak from a large package)	SMA ackage	SMALL SPILLS kage or small leak fre	ILLS leak fro	m a large	package)	(Fro	n a large p	LARGE	LARGE SPILLS (From a large package or from many small packages)	mall packa	ges)
			First ISOLATE in all Directions	S	persc	Then PROTECT ons Downwind	Then PROTECT persons Downwind during	ing	F ISOI ID III D	First ISOLATE in all Directions	ed.	Then PROTECT persons Downwind during	ECT wind during	
<u>0</u> %	Guide	Guide NAME OF MATERIAL	Meters (Feet)		DAY Kilometers (Miles)	(Miles)	NIGHT Kilometers (Miles)	i HT 's (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	HT s (Miles)
1923	135	Calcium dithionite		\Vdash										
1923	135	(when spilled in water) Calcium hydrosulfite	30 m (100 ft)		0.1 km (0	(0.1 mi)	0.4 km	(0.3 mi)	m 09	(200 ft)	0.7 km	(0.4 mi)	2.6 km	(1.6 mi)
1923	135	(when spilled in water) Calcium hydrosulphite (when spilled in water)												,
1929	135	Potassium dithionite												
1929	135	Potassium hydrosulfite	30 m (100 ft)		0.1 km (0	(0.1 mi)	0.4 km	(0.2 mi)	m 09	(200 ft)	0.6 km	(0.4 mi)	2.3 km	(1.5 mi)
1929	135	(when spilled in water) Potassium hydrosulphite (when spilled in water)												
1931	171	Zinc dithionite												
1931	17	Zinc hydrosulfite	30 m (100 ft)		0.1 km (0	.1 mi)	(0.1 mi) 0.4 km (0.3 mi)	(0.3 mi)	m 09	(200 ft)	0.6 km	(0.4 mi)	2.4 km	(1.5 mi)
1931	171	(when spilled in water) Zinc hydrosulphite (when spilled in water)												
1953	119	Compressed gas, poisonous, flammable, n.o.s.												
1953	119	Compressed gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone A)	150 m (500 ft)		km (0	0.6 mi)	3.8 km	(2.4 mi)	1000 m	1.0 km (0.6 mi) 3.8 km (2.4 mi) 1000 m (3000 ft)	5.7 km	(3.6 mi)	10.1 km (6.3 mi)	(6.3 mi)
1953	119	Compressed gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone B)	30 m (100 ft)		0.1 km (C).1 mi)	(0.1 mi) 0.4 km	(0.2 mi)	300 m	(1000 ft)	1.3 km	(0.8 mi)	3.4 km	(2.1 mi)

(1.8 mi)	(1.3 mi)	(6.3 ті)	(2.1 mi)	(1.8 mi)	(1.3 mi)	(6.3 mi)	(3.2 mi)	(1.8 mi)	
2.9 km	2.0 km	10.1 km	3.4 km	2.9 km	2.0 km	10.1 km	5.1 km	2.9 km	
(0.6 mi)	(0.5 mi)	(3.6 mi)	(0.8 mi)	(0.6 mi)	(0.5 mi)	(3.6 mi)	(1.4 mi)	(0.6 mi)	TABLE 1
1.0 km	0.8 km	5.7 km	1.3 km	1.0 km	0.8 km	5.7 km	2.3 km	1.0 km	F
(500 ft)	(500 ft)	3.8 km (2.4 mi) 1000 m (3000 ft)	300 m (1000 ft)	(500 ft)	(500 ft)	(3000 ft)	(1250 ft)	(500 ft)	_
150 m	150 m	1000 m		150 m	150 m	1000 m	400 m	150 m	
(0.2 mi)	(0.1 mi)	(2.4 mi)	0.1 km (0.1 mi) 0.4 km (0.2 mi)	(0.2 mi)	(0.1 mi)	(1.6 mi)	(0.6 mi)	(0.2 mi)	
0.3 km	0.2 km	3.8 km	0.4 km	0.3 km	0.2 km	2.5 km	0.9 km	0.3 km	nditions
(0.1 mi)	(0.1 mi)	1.0 km (0.6 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.3 mi)	(0.1 mi)	(0.1 mi)	heric co
0.1 km	0.1 km	1.0 km	0.1 km	0.1 km	0.1 km	0.5 km	0.2 km	0.1 km	atmosp
(100 ft)	(100 ft)	150 m (500 ft)	(100 ft)	(100 ft)	(100 ft)	(300 ft)	(100 ft)	(100 ft)	in certair
30 m	30 m	150 m	30 m	30 m	30 m	100 m	30 m	30 m	l larger i
Compressed gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone C)	Compressed gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone D)	Compressed gas, toxic, flammable, n.o.s. Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone A)	Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone B)	Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone C)	Compressed gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone D)	Compressed gas, poisonous, n.o.s. Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone A)	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone B)	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone C)	"+" means distance can be larger in certain atmospheric conditions
119	119	119	119	119	119	123	123	123	
1953	1953	1953	1953	1953	1953	1955	1955	1955	
								_	

(set	_	토	s (Miles)	(1.3 mi)	(6.3 mi)	(3.2 mi)	(1.8 mi)	(1.3 mi)	(6.0 mi)	(6.0 mi)	
mall packae	n ECT wind during	NIGHT	Kilometers (Miles)	2.0 km	10.1 km	5.1 km	2.9 km	2.0 km	9.6 km	9.6 km	
SPILLS om many s	Then PROTECT Dersons Downwind during	DAY	Kilometers (Miles)	(0.5 mi)	(3.6 mi)	(1.4 mi)	(0.6 mi)	(0.5 mi)	(2.7 mi)	(2.7 mi)	
LARGE SPILLS (From a large package or from many small packages)	ā	۵	Kilomete	0.8 km	5.7 km	2.3 km	1.0 km	0.8 km	4.4 km	4.4 km	
n a large p	First ISOLATE	פווס	Meters (Feet)	(500 ft)	(3000 ft)	(1250 ft)	(500 ft)	(500 ft)	500 m (1500 ft)	500 m (1500 ft)	
(Fror	ISOI	<u> </u>	Meters	150 m	1000 m (3000 ft)	400 m	150 m	150 m	500 m	500 m	
SMALL SPILLS From a small package or small leak from a large package)	ina	NIGHT	rs (Miles)	0.1 km (0.1 mi) 0.2 km (0.1 mi)	(1.6 mi)	(0.6 mi)	(0.2 mi)	(0.1 mi)	1.0 km (0.7 mi) 3.4 km (2.1 mi)	(2.1 mi)	
ım a large	Then PROTECT	NIG	Kilometers (Miles)	0.2 km	2.5 km	0.9 km	0.3 km	0.2 km	3.4 km	3.4 km	
SPILLS all leak fro	Then PROTECT Dersons Downwind during	DAY	Kilometers (Miles)	(0.1 mi)	(0.3 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.7 mi)	1.0 km (0.7 mi) 3.4 km (2.1 mi)	
SMALL SPILLS kage or small leak from	90	2 2	Kilometer	0.1 km	0.5 km	0.2 km	0.1 km	0.1 km			
small pack	First ISOLATE		Meters (Feet)	(100 ft)	(300 ft)	(100 ft)	(100 ft)	(100 ft)	100 m (300 ft)	(300 ft)	
(From a	E 10S	<u> </u>	Meters	30 m	100 m	30 m	30 m	30 m		100 m	
			GUIDE NAME OF MAIERIAL	Compressed gas, poisonous, n.o.s. (Inhalation Hazard Zone D)	Compressed gas, toxic, n.o.s. Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone A)	Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone B)	Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone C)	Compressed gas, toxic, n.o.s. (Inhalation Hazard Zone D)	Organic phosphate compound mixed with compressed gas Organic phosphate mixed with compressed gas Organic phosphorus compound mixed with compressed gas	Insecticide gas, poisonous, n.o.s. Insecticide gas, toxic, n.o.s. Parathion and compressed gas mixture	
			enide	123	123 123	123	123	123	123 123 123	123 123	
		₽;	9	1955	1955 1955	1955	1955	1955	1955 1955 1955	1967 1967 1967	

		e e		<u>=</u>				<u></u>	<u></u>		<u>:</u>	mi)	Ē.		<u></u>	m)	
		(1.4 mi)		(4.7 mi)	(1.4 mi)	(3.4 mi)	(2.2 mi)	(2.2 mi)	(0.3 mi)		(6.3 mi)	(2.1 m	(7.0+ mi)	(3.3 mi)	(4.7 mi)	(4.9 m	
		2.2 km		7.5 km	2.2 km	5.4 km	3.6 km	3.4 km	0.5 km		10.1 km	3.4 km	11.0+ km	5.3 km	7.5 km	7.9 km	
		(0.4 mi)		(3.0 mi)	(0.4 mi)	(1.1 mi)	(0.7 mi)	(0.7 mi)	(0.2 mi)	Refer to table 3	(3.6 mi)	(0.8 mi)	(7.0+ mi)	(1.4 mi)	(2.1 mi)	(2.2 mi)	- T
		0.6 km		4.8 km	0.6 km	1.7 km	1.1 km	1.1 km	0.3 km	Refer to	5.7 km	1.3 km	11.0+ km	2.2 km	3.3 km	3.5 km	۲
		(300 ft)		(1250 ft)	(200 ft)	(1500 ft)	(1000 ft)	(1000 ft)	(500 ft)		(3000 ft)	(1000 ft)	(3000 ft)	(1250 ft)	(1500 ft)	(2000 ft)	_
		100 m		400 m	m 09	500 m	300 m	300 m	150 m		1000 m	300 m	1000 m	400 m	500 m	m 009	
	:	(0.4 mi)		(1.2 mi)	(0.2 mi)	(0.4 mi)	(0.2 mi)	(0.2 mi)	(0.1 mi)	(0.2 mi)	(2.4 mi)	(0.2 mi)	(4.4 mi)	(0.3 mi)	(2.1 mi)	(2.2 mi)	
		0.6 km		2.0 km	0.3 km	0.6 km	0.3 km	0.3 km	0.1 km	0.3 km	3.8 km	0.4 km	7.1 km	0.5 km	3.3 km	3.5 km	nditions
		0.1 km (0.1 mi) 0.6 km		(0.6 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.6 mi)	(0.1 mi)	(1.1 mi)	(0.1 mi)	(0.5 mi)	(0.7 mi)	heric co
				0.9 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	1.0 km	0.1 km	1.8 km	0.1 km	0.9 km	1.1 km	atmosn
		(100 ft)		(300 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(500 ft)	(100 ft)	(1000 ft)	(100 ft)	(500 ft)	(600 ft)	in certair
		30 m		100 m	30 m	30 m	30 m	30 m	30 m	30 m	150 m	30 m	300 m	30 m	150 m	200 m	arger
Dinitrogen tetroxide and Nitric oxide mixture	Nitric oxide and Dinitrogen	Nitric oxide and Nitrogen	Nitrogen dioxide and Nitric oxide mixture	Iron pentacarbonyl	Magnesium diamide (when spilled in water)	Magnesium phosphide (when spilled in water)	Potassium phosphide (when spilled in water)	Strontium phosphide (when spilled in water)	Nitric acid, red fuming	Hydrogen chloride, refrigerated liquid	Arsine	Dichlorosilane	Oxygen difluoride Oxygen difluoride, compressed	Sulfuryl fluoride Sulphuryl fluoride	Germane	Selenium hexafluoride	"+" means distance can be larger in certain atmospheric conditions
124	124	124	124	136	135	139	139	139	157	125	119	119	124 124	123 123	119	125	
1975	1975	1975	1975	1994	2004	2011	2012	2013	2032	2186	2188	2189	2190 2190	2191 2191	2192	2194	

+" means distance can be larger in certain atmospheric conditions

			(From a s	SMALL SPILLS From a small package or small leak from a large package)	SMALL SPILLS: kage or small leak from	SPILLS all leak fro	ım a large	package)	(Fro	n a large p	LARGE ackage or f	LARGE SPILLS (From a large package or from many small packages)	imall packa	(səbi
			Fil ISOL in all Dii	First ISOLATE in all Directions	led	Then PROTECT persons Downwind during	Then PROTECT IS Downwind dur	ing	F SO C C C C C C C C C	First ISOLATE in all Directions	8.	Then PROTECT persons Downwind during	ECT Wind durin	5
₽ġ	Guide	NAME OF MATERIAL	Meters (Feet)	(Feet)	DAY Kilometers	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	i HT 's (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	iHT rs (Miles)
2195	125	Tellurium hexafluoride	1000 m	1000 m (3000 ft)	5.8 km	(3.6 mi)	10.9 km	(6.8 mi)	1000 m	(3000 ft)	11.0+ km	(7.0+ mi)	11.0+ km (7.0+ mi)	(7.0+ mi)
2196	125	Tungsten hexafluoride	30 m	(100 ft)	0.2 km	(0.1 mi)	0.8 km	(0.5 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.7 km	(1.7 mi)
2197	125	Hydrogen iodide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	150 m	(500 ft)	1.0 km	(0.6 mi)	2.9 km	(1.8 mi)
2198	125 125	Phosphorus pentafluoride Phosphorus pentafluoride, compressed	30 m	(100 ft)	0.2 km	(0.2 mi)	1.0 km	(0.7 mi)	150 m	(500 ft)	1.0 km	(0.6 mi)	3.5 km	(2.2 mi)
2199	119	Phosphine	m 09	(200 ft)	0.3 km	(0.2 mi)	1.1 km	(0.7 mi)	300 m	(1000 ft)	1.3 km	(0.8 mi)	3.7 km	(2.3 mi)
2202	117	Hydrogen selenide, anhydrous	300 m	(1000 ft)	1.7 km	(1.1 mi)	6.0 km	(3.7 mi)	1000 m	(3000 ft)	10.7 km	(6.7 mi)	11.0+ km	(7.0+ mi)
2204 2204	119	Carbonyl sulfide Carbonyl sulphide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	300 m	(1000 ft)	1.6 km	(1.0 mi)	3.8 km	(2.4 mi)
2232 2232	153 153	Chloroacetaldehyde 2-Chloroethanal	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	m 09	(200 ft)	0.6 km	(0.4 mi)	1.1 km	(0.7 mi)
2285	156	Isocyanatobenzotrifluorides	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.3 mi)	0.6 km	(0.4 mi)
2308	157	Nitrosylsulfunic acid, liquid (when spilled in water) Nitrosylsulphuric acid, liquid (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	300 m	(1000 ft)	1.0 km	(0.6 mi)	2.9 km	(1.8 mi)
2334	131	Allylamine	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.4 mi)	150 m	(500 ft)	1.4 km	(0.9 mi)	2.5 km	(1.6 mi)
2337	131	Phenyl mercaptan	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.4 km	(0.2 mi)
2353	132	Butyryl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.7 km	(0.5 mi)

2382	131	Dimethylhydrazine, symmetrical	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	m 09	(200 ft)	0.7 km	(0.5 mi)	1.3 km	(0.8 mi)
2395	132	Isobutyryl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.4 km	(0.3 mi)
2407	155	Isopropyl chloroformate	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	m 09	(200 ft)	0.5 km	(0.3 mi)	0.9 km	(0.6 mi)
2417 2417	125 125	Carbonyl fluoride Carbonyl fluoride, compressed	150 m	(500 ft)	0.7 km	(0.5 mi)	2.5 km	(1.6 mi)	m 009	(2000 ft)	3.6 km	(2.3 mi)	7.8 km	(4.9 mi)
2418 2418	125 125	Sulfur tetrafluoride Sulphur tetrafluoride	100 m	(300 ft)	0.5 km	(0.3 mi)	2.3 km	(1.5 mi)	400 m	(1250 ft)	2.1 km	(1.3 mi)	6.0 km	(3.7 mi)
2420	125	Hexafluoroacetone	100 m	(300 ft)	0.7 km	(0.4 mi)	2.7 km	(1.7 mi)	1000 m	(3000 ft)	11.0+ km	(7.0+ mi)	11.0+ km	(7.0+ mi)
2421	124	Nitrogen trioxide	e0 m	(200 ft)	0.3 km	(0.2 mi)	1.2 km	(0.7 mi)	200 m	(600 ft)	1.2 km	(0.8 mi)	4.2 km	(2.6 mi)
2434	156	Dibenzyldichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)
2435	156	Ethylphenyldichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.9 km	(0.6 mi)
2437	156	Methylphenyldichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.2 mi)	1.2 km	(0.8 mi)
2438	131	Trimethylacetyl chloride	m 09	(200 ft)	0.5 km	(0.3 mi)	1.0 km	(0.6 mi)	200 m	(600 ft)	2.1 km	(1.3 mi)	3.3 km	(2.1 mi)
2442	156	Trichloroacetyl chloride	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	m 09	(200 ft)	0.7 km	(0.4 mi)	1.1 km	(0.7 mi)
2474	157	Thiophosgene	m 09	(200 ft)	0.6 km	(0.4 mi)	1.7 km	(1.1 mi)	200 m	(600 ft)	2.1 km	(1.3 mi)	4.0 km	(2.5 mi)
2477	131	Methyl isothiocyanate	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
		"+" means distance can be larger in certain atmospheric conditions	largeri	in certair	atmosp	heric co	nditions				_	TABLE 1		

			(From a	SMALL SPILLS From a small package or small leak from a large package)	MALL gage or sm	SMALL SPILLS kage or small leak fro	om a large	package)	(Fro	m a large p	LARGE SPILLS (From a large package or from many small packages)	LARGE SPILLS ckage or from many s	small packa	(səbi
			ISOII DE LE	First ISOLATE in all Directions	be	Then PROTECT persons Downwind during	Then PROTECT Is Downwind du	ring	F SO ISO ISO	First ISOLATE in all Directions	96	Then PROTECT persons Downwind during	en TECT nwind durir	5
<u>9</u>	Guide	NAME OF MATERIAL	Meters	Meters (Feet)	D/ Kilomete	Miles) Kilometers (Miles)	NIC Kilomete	NIGHT leters (Miles)	Meters	Meters (Feet)	Kilomete	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)
2478	155	Isocyanate solution, flammable,												
2478	155	Isocyanate solution, flammable,												
2478	155	Isocyanates, flammable,	m 09	(200 ft)	0.8 km	(0.5 mi)	1.8 km	(1.1 mi)	400 m	(1250 ft)	4.4 km	(2.7 mi)	7.0 km	(4.3 mi)
2478	155	polsorious, n.o.s. Isocyanates, flammable, toxic, n.o.s.												
2480	155P	Methyl isocyanate	150 m	(500 ft)	1.7 km	(1.1 mi)	5.0 km	(3.1 mi)	1000 m	1000 m (3000 ft)		11.0+ km (7.0+ mi) 11.0+ km (7.0+ mi)	11.0+ km	(7.0+ mi)
2481	155	Ethyl isocyanate	150 m	(500 ft)	2.0 km	(1.2 mi)	5.1 km	(3.2 mi)	1000 m	(3000 ft)	11.0+ km	(7.0+ mi)	11.0+ km (7.0+ mi)	(7.0+ mi)
2482	155P	n-Propyl isocyanate	100 m	(300 ft)	1.3 km	(0.8 mi)	2.7 km	(1.7 mi)	m 009	(2000 ft)	7.4 km	(4.6 mi)	10.8 km	(6.7 mi)
2483	155P	Isopropyl isocyanate	150 m	(500 ft)	1.5 km	(0.9 mi)	3.2 km	(2.0 mi)	1000 m	(3000 ft)	11.0 km	(6.9 mi)	11.0+ km	(7.0+ mi)
2484	155	tert-Butyl isocyanate	e0 m	(200 ft)	0.8 km	(0.5 mi)	1.8 km	(1.1 mi)	400 m	(1250 ft)	4.4 km	(2.7 mi)	7.0 km	(4.3 mi)
2485	155P	n-Butyl isocyanate	m 09	(200 ft)	0.6 km	(0.4 mi)	1.1 km	(0.7 mi)	200 m	(600 ft)	2.6 km	(1.7 mi)	4.0 km	(2.5 mi)
2486	155P	Isobutyl isocyanate	60 m	(200 ft)	0.6 km	(0.4 mi)	1.2 km	(0.8 mi)	300 m	(1000 ft)	3.1 km	(1.9 mi)	4.7 km	(3.0 mi)
2487	155	Phenyl isocyanate	100 m	(300 ft)	0.9 km	(0.6 mi)	1.4 km	(0.9 mi)	300 m	(1000 ft)	3.7 km	(2.3 mi)	5.4 km	(3.4 mi)
2488	155	Cyclohexyl isocyanate	30 m	(100 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)	100 m	(300 ft)	1.0 km	(0.6 mi)	1.4 km	(0.9 mi)
2495	144	lodine pentafluoride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	1.1 km	(0.7 mi)	4.1 km	(2.6 mi)
2521	131P	Diketene, stabilized	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	m 09	(200 ft)	0.6 km	(0.4 mi)	1.0 km	(0.6 mi)
2534	119	Methylchlorosilane	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	150 m	(500 ft)	0.7 km	(0.5 mi)	1.9 km	(1.2 mi)

2548	124	Chlorine pentafluoride	100 m	(300 ft)	0.5 km	(0.3 mi)	2.5 km	(1.6 mi)	m 008	(2500 ft)	5.0 km	(3.1 mi)	11.0+ km	(7.0+ mi)
2605	155	Methoxymethyl isocyanate	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.2 mi)	ш 09	(200 ft)	0.6 km	(0.4 mi)	0.9 km	(0.6 mi)
2606	155	Methyl orthosilicate	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	ш 09	(200 ft)	0.7 km	(0.4 mi)	1.1 km	(0.7 mi)
2644	151	Methyl iodide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	100 m	(300 ft)	0.3 km	(0.2 mi)	0.7 km	(0.4 mi)
2646	151	Hexachlorocyclopentadiene	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.3 km	(0.2 mi)
2668	131	Chloroacetonitrile	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.4 km	(0.2 mi)
2676	119	Stibine	60 m	(200 ft)	0.3 km	(0.2 mi)	1.6 km	(1.0 mi)	200 m	(t) (e00)	1.3 km	(0.8 mi)	4.1 km	(2.6 mi)
2691	137	Phosphorus pentabromide (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)
2692	157	Boron tribromide (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.4 km	(0.3 mi)
2692	157	Boron tribromide (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	m 09	(200 ft)	0.5 km	(0.3 mi)	1.9 km	(1.2 mi)
2740	155	n-Propyl chloroformate	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	ш 09	(200 ft)	0.6 km	(0.4 mi)	1.0 km	(0.7 mi)
2742	155	sec-Butyl chloroformate	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.2 mi)	0.5 km	(0.3 mi)
2742	155 155	Chloroformates, poisonous, corrosive, flammable, n.o.s. Chloroformates, toxic, corrosive, flammable, n.o.s.	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.2 mi)	m 09	(200 ft)	0.5 km	(0.3 mi)	0.7 km	(0.5 mi)
2742	155	Isobutyl chloroformate	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.5 km	(0.3 mi)
2743	155	n-Butyl chloroformate	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
2806	139	Lithium nitride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	ш 09	(200 ft)	0.5 km	(0.3 mi)	1.9 km	(1.2 mi)
2826	155	Ethyl chlorothioformate	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.2 mi)	e0 m	(200 ft)	0.5 km	(0.3 mi)	0.7 km	(0.5 mi)
2845	135	Ethyl phosphonous dichloride, anhydrous	30 m	(100 ft)	0.3 km	(0.2 mi)	0.7 km	(0.5 mi)	100 m	(300 ft)	1.3 km	(0.8 mi)	2.3 km	(1.5 mi)
		"+" means distance can be larger in certain atmospheric conditions	larder	in certair	atmosr	heric co	nditions			-	-	T A D I G 4		

"+" means distance can be larger in certain atmospheric conditions

			(From a	Small pack	MALL age or sm	SMALL SPILLS kage or small leak fro	om a large	SMALL SPILLS (From a small package or small leak from a large package)	(Fro	n a large p	LARGE SPILLS (From a large package or from many small packages)	LARGE SPILLS ckage or from many s	imall pack	ages)
			1801 ISOI	First ISOLATE in all Directions	ed	Then PROTECT persons Downwind during	Then PROTECT S Downwind du	ıring	F ISOI in all D	First ISOLATE in all Directions	<u>a</u>	Then PROTECT persons Downwind during	en ECT wind durir	Bi
<u>-</u> 9	Guide	Guide NAME OF MATERIAL	Meters	Meters (Feet)	D/ Kilomete	Miles) Kilometers (Miles) Kilometers (Miles)	NIC Kilomete	NIGHT leters (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)
2845	135	Methyl phosphonous dichloride	30 m	(100 ft)	0.4 km	(0.3 mi)	1.1 km	(0.7 mi)	200 m	(600 ft)	2.4 km	(1.5 mi)	4.1 km	(2.6 mi)
2901	124	Bromine chloride	100 m	(300 ft)	0.5 km	(0.3 mi)	1.8 km	(1.1 mi)	1000 m	(3000 ft)	5.4 km	(3.4 mi)	11.0+ km (7.0+ mi)	(7.0+ mi)
2927	154	Ethyl phosphonothioic dichloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)
2927	154	Ethyl phosphorodichloridate	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.3 km	(0.2 mi)
2965	139	Boron trifluoride dimethyl etherate (when spilled in water)	30 m	(100 ft)		(0.1 mi)	0.3 km	0.1 km (0.1 mi) 0.3 km (0.2 mi)	100 m	(300 ft)	1.2 km	(0.8 mi)	3.6 km	(2.2 mi)
2977	166	Radioactive material, Uranium hexafluoride, fissile (when spilled in water) Uranium hexafluoride,	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi)	0.2 km	0.2 km (0.1 mi)	ш 09	(200 ft)	0.4 km	(0.3 mi)	2.1 km	(1.3 mi)
		radioactive materia, rissile (when spilled in water)												
2978	166	Radioactive material, Uranium hexafluoride, non fissile or fissile-excepted (when spilled in water)	{ C	(100 #)		6	27 C		5	# 000	C	: ¥	£ 0	6
2978	166	Uranium hexafluoride, radioactive material, non fissile or fissile-excepted (when spilled in water)	0°	(11 00 11)	 	(0.1 IIII)	U.Z KIII	(0.1 IIII)	<u> </u>	(200 II)	4. E	(U.S IIII)	7.1 KIII	(1.3 [11])

(1.0 mi)	(1.0 mi)	(1.0 mi)	(1.0 mi)	(0.5 mi)	(4.1 mi)	(7.0+ mi)	(1.7 mi)	(7.0+ mi)	(6.3 mi)	(2.1 mi)	(1.8 mi)	
1.6 km	1.6 km	1.6 km	1.6 km	0.8 km	6.5 km	11.0+ km	2.7 km	11.0+ km	10.1 km	3.4 km	2.9 km	
(0.3 mi)	(0.3 mi)	(0.3 mi)	(0.3 mi)	(0.4 mi)	(1.3 mi)	(3.3 mi)	(1.0 mi)	(3.4 mi)	(3.6 mi)	(0.8 mi)	(0.6 mi)	1 C V H
0.5 km	0.5 km	0.5 km	0.5 km	0.5 km	2.0 km	5.2 km	1.6 km	5.5 km	5.7 km	1.3 km	1.0 km	۲
(200 ft)	(200 ft)	(200 ft)	(200 ft)	(200 ft)	(1500 ft)	(2500 ft)	(500 ft)	(3000 ft)	(3000 ft)	(1000 ft)	(500 ft)	
m 09	m 09	ш 09	m 09	m 09	500 m	800 m	150 m	1000 m	1000 m (3000 ft)	300 m	150 m	
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.5 mi)	(0.6 mi)	(0.5 mi)	(0.7 mi)	(2.4 mi)	(0.2 mi)	(0.2 mi)	
0.2 km	0.2 km	0.2 km	0.2 km	0.2 km	0.7 km	0.9 km	0.7 km	1.1 km	3.8 km	0.4 km	0.3 km	nditione
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.2 mi)	(0.2 mi)	(0.6 mi)	(0.1 mi)	(0.1 mi)	harin on
0.1 km	0.1 km	0.1 km	0.1 km	0.2 km	0.1 km	0.2 km	0.3 km	0.2 km	1.0 km	0.1 km	0.1 km	atmocn
(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(500 ft)	(100 ft)	(100 ft)	in cortain
30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	150 m	30 m	30 m	larger
Chlorosilanes, flammable, corrosive, n.o.s. (when spilled in water)	Chlorosilanes, corrosive, flammable, n.o.s. (when spilled in water)	Chlorosilanes, corrosive, n.o.s. (when spilled in water)	Chlorosilanes, water-reactive, fammable, corrosive, n.o.s. (when spilled in water)	2-Methyl-2-heptanethiol	Aluminum phosphide pesticide (when spilled in water)	Trifluoroacetyl chloride	Methacrylonitrile, stabilized	Perchloryl fluoride	Liquefied gas, poisonous, flammable, n.o.s. Liquefied gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone A)	Liquefied gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone C)	"+" means distance can be larger in certain atmospheric conditions

131P

"+" means distance can be larger in certain atmospheric conditions

es)		T (Miles)	(1.3 mi)	(6.3 mi)	(2.1 mi)	(1.8 mi)	(1.3 mi)	(6.3 mi)	(3.2 mi)	(1.8 mi)	
LARGE SPILLS (From a large package or from many small packages)	n ECT wind during	NIGHT Kilometers (Miles)	2.0 km (10.1 km (3.4 km (2.9 km (2.0 km (10.1 km (5.1 km (2.9 km (
LARGE SPILLS ckage or from many si	Then PROTECT persons Downwind during	DAY Kilometers (Miles)	(0.5 mi)	(3.6 mi)	(0.8 mi)	(0.6 mi)	(0.5 mi)	(3.6 mi)	(1.4 mi)	(0.6 mi)	
LARGE ackage or 1	<u>в</u>	Kilomete	0.8 km	5.7 km	1.3 km	1.0 km	0.8 km	5.7 km	2.3 km	1.0 km	
n a large p	First ISOLATE in all Directions	Meters (Feet)	(500 ft)	(3000 ft)	(1000 ft)	(500 ft)	(500 ft)	(3000 ft)	(1250 ft)	(500 ft)	
(Fror	Fi ISOI io all Di	Meters	150 m	1000 m (3000 ft)	300 m	150 m	150 m	1000 m	400 m	150 m	
package)	ring	NIGHT Kilometers (Miles)	0.1 km (0.1 mi) 0.2 km (0.1 mi)	(2.4 mi)	(0.2 mi)	(0.2 mi)	(0.1 mi)	(1.6 mi)	(0.6 mi)	(0.2 mi)	
om a large	Then PROTECT Is Downwind du		0.2 km	3.8 km	0.4 km	(0.1 mi) 0.3 km (0.2 mi)	0.2 km	2.5 km	0.9 km	0.3 km	
SPILLS nall leak fro	Then PROTECT persons Downwind during	DAY Kilometers (Miles)	(0.1 mi)	(0.6 mi)	(0.1 mi) 0.4 km	(0.1 mi)	(0.1 mi)	(0.3 mi)	(0.1 mi)	(0.1 mi)	
SMALL SPILLS kage or small leak fr		D Kilomete	0.1 km	1.0 km	0.1 km	0.1 km	0.1 km	0.5 km	0.2 km	0.1 km	
SMALL SPILLS From a small package or small leak from a large package)	First ISOLATE in all Directions	Meters (Feet)	(100 ft)	(500 ft)	(100 ft)	(100 ft)	(100 ft)	(300 ft)	(100 ft)	(100 ft)	
(From a	E ISOI	Meters	30 m	150 m	30 m	30 m	30 m	100 m	30 m	30 m	
		Guide NAME OF MATERIAL	Liquefied gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone D)	Liquefied gas, toxic, flammable, n.o.s. Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone A)	Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone C)	Liquefied gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone D)	Liquefied gas, poisonous, n.o.s. Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone A)	Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone C)	
		Guide	119	119	119	119	119	123 123	123	123	
		<u>°</u>	3160	3160	3160	3160	3160	3162 3162	3162	3162	

Ŧ		
L	Ц	
_		
C	0	
<	1	
H	-	

2	
≘	
ည် သ	
<u>=</u>	
Spi	
Ë	
<u>a</u>	
<u></u>	
ě	
≡	
<u> </u>	
ဘ	
arg	
ı be larg	
can be larg	
ice can be iarg	
stance can be larg	
s distance can pe larg	
ans distance can be larg	
means distance can be larg	
+ means distance can be larger in certain atmospheric conditions	

(1.3 mi)	(6.3 mi)	(3.2 mi)	(1.8 mi)	(1.3 mi)	(0.6 mi)	(1.7 mi)	(1.7 mi)	(2.6 mi)	
2.0 km	10.1 km	5.1 km	2.9 km	2.0 km	0.9 km	2.7 km	2.7 km	4.1 km	
(0.5 mi)	(3.6 mi)	(1.4 mi)	(0.6 mi)	(0.5 mi)	(0.4 mi)	(1.0 mi)	(1.0 mi)	(1.5 mi)	
0.8 km	5.7 km	2.3 km	1.0 km	0.8 km	0.7 km	1.6 km	1.6 km	2.4 km	
(500 ft)	1000 m (3000 ft)	(1250 ft)	(500 ft)	(500 ft)	(200 ft)	(500 ft)	(500 ft)	(e00 ft)	
150 m		400 m	150 m	150 m	m 09	150 m	150 m	200 m	
(0.1 mi)	(1.6 mi)	(0.6 mi)	(0.2 mi)	(0.1 mi)	(0.2 mi)	(0.5 mi)	(0.5 mi)	(0.7 mi)	
0.2 km	2.5 km	0.9 km	0.3 km	0.2 km	0.3 km	0.7 km	0.7 km	1.1 km	
(0.1 mi)	(0.3 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.2 mi)	(0.2 mi)	(0.2 mi)	(0.3 mi)	
0.1 km	0.5 km	0.2 km	0.1 km	0.1 km	0.2 km	0.3 km	0.3 km	0.4 km	
(100 ft)	(300 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	
30 m	100 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	
Liquefied gas, poisonous, n.o.s. (Inhalation Hazard Zone D)	Liquefied gas, toxic, n.o.s. Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone A)	Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone C)	Liquefied gas, toxic, n.o.s. (Inhalation Hazard Zone D)	Methanesulfonyl chloride Methanesulphonyl chloride	Nitriles, poisonous, flammable, n.o.s. Nitriles, toxic, flammable, n.o.s.	Nitriles, liquid, poisonous, n.o.s. Nitriles, liquid, toxic, n.o.s. Nitriles, poisonous, liquid, n.o.s. Nitriles, toxic, liquid, n.o.s.	Organophosphorus compound, liquid, poisonous, n.o.s. Organophosphorus compound, liquid, toxic, n.o.s. Organophosphorus compound, poisonous, liquid, n.o.s. Organophosphorus compound, toxic, liquid, n.o.s.	
123	123	123	123	123	156 156	131	151 151 151	151 151 151	
3162	3162	3162	3162	3162	3246 3246	3275	3276 3276 3276 3276	3278 3278 3278 3278	

Organophresphotus compound, poisonum, drowned, no.s. 30 m (100 ft) 0.4 km (0.3 mi) 1.1 km (0.7 mi) 200 m (600 ft) 2.4 km (1.5 mi) 4.1 km (2.6 mi) Dissionous, compound, toxic, flammable, no.s. 30 m (100 ft) 0.2 km (0.1 mi) 0.7 km (0.4 mi) 150 m (500 ft) 1.6 km (1.0 mi) 3.6 km (2.2 mi) Organoarsenic compound, toxic, flammable, no.s. 100 m (3000 ft) 1.3 km (0.8 mi) 5.0 km (3.1 mi) 1000 m (3000 ft) 1.6 km (1.0 mi) 3.6 km (1.2 mi) Metal carbonyls, liquid, no.s. 100 m (300 ft) 0.1 km (0.1 mi) 0.2 km (0.2 mi) 2.0 km (500 ft) 1.6 km (1.0 mi) 1.9 km (1.2 mi) A5% Llydrogen cyanide and Carbon dioxide dioxide dioxide dioxide dioxide dioxid
30 m (100 ft) 0.2 km (0.1 mi) 0.7 km (0.4 mi) 150 m (500 ft) 1.6 km (1.0 mi) 100 m (300 ft) 1.3 km (0.8 mi) 5.0 km (3.1 mi) 1000 m (3000 ft) 10.8 km (6.8 mi) 30 m (100 ft) 0.1 km (0.1 mi) 0.3 km (0.2 mi) 150 m (500 ft) 0.5 km (0.3 mi) 100 m (300 ft) 0.5 km (0.3 mi) 2.5 km (1.6 mi) 800 m (2500 ft) 5.0 km (3.1 mi) 60 m (200 ft) 0.3 km (0.2 mi) 1.1 km (0.7 mi) 400 m (1250 ft) 2.5 km (1.5 mi)
100 m (300 ft) 1.3 km (0.8 mi) 5.0 km (3.1 mi) 1000 m (3000 ft) 10.8 km (6.8 mi) 30 m (100 ft) 0.1 km (0.1 mi) 0.3 km (0.2 mi) 150 m (500 ft) 0.5 km (0.5 mi) 100 m (300 ft) 0.5 km (0.2 mi) 1.1 km (0.7 mi) 400 m (1250 ft) 5.0 km (1.5 mi)
30 m (100 ft) 0.1 km (0.1 mi) 0.3 km (0.2 mi) 200 m (600 ft) 0.5 km (0.3 mi) 30 m (100 ft) 0.1 km (0.1 mi) 0.2 km (0.2 mi) 150 m (500 ft) 0.8 km (0.5 mi) 100 m (300 ft) 0.5 km (0.3 mi) 2.5 km (1.6 mi) 800 m (2500 ft) 5.0 km (3.1 mi) 60 m (200 ft) 0.3 km (0.2 mi) 1.1 km (0.7 mi) 400 m (1250 ft) 2.5 km (1.5 mi)
30 m (100 ft) 0.1 km (0.1 mi) 0.2 km (0.2 mi) 150 m (500 ft) 0.8 km (0.5 mi) 100 m (300 ft) 0.5 km (0.3 mi) 2.5 km (1.6 mi) 800 m (2500 ft) 5.0 km (3.1 mi) 60 m (200 ft) 0.3 km (0.2 mi) 1.1 km (0.7 mi) 400 m (1250 ft) 2.5 km (1.5 mi)
0.5 km (0.3 mi) 2.5 km (1.6 mi) 800 m (2500 ft) 5.0 km (3.1 mi) 0.3 km (0.2 mi) 1.1 km (0.7 mi) 400 m (1250 ft) 2.5 km (1.5 mi)
(200 ft) 0.3 km (0.2 mi) 1.1 km (0.7 mi) 400 m (1250 ft) 2.5 km (1.5 mi) 6.7 km

(1.8 mi)	(1.3 mi)	(7.0+ mi)	(4.2 mi)	(1.8 mi)	(1.3 mi)	(5.7 mi)	(3.2 mi)	(2.0 mi)	
2.9 km	2.0 km	11.0+ km (7.0+ mi)	6.7 km	2.9 km	2.0 km	9.2 km	5.1 km	3.2 km	
(0.6 mi)	(0.5 mi)	(3.1 mi)	(1.5 mi)	(0.6 mi)	(0.5 mi)	(1.8 mi)	(1.4 mi)	(1.0 mi)	TABLE 1
1.0 km	0.8 km	5.0 km	2.5 km	1.0 km	0.8 km	2.9 km	2.3 km	1.6 km	F
(500 ft)	(500 ft)	(2500 ft)	400 m (1250 ft)	(500 ft)	(500 ft)	(1500 ft)	(1250 ft)	(1000 ft)	_
150 m	150 m	800 m		150 m	150 m	500 m	400 m	300 m	
(0.2 mi)	(0.1 mi)	2.5 km (1.6 mi)	(0.2 mi) 1.1 km (0.7 mi)	(0.2 mi)	(0.1 mi)	(1.6 mi)	(0.7 mi)	(0.3 mi)	
0.3 km	0.2 km	2.5 km	1.1 km	0.3 km	0.2 km	2.5 km	1.0 km	0.5 km	nditions
(0.1 mi)	(0.1 mi)	0.5 km (0.3 mi)	(0.2 mi)	(0.1 mi)	(0.1 mi)	(0.3 mi)	(0.2 mi)	(0.1 mi)	heric co
0.1 km	0.1 km	0.5 km	0.3 km	0.1 km	0.1 km	0.5 km	0.2 km	0.1 km	atmosp
(100 ft)	(100 ft)	100 m (300 ft)	(200 ft)	(100 ft)	(100 ft)	(300 ft)	(100 ft)	(100 ft)	n certain
30 m	30 m	100 m	m 09	30 m	30 m	100 m	30 m	30 m	l larger i
Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone C)	Compressed gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone D)	Compressed gas, toxic, oxidizing, n.o.s. Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone A)	Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone B)	Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone C)	Compressed gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone D)	Compressed gas, poisonous, corrosive, n.o.s. Compressed gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone A)	Compressed gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone B)	Compressed gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone C)	"+" means distance can be larger in certain atmospheric conditions
124	124	124	124	124	124	125	125	125	
3303	3303	3303	3303	3303	3303	3304	3304	3304	
								_	

			(From a si	S mall pack	SMALL SPILLS kage or small leak fr	SPILLS all leak fro	om a large	SMALL SPILLS From a small package or small leak from a large package)	(Froi	m a large p	LARGE ackage or f	LARGE SPILLS (From a large package or from many small packages)	mall packa	(ges)
			First ISOLATE in all Directions	st ATE ections	- bd	PRO PRO rsons Dow	Then PROTECT persons Downwind during	ring	F ISO In all D	First ISOLATE in all Directions	<u>a</u>	Then PROTECT persons Downwind during	ECT	D
₽Š	Guide	Guide NAME OF MATERIAL	Meters (Feet)	(Feet)	D/ Kilometer	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	i HT rs (Miles)
3304	125	Compressed gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone D)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	0.1 km (0.1 mi) 0.2 km (0.1 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.0 km	(1.3 mi)
3304	125	Compressed gas, toxic, corrosive, n.o.s. Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone A)	100 m	(300 ft)	0.5 km	(0.3 mi)	2.5 km	(1.6 mi)	500 m	(1500 ft)	2.9 km	(1.8 mi)	9.2 km	(5.7 mi)
3304	125	Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone B)	30 m	(100 ft)	0.2 km	(0.2 mi) 1.0 km	1.0 km	(0.7 mi)	400 m	(1250 ft)	2.3 km	(1.4 mi)	5.1 km	(3.2 mi)
3304	125	Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone C)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km (0.1 mi) 0.5 km (0.3 mi)	(0.3 mi)	300 m	300 m (1000 ft)	1.6 km	(1.0 mi)	3.2 km	(2.0 mi)
3304	125	Compressed gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone D)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km (0.1 mi) 0.2 km (0.1 mi)	(0.1 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.0 km	(1.3 mi)
3305	119	Compressed gas, poisonous, flammable, corrosive, n.o.s. Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	100 m	(300 ft)	0.5 km	(0.3 mi)		2.5 km (1.6 mi)	500 m	(1500 ft)	2.9 km	(1.8 mi)	9.2 km	(5.7 mi)

(3.2 mi)	(2.0 mi)	(1.3 mi)	(5.7 mi)	(3.2 mi)	(2.0 mi)	(1.3 mi)	(5.7 mi)	(3.2 mi)	
5.1 km	3.2 km	2.0 km	9.2 km	5.1 km	3.2 km	2.0 km	9.2 km	5.1 km	
(1.4 mi)	(1.0 mi)	(0.5 mi)	(1.8 mi)	(1.4 mi)	(1.0 mi)	(0.5 mi)	(1.8 mi)	(1.4 mi)	TABLE 1
2.3 km	1.6 km	0.8 km	2.9 km	2.3 km	1.6 km	0.8 km	2.9 km	2.3 km	ľ
(1250 ft)	(1000 ft)	(500 ft)	500 m (1500 ft)	400 m (1250 ft)	(1000 ft)	(500 ft)	(1500 ft)	(1250 ft)	
400 m	300 m	150 m			300 m	150 m	500 m	400 m	
(0.7 mi)	(0.3 mi)	(0.1 mi)	2.5 km (1.6 mi)	(0.2 mi) 1.0 km (0.7 mi)	(0.3 mi)	(0.1 mi)	(1.6 mi)	(0.7 mi)	
1.0 km	0.5 km	0.2 km	2.5 km	1.0 km	0.5 km	0.2 km	2.5 km	(0.2 mi) 1.0 km	nditions
(0.2 mi)	(0.1 mi)	0.1 km (0.1 mi) 0.2 km	0.5 km (0.3 mi)	(0.2 mi)	(0.1 mi)	(0.1 mi)	(0.3 mi)	(0.2 mi)	heric co
0.2 km	0.1 km	0.1 km	0.5 km	0.2 km	0.1 km	0.1 km	0.5 km	0.2 km	atmosp
(100 ft)	(100 ft)	(100 ft)	100 m (300 ft)	(100 ft)	(100 ft)	(100 ft)	(300 ft)	(100 ft)	in certair
30 m	30 m	30 m	100 m	30 m	30 m	30 m	100 m	30 m	larger
Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	Compressed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	Compressed gas, toxic, flammable, corrosive, n.o.s. Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	Compressed gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	"+" means distance can be larger in certain atmospheric conditions
119	119	119	119	119	119	119	124	124	
3305	3305	3305	3305	3305	3305	3305	3306	3306	
								Dogo 20	25

			(From a s	S mall pack	MALL (age or sm	SMALL SPILLS kage or small leak fro	om a large	SMALL SPILLS From a small package or small leak from a large package)	(Fro	n a large p	LARGE ackage or 1	LARGE SPILLS (From a large package or from many small packages)	mall packa	ges)
			First ISOLATE in all Directions	First ISOLATE	be	Then PROTECT persons Downwind during	Then PROTECT Is Downwind dui	ing	F ISOI ID III D	First ISOLATE in all Directions	<u>a</u>	Then PROTECT persons Downwind during	ECT	D
<u>°</u>	Guide	NAME OF MATERIAL	Meters (Feet)	(Feet)	D/ Kilometer	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	Meters	Meters (Feet)	Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	HT 's (Miles)
3306	124	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi) 0.5 km (0.3 mi)	0.5 km	(0.3 mi)	300 m	300 m (1000 ft)	1.6 km (1.0 mi)	(1.0 mi)	3.2 km	(2.0 mi)
3306	124	Compressed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.0 km	(1.3 mi)
3306	124	Compressed gas, toxic, oxidizing, corrosive, n.o.s. Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	100 m	(300 ft)	0.5 km	(0.3 mi)	2.5 km (1.6 mi)	(1.6 mi)	500 m	500 m (1500 ft)	2.9 km	(1.8 mi)	9.2 km	(5.7 mi)
3306	124	Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	30 m	(100 ft)	0.2 km	(0.2 mi)	1.0 km	0.2 km (0.2 mi) 1.0 km (0.7 mi)	400 m	400 m (1250 ft)	2.3 km	(1.4 mi)	5.1 km	(3.2 mi)
3306	124	Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)	30 m	(100 ft)	0.1 km	0.1 km (0.1 ml)	0.5 km	(0.3 mi)	300 m	300 m (1000 ft)	1.6 km	(1.0 mi)	3.2 km	(2.0 mi)
3306	124	Compressed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.0 km	(1.3 mi)

(7.0+ mi)	(4.2 mi)	(1.8 mi)	(1.3 mi)	(7.0+ mi)	(4.2 mi)	(1.8 mi)	(1.3 mi)	
11.0+ km (7.0+ mi)	6.7 km	2.9 km	2.0 km	11.0+ km (7.0+ mi)	6.7 km	2.9 km	2.0 km	
(3.1 mi)	(1.5 mi)	(0.6 mi)	(0.5 mi)	(3.1 mi)	(1.5 mi)	(0.6 mi)	(0.5 mi)	TARIF 1
5.0 km	2.5 km	1.0 km	0.8 km	5.0 km	2.5 km	1.0 km	0.8 km	F
(2500 ft)	(1250 ft)	(500 ft)	(500 ft)	(2500 ft)	(1250 ft)	(500 ft)	(500 ft)	•
800 m	400 m	150 m	150 m	800 m	400 m	150 m	150 m	
(1.6 mi)	(0.7 mi)	(0.2 mi)	(0.1 mi)	(1.6 mi)	(0.7 mi)	(0.2 mi)	(0.1 mi)	
2.5 km	1.1 km	0.3 km	0.2 km	2.5 km	1.1 km	0.3 km	(0.1 mi) 0.2 km (0.1 mi)	nditions
(0.3 mi)	(0.2 mi)	(0.1 mi) 0.3 km	(0.1 mi)	(0.3 mi)	(0.2 mi)	(0.1 mi)		oheric co
0.5 km	0.3 km	0.1 km	0.1 km	0.5 km	0.3 km	0.1 km	0.1 km	n atmosp
(300 ft)	(200 ft)	(100 ft)	(100 ft)	(300 ft)	(200 ft)	(100 ft)	(100 ft)	in certair
100 m	e0 m	30 m	30 m	100 m	m 09	30 m	30 m	larger
Liquefied gas, poisonous, oxidizing, n.o.s. Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone A)	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone C)	Liquefied gas, poisonous, oxidizing, n.o.s. (Inhalation Hazard Zone D)	Liquefied gas, toxic, oxidizing, n.o.s. Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone A)	Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone C)	Liquefied gas, toxic, oxidizing, n.o.s. (Inhalation Hazard Zone D)	"+" means distance can be larger in certain atmospheric conditions
124	124	124	124	124	124	124	124	
3307	3307	3307	3307	3307	3307	3307	3307	

			(From a s	S mall pack	MALL (age or sm	SMALL SPILLS kage or small leak fro	nm a large	SMALL SPILLS From a small package or small leak from a large package)	(Fro	m a large p	LARGE SPILLS (From a large package or from many small packages)	LARGE SPILLS ckage or from many s	mall packa	(des)
			Fil ISOL in all Dir	First ISOLATE in all Directions	ed	Then PROTECT persons Downwind during	Then PROTECT Is Downwind dur	ring	F ISO in all D	First ISOLATE in all Directions	ed	Then PROTECT persons Downwind during	en ECT wind durin	g
<u>0</u> ≥	Guide	Guide NAME OF MATERIAL	Meters (Feet)	(Feet)	D/ Kilometer	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (NIGHT Kilometers (Miles)
3308	125	Liquefied gas, poisonous, corrosive no s												
3308	125	Liqueffed gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone A)	100 m	100 m (300 ft)	0.5 km	(0.3 mi)	2.5 km	0.5 km (0.3 mi) 2.5 km (1.6 mi)	500 m	500 m (1500 ft)	2.9 km	(1.8 mi)	9.2 km	(5.7 mi)
3308	125	Liquefied gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone B)	30 m	(100 ft)	0.2 km		(0.2 mi) 1.0 km	(0.7 mi)	400 m	(1250 ft)	2.3 km	(1.4 mi)	5.1 km	(3.2 mi)
3308	125	Liquefied gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone C)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	300 m	(1000 ft)	1.6 km	(1.0 mi)	3.2 km	(2.0 mi)
3308	125	Liquefied gas, poisonous, corrosive, n.o.s. (Inhalation Hazard Zone D)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	0.1 km (0.1 mi) 0.2 km (0.1 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.0 km	(1.3 mi)
3308	125	Liquefied gas, toxic, corrosive, n.o.s.			į							:		
3308	125	Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone A)	100 m	(300 ft)	0.5 km	(0.3 mi)	2.5 km	(1.6 mi)	500 m	(1500 ft)	2.9 km	(1.8 mi)	9.2 km	(5.7 mi)
3308	125	Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone B)	30 m	(100 ft)	0.2 km	(0.2 mi)	(0.2 mi) 1.0 km (0.7 mi)	(0.7 mi)	400 m	(1250 ft)	2.3 km	(1.4 mi)	5.1 km	(3.2 mi)

(2.0 mi)	(1.3 mi)	(5.7 mi)	(3.2 mi)	(2.0 mi)	(1.3 mi)	(5.7 mi)	(3.2 mi)	(2.0 mi)	
3.2 km	2.0 km	9.2 km	5.1 km	3.2 km	2.0 km	9.2 km	5.1 km	3.2 km	
(1.0 mi)	(0.5 mi)	(1.8 mi)	(1.4 mi)	(1.0 mi)	(0.5 mi)	(1.8 mi)	(1.4 mi)	(1.0 mi)	TABLE 1
1.6 km	0.8 km	2.9 km	2.3 km	1.6 km	0.8 km	2.9 km	2.3 km	1.6 km	F
(1000 ft)	(500 ft)	500 m (1500 ft)	400 m (1250 ft)	(1000 ft)	(500 ft)	(1500 ft)	(1250 ft)	(1000 ft)	_
300 m	150 m			300 m	150 m	500 m	400 m	300 m	
(0.3 mi)	(0.1 mi)	2.5 km (1.6 mi)	0.2 km (0.2 mi) 1.0 km (0.7 mi)	(0.3 mi)	(0.1 mi)	(1.6 mi)	(0.7 mi)	(0.3 mi)	
0.5 km	(0.1 mi) 0.2 km (0.1 mi)	2.5 km	1.0 km	0.5 km	0.2 km	2.5 km	1.0 km	0.5 km	nditions
(0.1 mi)	(0.1 mi)	0.5 km (0.3 mi)	(0.2 mi)	(0.1 mi)	(0.1 mi)	(0.3 mi)	(0.2 mi)	(0.1 mi)	heric co
0.1 km	0.1 km	0.5 km	0.2 km	0.1 km	0.1 km	0.5 km	0.2 km	0.1 km	atmosp
(100 ft)	(100 ft)	100 m (300 ft)	(100 ft)	(100 ft)	(100 ft)	(300 ft)	(100 ft)	(100 ft)	n certain
30 m	30 m	100 m	30 m	30 m	30 m	100 m	30 m	30 m	larger
Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone C)	Liquefied gas, toxic, corrosive, n.o.s. (Inhalation Hazard Zone D)	Liquefied gas, poisonous, flammable, corrosive, n.o.s. Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	Liquefied gas, poisonous, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	Liquefied gas, toxic, flammable, corrosive, n.o.s. Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone C)	"+" means distance can be larger in certain atmospheric conditions
125	125	119	119	119	119	119	119	119	
3308	3308	3309	3309	3309	3309	3309	3309	3309	
								Dogo 20	20

			SMALL SPILLS (From a small package or small leak from a large package)	SMALL SPILLS ckage or small leak fro	SPILLS all leak fro	om a large	package)	(Fro	m a large p	LARGE ackage or 1	LARGE SPILLS (From a large package or from many small packages)	imall packa	(seb)
			First ISOLATE in all Directions	led.	Th PRO: rsons Dow	Then PROTECT persons Downwind during	ing	F ISOI In all D	First ISOLATE in all Directions	<u>a</u>	Then PROTECT persons Downwind during	en ECT wind durin	D
<u>°</u>	Guide	NAME OF MATERIAL	Meters (Feet)	DAY Kilometers (DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	i HT rs (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (NIGHT Kilometers (Miles)
3309	119	Liquefied gas, toxic, flammable, corrosive, n.o.s. (Inhalation Hazard Zone D)	30 m (100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.0 km	(1.3 mi)
3310	124	Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	100 m (300 ft)	0.5 km	(0.3 mi)	2.5 km	(1.6 mi)	500 m	500 m (1500 ft)	2.9 km	(1.8 mi)	9.2 km	(5.7 mi)
3310	124	Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	30 m (100 ft)	0.2 km	(0.2 mi)	(0.2 mi) 1.0 km (0.7 mi)	(0.7 mi)	400 m	(1250 ft)	2.3 km	(1.4 mi)	5.1 km	(3.2 mi)
3310	124	Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)	30 m (100 ft)		(0.1 mi)	0.1 km (0.1 mi) 0.5 km (0.3 mi)		300 m	300 m (1000 ft) 1.6 km	1.6 km	(1.0 mi)	3.2 km	(2.0 mi)
3310	124	Liquefied gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)	30 m (100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.0 km	(1.3 mi)
3310	124	Liqueffed gas, toxic, oxidizing, corrosive, n.o.s. Liqueffed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone A)	100 m (300 ft)	0.5 km	(0.3 mi)	2.5 km (1.6 mi)	(1.6 mi)	500 m	500 m (1500 ft)	2.9 km	(1.8 mi)	9.2 km	(5.7 mi)

'n	
conditions	
ᇹ	
≅	
=	
ਠ	
⊆	
0	
ပ	
O	
₹	
ᇷ	
ĕ	
atmospheric (
S	
ö	
ĕ	
드	
ᡖ	
_	
⊑	
ᇙ	
ĩ	
ᇷ	
ၓ	
in certain	
_	
Ξ	
= 6	
der =	
larger II	
arger I	
e larger II	
be larger	
distance can be larger	
distance can be larger	
distance can be larger	
distance can be larger	
distance can be larger	
means distance can be larger	
means distance can be larger	
means distance can be larger	
distance can be larger	

(3.2 mi)	(2.0 mi)	(1.3 mi)	(1.3 mi)	(6.3 mi)	(2.1 mi)	(1.8 mi)	(1.3 mi)	(6.3 mi)	
5.1 km	3.2 km	2.0 km	2.1 km	10.1 km	3.4 km	2.9 km	2.0 km	10.1 km	
(1.4 mi)	(1.0 mi)	(0.5 mi)	(0.5 mi)	(3.6 mi)	(0.8 mi)	(0.6 mi)	(0.5 mi)	(3.6 mi)	
2.3 km	1.6 km	0.8 km	0.8 km	5.7 km	1.3 km	1.0 km	0.8 km	5.7 km	ı
(1250 ft)	(1000 ft)	(500 ft)	(500 ft)	1000 m (3000 ft)	300 m (1000 ft)	(500 ft)	(500 ft)	1000 m (3000 ft)	
400 m	300 m	150 m	150 m		300 m	150 m	150 m		
(0.7 mi)	(0.3 mi)	(0.1 mi)	(0.1 mi)	(2.4 mi)	(0.1 mi) 0.4 km (0.2 mi)	(0.2 mi)	(0.1 mi)	3.8 km (2.4 mi)	
1.0 km	0.5 km	0.2 km	0.2 km	3.8 km	0.4 km	0.3 km	0.2 km	3.8 km	
(0.2 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.6 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.6 mi)	
0.2 km	0.1 km	0.1 km	0.1 km	1.0 km	0.1 km	0.1 km	0.1 km	1.0 km	
(100 ft)	(100 ft)	(100 ft)	(100 ft)	(500 ft)	(100 ft)	(100 ft)	(100 ft)	(500 ft)	
30 m	30 m	30 m	30 m	150 m	30 m	30 m	30 m	150 m	
Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone B)	Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone C)	Liquefied gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation Hazard Zone D)	Ammonia solution, with more than 50% Ammonia	Insecticide gas, poisonous, flammable, n.o.s. Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone A)	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone B)	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone C)	Insecticide gas, poisonous, flammable, n.o.s. (Inhalation Hazard Zone D)	Insecticide gas, toxic, flammable, n.o.s. Insecticide gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone A)	
124	124	124	125	119	119	119	119	119	
3310	3310	3310	3318	3355	3355	3355	3355	3355	

			(From a si	S mall pack	SMALL SPILLS kage or small leak fr	SPILLS all leak fro	SMALL SPILLS From a small package or small leak from a large package)	package)	(Fror	n a large p	LARGE ackage or f	LARGE SPILLS (From a large package or from many small packages)	mall packa	(seb
			First ISOLATE in all Directions	st ATE	ed.	PRO PRO rsons Dow	Then PROTECT persons Downwind during	ing	F ISOI	First ISOLATE in all Directions	8.	Then PROTECT persons Downwind during	ECT	0
₽Š	Guide	Guide NAME OF MATERIAL	Meters (Feet)	(Feet)	D/ Kilometer	DAY Kilometers (Miles)	NIC Kilomete	NIGHT Kilometers (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	i HT rs (Miles)
3355	119	Insecticide gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone B)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km (0.1 mi) 0.4 km (0.2 mi)	(0.2 mi)	300 m	300 m (1000 ft)	1.3 km	(0.8 mi)	3.4 km	(2.1 mi)
3355	119	Insecticide gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone C)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	150 m	(500 ft)	1.0 km	(0.6 mi)	2.9 km	(1.8 mi)
3355	119	Insecticide gas, toxic, flammable, n.o.s. (Inhalation Hazard Zone D)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	150 m	(500 ft)	0.8 km	(0.5 mi)	2.0 km	(1.3 mi)
3361	156 156	Chlorosilanes, poisonous, corrosive, n.o.s. (when spilled in water) Chlorosilanes, toxic, corrosive, n.o.s. (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km (0.1 mi) 0.2 km (0.1 mi)	(0.1 mi)	ш 09	(200 ft)	0.5 km	(0.3 mi)	1.6 km	(1.0 mi)
3362	155	Chlorosilanes, poisonous, corrosive, flammable, n.o.s. (when spilled in water) Chlorosilanes, toxic, corrosive, flammable, n.o.s. (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	ш 09	(200 ft)	0.5 km	(0.3 mi)	1.6 km	(1.0 mi)
3381	151	Poisonous by inhalation liquid, n.o.s. (Inhalation Hazard Zone A) Toxic by inhalation liquid, n.o.s. (Inhalation Hazard Zone A)	e0 m	(200 ft)	0.6 km	(0.4 mi)	0.6 km (0.4 mi) 1.2 km (0.8 mi)	(0.8 mi)	200 m	(600 ft)	2.2 km	(1.4 mi)	4.2 km (2.6 mi)	(2.6 mi)

<u>=</u>	=	ê	ê	ê	
(0.5 mi)	(3.6 mi)	(0.6 mi)	(2.6 mi)	(0.5 mi)	
0.7 km	5.8 km	1.0 km	4.2 km	0.7 km	
(0.3 mi)	(2.0 mi)	(0.4 mi)	(1.4 mi)	(0.3 mi)	TABLE 1
0.5 km	3.1 km	0.6 km	2.2 km	0.5 km	F
(200 ft)	300 m (1000 ft)	(200 ft)	(600 ft)	(200 ft)	•
e0 m		e0 m	200 m	m 09	
(0.2 mi)	0.5 km (0.3 mi) 1.5 km (0.9 mi)	(0.2 mi)	(0.8 mi)	(0.2 mi)	
0.2 km	1.5 km	0.3 km	1.2 km	0.2 km	nditions
(0.1 mi) 0.2 km	(0.3 mi)	(0.1 mi)	(0.4 mi)	(0.1 mi)	heric co
0.2 km		0.2 km	0.6 km	0.2 km	atmosp
(100 ft)	(200 ft)	(100 ft)	(200 ft)	(100 ft)	in certair
30 m	m 09	30 m	m 09	30 m	larger
Poisonous by inhalation liquid, n.o.s. (Inhalation Hazard Zone B) Toxic by inhalation liquid, n.o.s. (Inhalation Hazard Zone B)	Poisonous by inhalation liquid, flammable, n.o.s. (Inhalation Hazard Zone A) Toxic by inhalation liquid, flammable, n.o.s. (Inhalation Hazard Zone A)	Poisonous by inhalation liquid, flammable, n.o.s. (Inhalation Hazard Zone B) Toxic by inhalation liquid, flammable, n.o.s. (Inhalation Hazard Zone B)	Poisonous by inhalation liquid, water-reactive, n.o.s. (Inhalation Hazard Zone A) Toxic by inhalation liquid, water-reactive, n.o.s. (Inhalation Hazard Zone A)	Poisonous by inhalation liquid, water-reactive, n.o.s. (Inhalation Hazard Zone B) Toxic by inhalation liquid, water-reactive, n.o.s. (Inhalation Hazard Zone B)	"+" means distance can be larger in certain atmospheric conditions
151	131	131	139	139	
3382	3383	3384	3385 3385	3386	

			SMALL SPILLS (From a small package or small leak from a large package)	SMALL SPILLS kage or small leak from	SPILLS all leak fro	ım a large	package)	(Fror	n a large p	LARGE ackage or f	LARGE SPILLS (From a large package or from many small packages)	mall packa	des)
			First ISOLATE in all Directions	ied	Th PRO : rsons Dow	Then PROTECT persons Downwind during	ing	F ISOI IO lle ri	First ISOLATE in all Directions	ed.	Then PROTECT persons Downwind during	ECT Wind durin	0
<u>0</u> છે	Guide	Guide NAME OF MATERIAL	Meters (Feet)	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	HT 's (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	i HT 's (Miles)
3387	142	Poisonous by inhalation liquid, oxidizing, n.o.s. (Inhalation Hazard Zone A) Toxic by inhalation liquid, oxidizing, n.o.s. (Inhalation Hazard Zone A)	60 m (200 ft)	0.6 km	(0.4 mi)	1.2 km	(0.8 mi)	200 m	(600 ft)	2.2 km	(1.4 mi)	4.2 km	(2.6 ті)
3388	142	Poisonous by inhalation liquid, oxidizing, n.o.s. (Inhalation Hazard Zone B) Toxic by inhalation liquid, oxidizing, n.o.s. (Inhalation Hazard Zone B)	30 m (100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.4 km	(0.3 mi)
3389	154	Poisonous by inhalation liquid, corrosive, n.o.s. (Inhalation Hazard Zone A) Toxic by inhalation liquid, corrosive, n.o.s. (Inhalation Hazard Zone A)	100 m (300 ft)	0.3 km	(0.2 mi)	0.8 km	(0.5 mi)	400 m	(1250 ft) 1.4 km	1.4 km	(0.9 mi)	3.3 km	(2.1 mi)
3390	154	Poisonous by inhalation liquid, corrosive, n.o.s. (Inhalation Hazard Zone B) Toxic by inhalation liquid, corrosive, n.o.s. (Inhalation Hazard Zone B)	30 m (100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.3 mi)	0.6 km	(0.4 mi)

(1.8 mi)	(4.7 mi)	(0.6 ті)	(3.6 ті)	(0.6 ті)	
2.9 km	7.5 km (4.7 mi)	1.0 km	5.8 km	1.0 km	
(0.6 mi)	(3.0 mi)	(0.4 mi)	(2.0 ті)	(0.4 mi)	TABLE 1
	4.8 km	0.6 km	3.1 km	0.6 km	1
300 m (1000 ft) 1.0 km	400 m (1250 ft)	(200 ft)	300 m (1000 ft)	(200 ft)	
	400 m	e0 m		E 09	
0.1 km (0.1 mi) 0.3 km (0.2 mi)	0.9 km (0.6 mi) 2.0 km (1.2 mi)	0.2 km (0.1 mi) 0.3 km (0.2 mi)	0.5 km (0.9 mi) 1.5 km (0.9 mi)	0.2 km (0.1 mi) 0.3 km (0.2 mi)	
0.3 km	2.0 km	0.3 km	1.5 km	0.3 km	nditions
(0.1 mi)	(0.6 mi)	(0.1 mi)	(0.3 mi)	(0.1 mj)	heric co
	0.9 km				atmosp
(100 ft)	100 m (300 ft)	(100 ft)	(200 ft)	(100 ft)	in certair
30 m	100 m	30 m	ш 09	30 m	larger
Nitrosylsulfuric acid, solid (when spilled in water) Nitrosylsulphuric acid, solid (when spilled in water)	Poisonous by inhalation liquid, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A) Toxic by inhalation liquid, flammable, corrosive, n.o.s. (Inhalation Hazard Zone A)	Poisonous by inhalation liquid, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B) Toxic by inhalation liquid, flammable, corrosive, n.o.s. (Inhalation Hazard Zone B)	Poisonous by inhalation liquid, water-reactive, flammable, n.o.s. (Inhalation Hazard Zone A) Toxic by inhalation liquid, water-reactive, flammable, n.o.s. (Inhalation Hazard Zone A)	Poisonous by inhalation liquid, water-reactive, flammable, n.o.s. (Inhalation Hazard Zone B) Toxic by inhalation liquid, water-reactive, flammable, n.o.s. (Inhalation Hazard Zone B)	"+" means distance can be larger in certain atmospheric conditions
157	131	131	155	155	
3456 3456	3488	3489	3490	3491	

			SMALL SPILLS (From a small package or small leak from a large package)	SMALL SPILLS kage or small leak fro	SPILLS all leak fro	ım a large	package)	(Fror	n a large p	LARGE ackage or	LARGE SPILLS (From a large package or from many small packages)	mall packa	ges)
			First ISOLATE in all Directions	per	Then PROTECT persons Downwind during	Then PROTECT Is Downwind dur	ing	F ISOI ID III D	First ISOLATE in all Directions	8.	Then PROTECT persons Downwind during	en ECT Iwind durin	0
ΩŠ	Guide	Guide NAME OF MATERIAL	Meters (Feet)	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	i HT rs (Miles)	Meters	Meters (Feet)	Kilomet	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	NIGHT neters (Miles)
3492	131	Poisonous by inhalation liquid, corrosive, flammable, n.o.s. (Inhalation Hazard Zone A) Toxic by inhalation liquid, corrosive, flammable, n.o.s. (Inhalation Hazard Zone A)	100 m (300 ft)	0.9 km	(0.6 mi)	2.0 km	(1.2 mi)	400 m	(1250 ft)	4.8 km	(3.0 mi)	7.5 km	(4.7 mi)
3493	131	Poisonous by inhalation liquid, corrosive, flammable, n.o.s. (Inhalation Hazard Zone B) Toxic by inhalation liquid, corrosive, flammable, n.o.s. (Inhalation Hazard Zone B)	30 m (100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	m 09	(200 ft)	0.6 km	(0.4 mi)	1.0 km	(0.6 ті)
3494	131	Petroleum sour crude oil, flammable, poisonous Petroleum sour crude oil, flammable, toxic	30 m (100 ft)	0.2 km	(0.1 mi)	0.2 km (0.2 mi)	(0.2 mi)	m 09	(200 ft)	0.5 km	(0.3 mi)	0.7 km	(0.5 mi)
3507	166	Uranium hexafluoride, radioactive material, excepted package, less than 0.1 kg per package, non-fissile or fissile-excepted (when spilled in water)	30 m (100 ft)	0.1 km (0.1 mi)	(0.1 mi)	0.1 km	0.1 km (0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)

(0.2 mi)	(0.1 mi)	(0.2 mi)	(0.1 mi)	(0.2 mi)	
0.2 km	0.1 km	0.2 km	0.1 km	0.2 km	
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	TABLE 1
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	F
(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	
30 m	30 m	30 m	30 m	30 m	
(0.1 mi)	0.1 km (0.1 mi) 0.1 km (0.1 mi)	(0.1 mi)	0.1 km (0.1 mi) 0.1 km (0.1 mi)	(0.1 mi)	
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	nditions
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	oheric co
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	atmosp
(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	in certair
30 m	30 m	30 m	30 m	30 m	larger
Adsorbed gas, poisonous, n.o.s. Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone A)	Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone B) Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone C) Adsorbed gas, poisonous, n.o.s. (Inhalation hazard zone C)	Adsorbed gas, toxic, n.o.s. Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone A)	Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone B) Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone C) Adsorbed gas, toxic, n.o.s. (Inhalation hazard zone D)	Adsorbed gas, poisonous, flammable, n.o.s. Adsorbed gas, poisonous, flammable, n.o.s. (Inhalation hazard zone A)	"+" means distance can be larger in certain atmospheric conditions
173	173	173	173	173	
3512 3512	3512 3512 3512	3512 3512	3512 3512 3512	3514	

			(From a s	small pack	MALL age or sm	SMALL SPILLS From a small package or small leak from a large package)	om a large	package)	(Fror	n a large p	LARGE ackage or f	LARGE SPILLS (From a large package or from many small packages)	imall packa	(seb
			Fil. ISOL in all Dii	First ISOLATE in all Directions	ed	Then PROTECT persons Downwind during	Then PROTECT IS Downwind dur	ring	FI 1081 IO lle ni	First ISOLATE in all Directions	<u>e</u>	Then PROTECT persons Downwind during	en ECT ewind durin	0
⊝§	Guide	Guide NAME OF MATERIAL	Meters (Feet)	(Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	SHT rs (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	i HT rs (Miles)
3514	173	Adsorbed gas, poisonous, flammable, n.o.s. (Inhalation												
3514	173	Adsorbed gas, poisonous, flammable, n.o.s. (Inhalation	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi) 0.1 km (0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)
3514	173	nazard zone C.) Adsorbed gas, poisonous, flammable, n.o.s. (Inhalation hazard zone D.)												
3514	173	Adsorbed gas, toxic, flammable n o s												
3514	173	Adsorbed gas, toxic, flammable, n.o.s. (Inhalation hazard zone A)	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi) 0.1 km (0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)
3514	173	Adsorbed gas, toxic, flammable, n.o.s. (Inhalation hazard zone B)												
3514	173	Adsorbed gas, toxic, flammable, n.o.s. (Inhalation	30 m	(100 ft)		0.1 km (0.1 mi) 0.1 km	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)
3514	173	Adsorbed gas, toxic, flammable, n.o.s. (Inhalation hazard zone D)												

(0.2 mi)	(0.1 mi)	(0.2 mi)	(0.1 mi)	(0.2 mi)	
0.2 km	0.1 km	0.2 km	0.1 km	0.2 km	
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	TABLE 1
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	F
(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	
30 m	30 m	30 m	30 m	30 m	
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	nditions
(0.1 mi)	(0.1 mi)	0.1 km (0.1 mi) 0.1 km (0.1 mi)	(0.1 mi)	(0.1 mi)	heric co
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	atmosp
(100 ft)	(100 ft)	30 m (100 ft)	(100 ft)	(100 ft)	in certair
30 m	30 m	30 m	30 m	30 m	largeri
Adsorbed gas, poisonous, oxidizing, n.o.s. Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone A)	Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone B) Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone C) Adsorbed gas, poisonous, oxidizing, n.o.s. (Inhalation hazard zone D)	Adsorbed gas, toxic, oxidizing, n.o.s. Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone A)	Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone B) Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone C) Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone C) Adsorbed gas, toxic, oxidizing, n.o.s. (Inhalation hazard zone D)	Adsorbed gas, poisonous, cornosive, n.o.s. Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation hazard zone A)	"+" means distance can be larger in certain atmospheric conditions
173	173	173	173	173	
3515	3515 3515 3515	3515	3515 3515 3515	3516 3516	

			(From a si	mall pack	SMALL SPILLS kage or small leak fro	SMALL SPILLS From a small package or small leak from a large package)	ım a large	package)		n a large p	LARGE ackage or f	LARGE SPILLS (From a large package or from many small packages)	mall packa	ges)
			First ISOLATE in all Directions	st ATE ections	led	Then PROTECT persons Downwind during	Then PROTECT S Downwind dur	ing	ISO I in all D	First ISOLATE in all Directions	ed.	Then PROTECT persons Downwind during	ECT Wind durin	D
<u>.</u> 98	Guide	Guide NAME OF MATERIAL	Meters (Feet)	(Feet)	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	s HT rs (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (Miles)	HT 's (Miles)
3516	173	Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation												
3516	173	Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi) 0.1 km (0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)
3516	173	nazard zone C.) Adsorbed gas, poisonous, corrosive, n.o.s. (Inhalation hazard zone D)												
3516	173	Adsorbed gas, toxic, corrosive,												
3516	173	Adsorbed gas, toxic, corrosive, n.o.s. (Inhalation hazard zone A)	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi) 0.1 km (0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)
3516	173	Adsorbed gas, toxic, corrosive, n.o.s. (Inhalation hazard												
3516	173	Adsorbed gas, toxic, corrosive, n.o.s. (Inhalation hazard	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)
3516	173	Adsorbed gas, toxic, corrosive, n.o.s. (Inhalation hazard zone D)												
3517	173	Adsorbed gas, poisonous, flammable, corrosive, n.o.s.												
3517	173	Adsorbed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation hazard zone A)	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi) 0.1 km (0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)

(0.1 mi)	(0.2 mi)	(0.1 mi)	(0.2 mi)	
0.1 km	0.2 km	0.1 km	0.2 km	
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	TABLE 1
0.1 km	0.1 km	0.1 km	0.1 km	F
(100 ft)	(100 ft)	(100 ft)	(100 ft)	
30 m	30 m	30 m	30 m	
(0.1 mi)	0.1 km (0.1 mi) 0.1 km (0.1 mi)	(0.1 mi)	0.1 km (0.1 mi) 0.1 km (0.1 mi)	
0.1 km	0.1 km	0.1 km	0.1 km	nditions
0.1 km (0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	oheric co
		0.1 km	0.1 km	n atmosp
(100 ft)	(100 ft)	(100 ft)	(100 ft)	in certair
30 m	30 m	30 m	30 m	larger
Adsorbed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation hazard zone B) Adsorbed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation hazard zone C) Adsorbed gas, poisonous, flammable, corrosive, n.o.s. (Inhalation hazard zone D)	Adsorbed gas, toxic, flammable, corrosive, n.o.s Adsorbed gas, toxic, flammable, corrosive, n.o.s. (Inhalation hazard zone A)	Adsorbed gas, toxic, flammable, corroswe, n.o.s. (Inhalation hazard zone B) Adsorbed gas, toxic, flammable, corroswe, n.o.s. (Inhalation hazard zone C) Adsorbed gas, toxic, flammable, corroswe, n.o.s. (Inhalation hazard zone D)	Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation hazard zone A)	"+" means distance can be larger in certain atmospheric conditions
173	173	173	173	
3517 3517 3517	3517	3517 3517 3517	3518	

			(From a s	Small pack	SMALL SPILLS kage or small leak fro	SPILLS nall leak fro	nm a large	SMALL SPILLS From a small package or small leak from a large package)	(Froi	m a large p	LARGE ackage or f	LARGE SPILLS (From a large package or from many small packages)	mall packa	(seb)
			ISOL in all Di	First ISOLATE in all Directions	be	Then PROTECT persons Downwind during	Then PROTECT Is Downwind dur	ring	F ISO In all D	First ISOLATE in all Directions	<u>e</u>	Then PROTECT persons Downwind during	ECT	D
<u>.</u> 98	Guide	NAME OF MATERIAL	Meters	Meters (Feet)	D/ Kilometer	DAY Kilometers (Miles)		NIGHT Kilometers (Miles)	Meters	Meters (Feet)	D Kilomete	DAY Kilometers (Miles)	NIGHT Kilometers (1	NIGHT Kilometers (Miles)
3518	173	Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s.												
3518	173	(Inhalation hazard zone b) Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s.	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	0.1 km (0.1 mi) 0.1 km (0.1 mi)	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi)	0.1 km (0.1 mi)	(0.1 mi)
3518	173	(Inhalation hazard zone C) Adsorbed gas, poisonous, oxidizing, corrosive, n.o.s. (Inhalation hazard zone D)												
3518	173	Adsorbed gas, toxic, oxidizing,												
3518	173	Adsorbed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation hazard zone A)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(100 ft) 0.1 km (0.1 mi) 0.1 km (0.1 mi)	30 m	30 m (100 ft)	0.1 km	0.1 km (0.1 mi)	0.2 km (0.2 mi)	(0.2 mi)
3518	173	Adsorbed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation												
3518	173	Adsorbed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation	30 m	(100 ft)	0.1 km	0.1 km (0.1 mi) 0.1 km (0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)
3518	173	hazard zone C) Adsorbed gas, toxic, oxidizing, corrosive, n.o.s. (Inhalation hazard zone D)												
3519	173	Boron trifluoride, adsorbed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)
3520	173	Chlorine, adsorbed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)

See Next Page for Table of Water-Reactive Materials Which Produce Toxic Gases

(0.1 mi)	(0.2 mi)	(0.2 mi)	(0.1 mi)	(0.1 mi)	(0.3 mi)	(0.3 mi)	(0.3 mi)	(2.7 mi)	(0.4 mi)	(0.2 mi)	(0.2 mi)	(1.5 mi)	
0.1 km	0.2 km	0.2 km	0.1 km	0.1 km	0.4 km	0.4 km	0.5 km	4.3 km	0.6 km	0.3 km	0.3 km	2.3 km	
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.7 mi)	(0.3 mi)	(0.2 mi)	(0.2 mi)	(0.8 mi)	
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.2 km	1.2 km	0.4 km	0.2 km	0.2 km	1.3 km	
(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(e00 ft)	(100 ft)	(100 ft)	(100 ft)	(300 ft)	
30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	200 m	30 m	30 m	30 m	100 m	
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.4 mi)	
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.2 km	0.2 km	0.1 km	0.1 km	0.6 km	
(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.1 mi)	(0.2 mi)	
0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.1 km	0.2 km	
(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	(100 ft)	
30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	30 m	
Silicon tetrafluoride, adsorbed	Arsine, adsorbed	Germane, adsorbed	Phosphorus pentafluoride, adsorbed	Phosphine, adsorbed	Hydrogen selenide, adsorbed	Articles containing toxic gas, n.o.s.	Chlorine dioxide, hydrate, frozen (when spilled in water)	Carbon monoxide, refrigerated liquid (cryogenic liquid)	Methyl phosphonic dichloride	Chloropivaloyl chloride	3,5-Dichloro-2,4,6- trifluoropyridine	Trimethoxysilane	
173	173	173	173	173	173	123	143	168	137	156	151	132	
3521	3522	3523	3524	3525	3526	3539	9191	9202	9206	9263	9264	9269	

HOW TO USE TABLE 2 – WATER-REACTIVE MATERIALS THAT PRODUCE TOXIC GASES

Table 2 lists materials that produce large amounts of Toxic Inhalation Hazard (TIH) (PIH in the US) gases when spilled in water, and identifies the TIH gases produced.

The materials are listed by order of ID number.

These Water-Reactive materials are easily identified in Table 1 as their name is immediately followed by (when spilled in water).

Note 1: The TIH gases indicated in Table 2 are for information purposes only. In Table 1, the initial isolation and protective action distances have already taken into consideration the TIH gases produced.

For example: Table 2 indicates that UN1689 sodium cyanide, when spilled in water, will generate hydrogen cyanide gas (HCN). In Table 1, you must refer to the distances for sodium cyanide and not the distances for hydrogen cyanide gas.

- Note 2: Some Water-Reactive materials are also TIH materials themselves (e.g., UN1746 (Bromine trifluoride), UN1836 (Thionyl chloride)). In these instances, two entries are provided in Table 1 for land-based and water-based spills. If a water-reactive material only has one entry in Table 1 for (when spilled in water), and the product is NOT spilled in water, Tables 1 and 2 do NOT apply. Refer only to the appropriate orange-bordered guide.
- Note 3: Materials classified as a Division 4.3 are substances that, on contact with water, are liable to become spontaneously **FLAMMABLE** or give off **FLAMMABLE** or sometimes **TOXIC** gases in dangerous quantities. For the purpose of this table, water-reactive materials are materials that generate substantial quantities of **TOXIC** gases rapidly after a spill into water; therefore, a material classified as a Division 4.3 will not always be included in Table 2.

Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH) (PIH in the US) Gas(es) When Spilled in Water

ID No.	Guide No.	Name of Mate	ial			TIH Gas(es) Produced			
1162	155	Dimethyldichlorosi	lane			HCI			
1183	139	Ethyldichlorosilane)			HCI			
1196	155	Ethyltrichlorosiland	9			HCI			
1242	139	Methyldichlorosila	ne			HCI			
1250	155	Methyltrichlorosila	ne			HCI			
1295	139	Trichlorosilane				HCI			
1298	155	Trimethylchlorosila	ine			HCI			
1305	155P	Vinyltrichlorosilane)			HCI			
1305	155P	Vinyltrichlorosilane	e, stabiliz	zed		HCI			
1340	139	Phosphorus penta Phosphorus	sulfide, 1	free from yellow and white		H_2S			
1340	139	Phosphorus penta Phosphorus	sulphide	e, free from yellow and white		H_2S			
1360	139	Calcium phosphid	Э			PH_3			
1384	135	$ \begin{array}{ccc} \text{Sodium dithionite} & & \text{H}_2\text{S} & \text{SO}_2 \\ \\ \text{Sodium hydrosulfite} & & \text{H}_2\text{S} & \text{SO}_2 \\ \end{array} $							
1384	135	Sodium hydrosulfite H ₂ S SO ₂							
1384	135	Sodium hydrosulp	nite			H ₂ S SO ₂			
1390	139	Alkali metal amide	S			NH ₃			
1397	139	Aluminum phosph	de			$PH_{\scriptscriptstyle{3}}$			
1419	139	Magnesium alumii	num pho	sphide		PH_3			
1432	139	Sodium phosphide)			PH_3			
1541	155	Acetone cyanohyo	rin, stab	ilized		HCN			
1680	157	Potassium cyanide	e, solid			HCN			
1689	157	Sodium cyanide, s	olid			HCN			
Chemica Br ₂ Cl ₂ HBr HCI HCN	Brom Chlor Hydro Hydro		HF HF HI H ₂ S H ₂ S NH ₃	B) Gases: Hydrogen fluoride Hydrogen iodide Hydrogen sulfide Hydrogen sulfide Hydrogen sulphide Ammonia	NO ₂ PH ₃ SO ₂ SO ₂	Nitrogen dioxide Phosphine Sulfur dioxide Sulphur dioxide			

Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH) (PIH in the US) Gas(es) When Spilled in Water

ID No.	Guid No.	e Name of Material	TIH Gas(es) Produced
1716	156	Acetyl bromide	HBr
1717	155	Acetyl chloride	HCI
1724	155	Allyltrichlorosilane, stabilized	HCI
1725	137	Aluminum bromide, anhydrous	HBr
1726	137	Aluminum chloride, anhydrous	HCI
1728	155	Amyltrichlorosilane	HCI
1732	157	Antimony pentafluoride	HF
1741	125	Boron trichloride	HCI
1745	144	Bromine pentafluoride	HF Br ₂
1746	144	Bromine trifluoride	HF Br ₂
1747	155	Butyltrichlorosilane	HCI
1752	156	Chloroacetyl chloride	HCI
1753	156	Chlorophenyltrichlorosilane	HCI
1754	137	Chlorosulfonic acid (with or without sulfur trioxide)	HCI
1754	137	Chlorosulphonic acid (with or without sulphur trioxide)	HCI
1758	137	Chromium oxychloride	HCI
1762	156	Cyclohexenyltrichlorosilane	HCI
1763	156	Cyclohexyltrichlorosilane	HCI
1765	156	Dichloroacetyl chloride	HCI
1766	156	Dichlorophenyltrichlorosilane	HCI
1767	155	Diethyldichlorosilane	HCI
1769	156	Diphenyldichlorosilane	HCI
1771	156	Dodecyltrichlorosilane	HCI

Chemical Symbols for TIH (PIH in the US) Gases:

Br,	Bromine	HF	Hydrogen fluoride	NO ₂	Nitrogen dioxide
CI,	Chlorine	HI	Hydrogen iodide	PH,	Phosphine
HÉr	Hydrogen bromide	H,S	Hydrogen sulfide	SO	Sulfur dioxide
HCI	Hydrogen chloride	H,S	Hydrogen sulphide	SO,	Sulphur dioxide
HCN	Hydrogen cyanide	NĦ,	Ammonia	2	•

Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH) (PIH in the US) Gas(es) When Spilled in Water

ID No.	Guid No.	e Name of Mater	ial			TIH Gas(es) Produced
1777	137	Fluorosulfonic acid				HF
1777	137	Fluorosulphonic ac	id			HF
1781	156	Hexadecyltrichloro	silane			HCI
1784	156	Hexyltrichlorosilane	e			HCI
1799	156	Nonyltrichlorosilane	Э			HCI
1800	156	Octadecyltrichloros	ilane			HCI
1801	156	Octyltrichlorosilane				HCI
1804	156	Phenyltrichlorosilar	ne			HCI
1806	137	Phosphorus pentac	chloride			HCI
1808	137	Phosphorus tribron	nide			HBr
1809	137	Phosphorus trichlo	ride			HCI
1810	137	Phosphorus oxychl	oride			HCI
1815	132	Propionyl chloride				HCI
1816	155	Propyltrichlorosilan	е			HCI
1818	157	Silicon tetrachloride	Э			HCI
1828	137	Sulfur chlorides				HCI SO ₂ H ₂ S
1828	137					HCI SO ₂ H ₂ S
1834	137	Sulfuryl chloride HCI				HCI
1834	137	Sulphuryl chloride HCI				HCI
1836	137	Thionyl chloride HCI SO ₂			HCI SO ₂	
1838	137	Titanium tetrachlor	ide			HCI
1898	156	Acetyl iodide				HI
1923	135	Calcium dithionite				H ₂ S SO ₂
	-	bols for TIH (PIH in			NO	ADD DO NO
Br ₂ Cl ₂ HBr HCI HCN	Hydr		HF HI H ₂ S H ₂ S NH ₃	Hydrogen fluoride Hydrogen iodide Hydrogen sulfide Hydrogen sulphide Ammonia	NO ₂ PH ₃ SO ₂ SO ₂	Nitrogen dioxide Phosphine Sulfur dioxide Sulphur dioxide

Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH) (PIH in the US) Gas(es) When Spilled in Water

ID No.	Guid No.	e Name of Materia	ıl			TIH Gas(es) Produced
1923	135	Calcium hydrosulfite				H ₂ S SO ₂
1923	135	Calcium hydrosulphi	te			H ₂ S SO ₂
1929	135	Potassium dithionite				H ₂ S SO ₂
1929	135	Potassium hydrosulf	ite			H ₂ S SO ₂
1929	135	Potassium hydrosulp	hite			H ₂ S SO ₂
1931	171	Zinc dithionite				H ₂ S SO ₂
1931	171	Zinc hydrosulfite				H ₂ S SO ₂
1931	171	Zinc hydrosulphite				H_2S SO_2
2004	135	Magnesium diamide				NH ₃
2011	139	Magnesium phosphi	de			PH_3
2012	139	Potassium phosphid	е			PH_3
2013	139	Strontium phosphide)			PH_3
2308	157	Nitrosylsulfuric acid,	liquid			NO_2
2308	157	Nitrosylsulphuric aci	d, liquid			NO_2
2353	132	Butyryl chloride				HCI
2395	132	Isobutyryl chloride				HCI
2434	156	Dibenzyldichlorosila	ne			HCI
2435	156	Ethylphenyldichloros	ilane			HCI
2437	156	Methylphenyldichlor	osilane			HCI
2495	144	lodine pentafluoride				HF
2691	137	Phosphorus pentabr	omide			HBr
2692	157	Boron tribromide				HBr
2806	139	Lithium nitride				NH ₃
Chemi Br ₂ Cl ₂ HBr HCl	Bro Ch Hy Hy	mbols for TIH (PIH in omine lorine drogen bromide drogen chloride drogen cyanide	HF HI H ₂ S H ₂ S NH ₃) Gases: Hydrogen fluoride Hydrogen iodide Hydrogen sulfide Hydrogen sulphide Ammonia	NO ₂ PH ₃ SO ₂ SO ₂	Nitrogen dioxide Phosphine Sulfur dioxide Sulphur dioxide

Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH) (PIH in the US) Gas(es) When Spilled in Water

ID No.	Guid No.	e Name of Material	TIH Gas(es) Produced
2965	139	Boron trifluoride dimethyl etherate	HF
2977	166	Radioactive material, Uranium hexafluoride, fissile	HF
2977	166	Uranium hexafluoride, radioactive material, fissile	HF
2978	166	Radioactive material, Uranium hexafluoride, non fissile or fissile-excepted	HF
2978	166	Uranium hexafluoride, radioactive material, non fissile or fissile-excepted	HF
2985	155	Chlorosilanes, flammable, corrosive, n.o.s	HCI
2986	155	Chlorosilanes, corrosive, flammable, n.o.s	HCI
2987	156	Chlorosilanes, corrosive, n.o.s	HCI
2988	139	Chlorosilanes, water-reactive, flammable, corrosive, n.o.s.	HCI
3048	157	Aluminum phosphide pesticide	PH_3
3361	156	Chlorosilanes, poisonous, corrosive, n.o.s.	HCI
3361	156	Chlorosilanes, toxic, corrosive, n.o.s.	HCI
3362	155	Chlorosilanes, poisonous, corrosive, flammable, n.o.s.	HCI
3362	155	Chlorosilanes, toxic, corrosive, flammable, n.o.s.	HCI
3456	157	Nitrosylsulfuric acid, solid	NO_2
3456	157	Nitrosylsulphuric acid, solid	NO_2
3507	166	Uranium hexafluoride, radioactive material, excepted package, less than 0.1 kg per package, non-fissile or fissile-excepted	HF
9191	143	Chlorine dioxide, hydrate, frozen	Cl_2

Chemical Symbols for TIH (PIH in the US) Gases:

Br,	Bromine	HF	Hydrogen fluoride	NO.	Nitrogen dioxide
CI,	Chlorine	HI	Hydrogen iodide	PH,	Phosphine
HÉr	Hydrogen bromide	H _s S	Hydrogen sulfide	SO	Sulfur dioxide
HCI	Hydrogen chloride	Η̈́S	Hydrogen sulphide	SO,	Sulphur dioxide
HCN	Hydrogen cyanide	Nĥ.	Ammonia	2	•

HOW TO USE TABLE 3 – INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES FOR LARGE SPILLS FOR DIFFERENT QUANTITIES OF SIX COMMON TIH (PIH in the US) GASES

Table 3 lists Toxic Inhalation Hazard (TIH) materials that may be more commonly encountered.

The selected materials are:

- UN1005 Ammonia, anhydrous
- UN1017 Chlorine
- UN1040 Ethylene oxide and UN1040 Ethylene oxide with nitrogen
- UN1050 Hydrogen chloride, anhydrous and UN2186 and Hydrogen chloride, refrigerated liquid
- UN1052 Hydrogen fluoride, anhydrous
- UN1079 Sulfur dioxide/Sulphur dioxide

The materials are presented in numerical order of ID number and provide Initial Isolation and Protective Action Distances **FOR LARGE SPILLS** (more than 208 liters or 55 US gallons) involving different container types (therefore different volume capacities, see below) for day time and night time situations and different wind speeds.

- Rail tank car: 80 000 kg (176 368 lbs.)
- Highway tank truck or trailer: 20 000 25 000 kg (44 092 55 115 lbs.)
- Agricultural nurse tank: 3785 L (1000 gallons)
- Small cylinder: 72 L (19 gallons)
- Ton cylinder: 757 1135 L (200 300 gallons)

Estimating Wind Speed from Environmental Clues

mph	km/h	Wind Description	Specifications
< 6	< 10	Low wind	Wind felt on face; leaves rustle; ordinary vane moved by wind
6 - 12	10 - 20	Moderate wind	Raises dust, loose paper; small branches are moved
> 12	> 20	High wind	Large branches in motion; whistling heard in telephone wires; umbrellas used with difficulty

(Data taken from the Beaufort Wind Scale has been reworked in order to create 3 categories of wind speed: Low, Moderate and High)

TABLE 3 - INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES FOR LARGE SPILLS FOR DIFFERENT QUANTITIES OF SIX COMMON TIH (PIH in the US) GASES	OLATIO	N AND F	PROTE(OF S	CTIVE A	CTION MON TI	DISTAN IH (PIH	ICES F	OTECTIVE ACTION DISTANCES FOR LARGE OF SIX COMMON TIH (PIH in the US) GASES	GE SPI ES	ILLS FO	OR DIFF	ERENT	QUANI	TIES
	First IS	First ISOLATE				The	en PROT	Then PROTECT persons Downwind during	ons Dowr	wind duri	ng			
	<u> </u>				DAY	<u>\</u>					NIGHT	ŦĦ		
			Low wind (< 6 mph = < 10 km/h)	Low wind (< 6 mph = < 10 km/h)	Moderate wind (6-12 mph = 10 - 20 km/h)	te wind nph = km/h)	High (> 12 - > 20 !	High wind (> 12 mph = > 20 km/h)	Low wind (< 6 mph = < 10 km/h)	Low wind (< 6 mph = < 10 km/h)	Moderate wind (6-12 mph = 10 - 20 km/h)	loderate wind (6-12 mph = 10 - 20 km/h)	High wind (> 12 mph = > 20 km/h)	wind mph = (m/h)
	Meters	(Feet)	Æ	(Miles)	km	(Miles)	ĸ	(Miles)	ĸ	(Miles)	km	(Miles)	Æ	(Miles)
TRANSPORT CONTAINER	UN100	UN1005 Ammonia, anhydrous: Large Spills	nonia, a	ınhydro	ous: La	rge Sp	ills							
Rail tank car	300	(1000)	1.9	(1.2)	1.5	(0.9)	1.1	(9.0)	4.5	(2.8)	2.5	(1.5)	1.4	(6.0)
Highway tank truck or trailer	150	(200)	6.0	(9.0)	0.5	(0.3)	9.0	(0.3)	2.0	(1.3)	0.8	(0.5)	9.0	(0.4)
Agricultural nurse tank	09	(200)	0.5	(0.3)	0.3	(0.2)	0.3	(0.2)	1.4	(6.0)	0.3	(0.2)	0.3	(0.2)
Multiple small cylinders	30	(100)	0.3	(0.2)	0.2	(0.1)	0.1	(0.1)	0.7	(0.5)	0.3	(0.2)	0.2	(0.1)
TRANSPORT CONTAINER	UN101	UN1017 Chlorine: Large Spills	rine: La	arge Sp	sills									
Rail tank car	1000	(3000)	10.1	(6.3)	6.8	(4.2)	5.3	(3.3)	11+	(7+)	9.2	(5.7)	6.9	(4.3)
Highway tank truck or trailer	009	(2000)	5.8	(3.6)	3.4	(2.1)	2.9	(1.8)	6.7	(4.3)	2.0	(3.1)	4.1	(2.5)
Multiple ton cylinders	300	(1000)	2.1	(1.3)	1.3	(0.8)	1.0	(9.0)	4.0	(2.5)	2.4	(1.5)	1.3	(0.8)
Multiple small cylinders or single ton cylinder	150	(200)	1.5	(0.9)	8:0	(0.5)	0.5	(0.3)	5.9	(1.8)	1.3	(0.8)	9.0	(0.4)

TABLE 3 - INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES FOR LARGE SPILLS FOR DIFFERENT QUANTITIES OF SIX COMMON TIH (PIH in the US) GASES

			5						3					
	First ISOLATE	— н				The	en PROT i	Then PROTECT persons Downwind during	ons Dowr	wind duri	Вu			
		<u> </u>			DAY	<u></u>					NIGHT	노		
			Low wind (< 6 mph = < 10 km/h)	vind ph = m/h)	Moderate wind (6-12 mph = 10 - 20 km/h)	te wind nph = km/h)	High wind (> 12 mph = > 20 km/h)	wind nph = m/h)	Low wind (< 6 mph = < 10 km/h)	wind = hqr = (h/m:	Moderate wind (6-12 mph = 10 - 20 km/h)	te wind nph = km/h)	High wind (> 12 mph = > 20 km/h)	High wind (> 12 mph = > 20 km/h)
	Meters (Fe	(Feet)	ĸ E	(Miles)	ᄧ	(Miles)	Æ	(Miles)	Ē	(Miles)	ĸ	(Miles)	Æ	(Miles)
TRANSPORT	UN1040 Ethylene oxide: Large Spills	thyle	ne ox	ide: La	rge Sp]∥s								
CONTAINER	UN1040 Ethylene oxide with Nitrogen: Large Spills	thyle	ne oxi	ide wit	h Nitro	gen: L	arge S _l	pills						
Rail tank car	200 (600)	(00	1.6	(1.0)	0.8	(0.5)	0.7	(0.5)	3.3	(2.1)	1.4	(6.0)	0.8	(0.5)
Highway tank truck or trailer	100 (300)	(00	6.0	(9.0)	0.5	(0.3)	9.0	(0.3)	2.0	(1.3)	0.7	(0.4)	0.4	(0.3)
Multiple small cylinders or single ton cylinder	30 (10	(100)	0.4	(0.3)	0.2	(0.1)	0.1	(0.1)	6.0	(9.0)	0.3	(0.2)	0.2	(0.1)
TRANSPORT	UN1050 Hydrogen chloride, anhydrous: Large Spills	ydro	gen cł	hloride	, anhy	drous:	Large	Spills	;					
CONTAINER	UN2186 Hydrogen chloride, refrigerated liquid: Large Spills	ydrog	gen c	hloride	, refrig	erated	liguid:	Large	Spills					
Rail tank car	500 (1500)	(00	3.9	(5.2)	2.1	(1.2)	1.8	(1.2)	10.1	(6.3)	3.5	(2.2)	2.3	(1.5)
Highway tank truck or trailer	200 (60	(009)	1.5	(6.0)	0.8	(0.5)	9.0	(0.4)	3.9	(2.5)	1.5	(0.9)	0.8	(0.5)
Multiple ton cylinders	30 (10	(100)	0.4	(0.3)	0.2	(0.1)	0.1	(0.1)	1.1	(0.7)	0.3	(0.2)	0.2	(0.1)
Multiple small cylinders or single ton cylinder	30 (10	(100)	0.3	(0.2)	0.2	(0.1)	0.1	(0.1)	6.0	(9.0)	0.3	(0.2)	0.2	(0.1)

.E3 - INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES FOR LARGE SPILLS FOR DIFFERENT QUANTITIES	OF SIX COMMON TIH (PIH in the US) GASES
INITIAL ISOLATION	

								•						
	First ISOLATE	TE .				The	en PROT	Then PROTECT persons Downwind during	ons Dow	nwind duri	ng			
		2			DAY	۸.					NIG	NIGHT		
			Low wind (< 6 mph = < 10 km/h)	vind ph = m/h)	Moderate wind (6-12 mph = 10 - 20 km/h)	te wind nph = km/h)	High wind (> 12 mph = > 20 km/h)	wind nph = (m/h)	Low (< 6 r < 10	Low wind (< 6 mph = < 10 km/h)	Modera (6-12 10 - 20	Moderate wind (6-12 mph = 10 - 20 km/h)	High (> 12 - > 20	High wind (> 12 mph = > 20 km/h)
	Meters (F	(Feet)	Æ	(Miles)	Ē	(Miles)	Æ	(Miles)	Ř	(Miles)	¥	(Miles)	Ř	(Miles)
TRANSPORT CONTAINER	UN1052 Hydrogen fluoride, anhydrous: Large Spills	Hydro	gen fl	uoride,	anhyc	lrous:	Large (Shills						
Rail tank car	500 (1	(1500)	3.5	(2.2)	2.1	(1.3)	1.8	(1.2)	9.9	(4.1)	3.1	(1.9)	2.0	(1.2)
Highway tank truck or trailer	200 (7	(200)	2.0	(1.2)	1.0	(0.7)	6.0	(9.0)	3.7	(2.3)	1.6	(1.0)	6.0	(0.6)
Multiple small cylinders or single ton cylinder	100 (3	(300)	8.0	(0.5)	0.4	(0.2)	0.3	(0.2)	1.7	(1.1)	0.5	(0.3)	0.3	(0.2)
TRANSPORT CONTAINER	UN1079 Sulfur dioxide/Sulphur dioxide: Large Spills	Sulfu	r dioxi	de/Sulp	ohur di	oxide:	Large	Spills						
Rail tank car	1000 (3	(3000)	11+	(7+)	11+	(7+)	7.2	(4.5)	11+	(7+)	11+	(7+)	10.1	(6.3)
Highway tank truck or trailer	1000 (3	(3000)	+	(7+)	6.2	(3.8)	5.3	(3.3)	#	(7+)	8.2	(5.1)	6.2	(3.9)
Multiple ton cylinders	500 (1	(1500)	5.4	(3.4)	2.4	(1.5)	1.8	(1.1)	7.8	(4.8)	4.2	(5.6)	2.9	(1.8)
Multiple small cylinders or single ton cylinder	200 (6	(009)	3.2	(2.0)	1.5	(0.9)	Ξ:	(0.7)	2.8	(3.6)	2.5	(1.6)	1.5	(6.0)

ERG2020 USER'S GUIDE

For the purposes of this guidebook, the terms hazardous materials/dangerous goods are synonymous.

The 2020 Emergency Response Guidebook (ERG2020) was developed jointly by Transport Canada (TC), the U.S. Department of Transportation (DOT), and the Secretariat of Communications and Transport of Mexico (SCT), with help from CIQUIME (Centro de Información Química para Emergencias) of Argentina.

This guidebook is for firefighters, police and other emergency services personnel who may be first to arrive at the scene of a transportation incident involving dangerous goods.

It is primarily a guide to help first responders to quickly:

- identify the specific or generic hazards of material(s) involved in a transportation incident
- protect themselves and the general public during the initial response phase of the incident

For the purposes of this guidebook, "initial response phase" is the period after first responders arrive at the scene of an incident. During this phase, responders:

- · confirm the presence and/or identification of dangerous goods
- start taking protective action and securing the area
- · request the help of qualified personnel

This guide is designed for use at a dangerous goods incident on a highway or railroad. It may have limited value at fixed-facility locations, or onboard aircrafts or vessels.

This guide does not:

- provide information on the physical or chemical properties of dangerous goods
- · replace emergency response training, knowledge, or sound judgment
- address all possible circumstances that may be associated with a dangerous goods incident

ERG2020 incorporates dangerous goods lists from the most recent United Nations Recommendations, and from other international and national regulations.

Explosives are not listed individually (by either proper shipping name or ID number) but, under the general heading "Explosives", they do appear:

- on the first page of the ID Number index (yellow-bordered pages)
- alphabetically in the Name of Material index (blue-bordered pages)

Chemical warfare agents do not have an assigned ID number because they are not commercially transported. In an emergency situation, the assigned guide (orange-bordered pages) will provide guidance for the initial response.

The letter **(P)** following the guide number in the yellow and blue bordered pages identifies materials that present a polymerization hazard under certain conditions. For example: UN1092 - Acrolein, stabilized GUIDE **131P**.

First responders at the scene of a dangerous goods incident should not solely rely on this guidebook. Always seek specific information about any material in question as soon as possible. To do so:

- Contact the appropriate emergency response agency listed on the inside back cover.
- Call the emergency response telephone number on the shipping paper.
- Consult information on or accompanying the shipping paper.

BEFORE AN EMERGENCY – **BECOME FAMILIAR WITH THIS GUIDEBOOK!** In the U.S., according to the requirements of the U.S. Department of Labor's Occupational Safety and Health Administration (OSHA, 29 CFR 1910.120) and regulations issued by the U.S. Environmental Protection Agency (EPA, 40 CFR Part 311), first responders must be trained in how to use this guidebook.

GUIDEBOOK CONTENTS

1- Yellow-bordered pages: Index list of dangerous goods in order of ID number. The list displays the 4-digit ID followed by its assigned emergency response guide and material name.

For example:	ID No.	GUIDE No.	Name of Material
•	1090	127	Acetone

2- Blue-bordered pages: Index list of dangerous goods in alphabetical order of material name. The list displays the name followed by its assigned emergency response guide and 4-digit ID number.

For example:	Name of Material	GUIDE No.	ID No.
•	Sulfuric acid	137	1830

3- Orange-bordered pages: All safety recommendations are provided here. It is made up of 62 individual guides in a 2-page format. Each guide recommends safety and emergency response procedures to protect yourself and the public. The left-hand page gives safety-related information and evacuation distances. The right-hand page gives emergency response guidance for fires, spills or leaks, and first aid. Each guide applies to a group of materials with similar chemical and toxicological characteristics. The guide title identifies the general hazards of the dangerous goods.

For example: GUIDE 124 - Gases - Toxic and/or Corrosive - Oxidizing.

Each guide is divided into 3 main sections:

POTENTIAL HAZARDS:

- Displays the hazards in terms of FIRE OR EXPLOSION and HEALTH effects upon exposure.
- Primary potential hazard is listed first.
- Consult this section first to help you make decisions about how to protect the emergency response team and surrounding population.

PUBLIC SAFETY:

- Provides general information on initial precautionary measures to be taken by those first on scene.
- Provides general guidance on PROTECTIVE CLOTHING requirements and respiratory protection.
- Lists suggested EVACUATION distances for immediate precautionary measures, spills, and for fires (fragmentation hazard).
- When the material is highlighted in green in the yellow and blue bordered pages, it directs the reader to consult Table 1, which lists Toxic Inhalation Hazard (TIH) (PIH in the U.S.) materials, water-reactive materials and chemical warfare agents (greenbordered pages).

EMERGENCY RESPONSE:

- Outlines special precautions for incidents that involve FIRE, SPILL OR LEAK or chemical exposure.
- Lists several recommendations under each part to further assist your decision-making process.
- Provides general FIRST AID guidance to use before seeking medical care.

4- Green-bordered pages: This section has 3 tables.

Table 1 - Initial Isolation and Protective Action Distances

Lists, by order of ID number:

- TIH (PIH in the U.S.) materials
- · water-reactive materials that produce toxic gases upon contact with water
- · certain chemical warfare agents

These materials are highlighted in green in the yellow and blue bordered pages so you can easily identify them.

Table 1 provides two types of recommended safety distances: "initial isolation distances" and "protective action distances" for:

- small spills: 208 liters (55 US gallons) or less
- large spills: more than 208 liters (55 US gallons)
- Exception: For entries marked (when used as a weapon), volumes vary, but in most
 cases, small spills include releases up to 2 kg (4.4 lbs.), and large spills include
 releases up to 25 kg (55 lbs.).

Within the "initial isolation distance", protective clothing and respiratory protection is required. You should consider evacuating all people in all directions from the spill or leak source. This distance defines the radius of the "initial isolation zone" surrounding the spill in which people may be exposed to:

- · dangerous concentrations upwind of the source
- · life-threatening concentrations downwind of the source

The "protective action distances" are downwind distances from the spill or leak source, within which responders could carry out protective actions to:

- · preserve the health and safety of emergency responders and the public
- evacuate and/or shelter-in-place people in this area (For more information, consult pp. 289 to 291)

The "protective action distance" is divided into **daytime** and **nighttime** incidents because varying atmospheric conditions affect a hazardous area's size. In fact, the quantity or concentration of the material's vapor poses problems, not its mere presence. During the night, the air is generally calmer. This causes the vapor to disperse less and therefore creates a greater toxic zone. In daytime, the atmosphere is more active, so the vapor disperses more. As a result, there is a lower concentration of vapor in the surrounding air and the area that reaches toxic levels is smaller. Daytime is after sunrise and before sunset. Nighttime is between sunset and sunrise.

For example, in the case of a small spill of UN1955 - compressed gas, toxic, n.o.s., the "initial isolation distance" is 100 meters (300 feet); therefore its "initial isolation zone" is 200 meters (600 feet) in diameter. Its "protective action distance" is 0.5 kilometers (0.3 miles) for daytime and 2.5 kilometers (1.6 miles) for nighttime.

Note 1: Some water-reactive materials have 2 entries in Table 1. They are identified by **(when spilled on land)** since they are TIH products and **(when spilled in water)** because they produce additional toxic gases when spilled in water.

For example: UN1746 - Bromine trifluoride and UN1836 - Thionyl chloride.

Note 2: If a water-reactive material only has one entry in Table 1 for **(when spilled in water)** and the product is NOT spilled in water, Table 1 and Table 2 do not apply. You will find safe distances in the appropriate orange-bordered guide.

For example: UN1183 - Ethyldichlorosilane and UN1898 - Acetyl iodide.

Table 2 - Water-Reactive Materials Which Produce Toxic Gases

Lists:

- by order of ID number, materials that produce large amounts of Toxic Inhalation Hazard (TIH) gases when spilled in water; and
- TIH gases produced by these materials.

You can easily identify water-reactive materials in **Table 1**, as their names are immediately followed by **(when spilled in water)**.

NOTE: The TIH gases indicated in Table 2 are for information purposes only. These TIH gases have already been taken into consideration in the distances of Table 1.

For example, Table 2 indicates that UN1689 sodium cyanide, when spilled in water, will generate hydrogen cyanide gas (HCN). In Table 1, you must refer to the distances for sodium cyanide, solid and not the distances for hydrogen cyanide gas.

Table 3 - Initial Isolation and Protective Action Distances for Large Spills for Different Quantities of Six Common TIH Gases

Lists the following 6 most common TIH materials:

- UN1005 Ammonia, anhydrous
- · UN1017 Chlorine
- UN1040 Ethylene oxide and UN1040 Ethylene oxide with nitrogen
- UN1050 Hydrogen chloride, anhydrous and UN2186 Hydrogen chloride, refrigerated liquid
- UN1052 Hydrogen fluoride, anhydrous
- UN1079 Sulfur dioxide/Sulphur dioxide

Table 3 shows:

- initial isolation and protective action distances for large spills (more than 208 liters or 55 US gallons)
- different container types (therefore different volume capacities) for daytime and nighttime, and for three different wind speeds (low, moderate and high)

HOW TO CHOOSE THE APPROPRIATE ISOLATION AND PROTECTIVE ACTION DISTANCES

ERG2020 lists isolation or evacuation distances in 2 places:

- the individual guides (orange-bordered pages)
- Table 1 Initial Isolation and Protective Action Distances (green-bordered pages)

If you are dealing with a **non-TIH material** (not highlighted in green in the yellow-bordered or blue-bordered pages),

- Go to the assigned guide for the material (orange-bordered pages).
- Under EVACUATION, you will find:
 - initial isolation distance as an immediate precautionary measure
 - specific distances for spill or fire situations (fragmentation hazard)
 - Please note that certain guides may also refer to Table 1. This is just a reminder for green highlighted materials only.

If you are dealing with a **TIH**, **water-reactive** or **chemical warfare** material (green highlighted entries in the yellow or blue bordered pages):

If there is no fire:

- Go directly to Table 1 Initial Isolation and Protective Action Distances (green-bordered pages).
- · Also, consult the assigned guide for the material (orange-bordered pages).

If a fire is involved:

- Go directly to the assigned guide (orange-bordered pages) and apply the distances found under EVACUATION - Fire.
- Also, consult Table 1 distances for residual material release.

PROTECTIVE CLOTHING

STREET CLOTHING AND WORK UNIFORMS

These garments, such as uniforms worn by police and emergency medical services personnel, provide almost no protection from the harmful effects of hazardous materials/dangerous goods.

STRUCTURAL FIREFIGHTERS' PROTECTIVE CLOTHING (SFPC)

This category of clothing, often called turnout or bunker gear, is the protective clothing firefighters normally wear during structural firefighting operations. It includes a helmet, coat, pants, boots, gloves and a hood to cover parts of the head that are not protected by the helmet and facepiece. It can be used with full-facepiece positive pressure self-contained breathing apparatus (SCBA). It should, at minimum, meet the OSHA Fire Brigades Standard (29 CFR 1910.156) or NFPA 1851.

Structural firefighters' protective clothing provides limited protection from heat and cold. It may not provide adequate protection from harmful vapors or liquids encountered during hazardous materials/dangerous goods incidents.

Each guide includes a statement about the use of SFPC in incidents involving the materials referenced by that guide. Some guides state that SFPC provides limited protection. In those cases, the responder wearing SFPC and SCBA may be able to perform a quick "in-and-out" operation. However, this type of operation can place the responder at risk of exposure, injury or death. The incident commander makes the decision to do this only if there is an overriding benefit (for example, to perform an immediate rescue, turn off a valve to control a leak, etc.).

Please note that the coverall-type protective clothing customarily worn to fight fires in forests or wildlands is not SFPC and **is not** recommended nor referred to elsewhere in this guidebook.

POSITIVE PRESSURE SELF-CONTAINED BREATHING APPARATUS (SCBA)

This apparatus provides a constant, positive pressure flow of air within the facepiece.

You should always use an SCBA certified by NIOSH and the Department of Labor/Mine Safety and Health Administration, in accordance with:

- 42 CFR Part 84
- requirements for respiratory protection specified in OSHA 29 CFR 1910.134 (Respiratory Protection) and/or 29 CFR 1910.156 (f) (Fire Brigades Standard)
- NFPA 1852

Chemical-cartridge respirators or other filtering masks are not acceptable substitutes for positive pressure SCBA. Demand-type SCBA does not meet the OSHA 29 CFR 1910.156 (f)(1)(i) of the Fire Brigades Standard.

RESPIRATORS

If you suspect a chemical warfare agent is involved in an incident, use NIOSH-certified respirators with CBRN protection.

N95 respirators are the most common of the seven types of particulate filtering facepiece respirators. This product filters at least 95% of airborne particles (0.3 microns), but is not resistant to oil. N95 filtering facepiece respirators do not protect against gases and vapors.

Powered air-purifying respirators (PAPR) force ambient air through the air-purifying cartridge or filter into the facepiece. A PAPR does not supply oxygen or air from a separate source (e.g., cylinders).

CHEMICAL PROTECTIVE CLOTHING AND EQUIPMENT

For you to safely use this type of protective clothing and equipment, you need specific skills developed through training and experience. This type of special clothing may protect against one chemical but be readily permeated by chemicals for which it was not designed. Therefore, do not use this type of protective clothing unless it is compatible with the released material. Also, be aware that it offers little or no protection against heat and/or cold.

Examples of this type of equipment have been described as:

- (1) Vapor Protective Suits (NFPA 1991), also known as Totally-Encapsulating Chemical Protective Suits or Level A* protection (OSHA 29 CFR 1910.120, Appendix A & B)
- (2) Liquid-Splash Protective Suits (NFPA 1992), also known as Level B* or C* protection (OSHA 29 CFR 1910.120, Appendix A & B), or suits for chemical/biological terrorism incidents (NFPA 1994), class 1, 2 or 3 Ensembles and Standard CAN/CGSB/ CSA-Z1610-11 — Protection of first responders from chemical, biological, radiological, and nuclear (CBRN) events

No single protective clothing material will protect you from all hazardous materials/dangerous goods. Do not assume any protective clothing is resistant to cold and/or heat or flame exposure, unless certified by the manufacturer (NFPA 1991 5-3 Flammability Resistance Test and 5-6 Cold Temperature Performance Test).

*Consult the glossary for more information about protection levels under the heading "Protective Clothing."

DECONTAMINATION

The ways to decontaminate people and equipment can vary. If you need help with decontamination, contact the emergency response telephone number provided on the shipping papers or the agencies listed on the inside back cover. These resources may be able to put you in contact with the chemical manufacturer to determine the appropriate procedure if not otherwise available.

Decontamination is the process of removing or neutralizing hazardous materials/dangerous goods that have contaminated people and equipment during an incident.

Contamination happens in the area generally referred to as the Hot Zone. Everything and everyone entering this zone should be decontaminated when leaving, including emergency response personnel. This reduces the chances that more contamination will occur.

There are two main types of contamination:

- Direct contamination happens in the Hot Zone.
- Cross contamination happens when someone or something outside the Hot Zone
 was not properly decontaminated and comes in contact with another object or person,
 usually in the Warm or Cold Zone.

To decontaminate, you must:

- physically remove contaminants; and/or
- · chemically neutralize contaminants*.

The NFPA 472, Chapter 3, describes the following four kinds of decontamination.

- (1) Gross decontamination: Quickly removing surface contamination, which usually happens by mechanically removing the contaminant or rinsing with water from handheld hose lines, emergency showers, or other nearby water sources.
- (2) **Technical decontamination:** Reducing contamination to a level as low as possible by chemical or physical methods. A hazmat team will perform this kind of decontamination.
- (3) **Mass decontamination:** Reducing or removing surface contaminants as fast as possible from a large number of people in potentially life-threatening situations.
- (4) **Emergency decontamination:** Immediately reducing contamination of people in potentially life-threatening situations with or without formally setting up a decontamination corridor. This process should be performed upwind and uphill from victims. Responders should avoid contact with victims, runoff or spray from the decontamination process.

Emergency and mass decontamination can be done with firefighting and rescue operations equipment. Nozzles can be put on wide-angle fog patterns and sprayed towards the ground to create a decontamination shower. Responders can also place nozzles on the discharge ports of engines.

Contaminated clothing and equipment must be removed after use and stored in a controlled area (Warm Zone) until cleanup procedures can begin. Sometimes protective clothing and equipment cannot be decontaminated and must be disposed of properly.

*Chemical neutralization releases heat. DO NOT PERFORM on a victim.

FIRE AND SPILL CONTROL

FIRE CONTROL

Water is the most common and generally most available fire extinguishing agent. Use caution in selecting a fire extinguishing method, as there are many factors to consider. Water may be ineffective in fighting fires that involve some materials.

Fires Involving a Spill of Flammable Liquids

These fires are usually controlled by applying a firefighting foam to the surface of the burning material.

Fighting flammable liquid fires requires:

- foam concentrate that is chemically compatible with the burning material
- correct mixing of the foam concentrate with water and air
- · <u>careful application and maintenance</u> of the foam blanket

There are two general types of firefighting foam: regular and alcohol-resistant. Examples of regular foam are protein-base, fluoroprotein, and aqueous film-forming foam (AFFF).

You can control some flammable liquid fires, including many petroleum products, by applying regular foam. Other flammable liquids, including polar solvents (flammable liquids that are water soluble), such as alcohols and ketones, have different chemical properties. You cannot easily control a fire that involves these materials with regular foam, and should use alcohol-resistant foam instead.

Polar solvent fires may be difficult to control and require a higher foam application rate than other flammable liquid fires (see NFPA Standards 11 for further information). Refer to the appropriate guide to determine which type of foam to use. For flammable liquids which have subsidiary corrosive or toxic hazards, it is difficult to make specific recommendations. However, alcohol-resistant foam may be effective for many of these materials.

Contact the emergency response telephone number on the shipping paper, or the appropriate emergency response agency, as soon as possible for guidance on the proper fire extinguishing agent to use.

How you decide to control the fire depends on factors such as:

- incident location
- · exposure hazards
- · size of the fire
- environmental concerns
- availability of extinguishing agents and equipment at the scene

WATER-REACTIVE MATERIALS

Water is sometimes used to flush spills and reduce or direct vapors in spill situations. Some of the materials covered by this guidebook can react violently or even explosively with water. In these cases, consider letting the fire burn or leaving the spill alone (except to prevent its spreading by diking) until you can get more technical advice.

The applicable guides clearly warn you of these potentially dangerous reactions. Technical advice is required for these materials since:

- Water getting inside a ruptured or leaking container may cause an explosion.
- You may need to cool adjoining containers with water to prevent them from rupturing (exploding), or to prevent the fire spreading further.
- Water may be effective in mitigating an incident involving a water-reactive material, but only if you can apply it at a sufficient flooding rate for a long period.
- Products from the reaction with water may be more toxic, corrosive or undesirable than the product that caused the fire.

When you respond to an incident involving water-reactive materials, take into account:

- existing conditions, such as wind, precipitation, location and accessibility to the incident
- · availability of agents to control the fire or spill

Because there are variables to consider, base your decision to use water on fires or spills involving water-reactive materials on information from a reliable source. For example, consult the material's manufacturer through the emergency response telephone number or the appropriate emergency response agency listed on the inside back cover.

VAPOR CONTROL

Limiting the amount of vapor released from a pool of flammable or corrosive liquids is an operational concern. It requires proper protective clothing, specialized equipment, appropriate chemical agents and skilled personnel. Before you engage in vapor control, seek advice on tactics to be used from qualified personnel.

There are several ways to minimize the amount of vapors escaping from pools of spilled liquids, such as special foams, adsorbing agents, absorbents, and neutralizing agents. To be effective, you must select a method for the specific material involved, and use it in a way that mitigates, not worsens, the incident.

Where specific materials are known, such as at a manufacturing or storage facilities, the hazardous materials/dangerous goods response team should prearrange with the facility operators to select and stockpile these control agents before a spill.

In the field, first responders may not have the most effective vapor control agent for the material available. They will be more likely to have only water, and only one type of firefighting foam on their vehicles. If the available foam is not appropriate, they will probably use water spray. Because water is being used to form a vapor seal, care must be taken not to churn or further spread the spill during application. Vapors that do not react with water may be directed away from the site using the air currents surrounding the water spray. Before using water spray or other methods to safely control vapor emission or suppress ignition, get technical advice based on a specific chemical name.

BLEVE AND HEAT INDUCED TEAR

BLEVE (BOILING LIQUID EXPANDING VAPOR EXPLOSION)

The following pages present important safety-related information on BLEVEs, including a table, to consider in a situation involving Liquefied Petroleum Gases (LPG), UN1075.

LPGs include the following flammable gases:

UN1011 - Butane

• UN1012 - Butvlene

• UN1055 - Isobutylene

UN1077 - Propylene

UN1969 - Isobutane

UN1978 - Propane

A BLEVE occurs when a fire impinged or damaged tank car fails to contain its internal pressure and explodes with a sudden product release. This catastrophic failure is more likely to occur with damaged pressure tank cars, even in the absence of an active fire.

The main hazards from a LPG BLEVE are:

- <u>Fire:</u> If the released substance is ignited, there is an immediate fireball.
- <u>Thermal radiation</u>: At a distance of about 4 times the radius of a fireball, the heat radiated from a fireball is enough to burn exposed skin in 2 seconds. Wearing protective clothing limits the thermal radiation dose.
- <u>Blast:</u> A concussive force caused by the sudden release of the pressurized substance. For a BLEVE occurring out in the open, the blast strength at a distance of 4 times the radius of a fireball can break window glass and may cause minor damage to buildings.
- <u>Projectiles:</u> Tank failure can throw metal fragments over large distances. These fragments can and have been deadly.

The danger decreases as you move away from the BLEVE centre. The furthest-reaching hazard is projectiles.

For a video with information on critical safety issues concerning BLEVEs, please visit http://www.tc.gc.ca/eng/tdg/publications-menu-1238.html.

HEAT INDUCED TEAR (HIT)

A heat induced tear (HIT) is a rupture of a NON-PRESSURE tank car containing flammable liquids when exposed to the intense heat of a fire. The metal will soften and the pressure in the tank car will increase which can lead to containment failure. The tear generally occurs at the vapor space (upper side) of the container, venting large quantities of flammable liquid and vapors at high speed. A fireball and an intense heat wave will occur.

Compared to BLEVEs, HITs rarely result in the projection of tank car fragments. Heat induced tearing has occurred within 20 minutes of the derailment and as long as 10+ hours following the initial fire.

Responding to these types of incidents (BLEVE and HIT) requires specialized training, equipment and a tactical approach.

BLEVE – SAFETY PRECAUTIONS

Use with caution. The following table gives a summary of tank properties, critical times, critical distances and cooling water flow rates for various tank sizes. This table is provided to give responders some guidance but it should be used with caution.

Tank dimensions are approximate and can vary depending on the tank design and application.

Minimum time to failure is based on **severe torch fire impingement** on the vapor space of a tank in good condition, and is approximate. Tanks may fail earlier if they are damaged or corroded. Tanks may fail minutes or hours later than these minimum times depending on the conditions. It has been assumed here that the tanks are not equipped with thermal barriers or water spray cooling.

Minimum time to empty is based on an engulfing fire with a properly sized pressure relief valve. If the tank is only partially engulfed, then time to empty will increase (i.e., if tank is 50% engulfed, then the tanks will take twice as long to empty). Once again, it has been assumed that the tank is not equipped with a thermal barrier or water spray.

Tanks equipped with thermal barriers or water spray cooling significantly increase the times to failure and the times to empty. A thermal barrier can reduce the heat input to a tank by a factor of ten or more. This means it could take ten times as long to empty the tank through the Pressure Relief Valve (PRV).

Fireball radius and emergency response distance is based on mathematical equations and is approximate. They assume spherical fireballs and this is not always the case.

Two safety distances for public evacuation. The minimum distance is based on tanks that are launched with a small elevation angle (i.e., a few degrees above horizontal). This is most common for horizontal cylinders. The preferred evacuation distance has more margin of safety since it assumes the tanks are launched at a 45 degree angle to the horizontal. This might be more appropriate if a vertical cylinder is involved.

It is understood that these distances are very large and may not be practical in a highly populated area. However, it should be understood that the risks increase rapidly the closer you are to a BLEVE. Keep in mind that the furthest reaching projectiles tend to come off in the zones 45 degrees on each side of the tank ends.

Water flow rate is based on 5 (√capacity (USgal)) = USgal/min needed to cool tank metal.

Warning: the data given are approximate and should only be used with extreme caution. For example, where times are given for tank failure or tank emptying through the pressure relief valve – these times are typical but they can vary from situation to situation. Therefore, never risk life based on these times.

WARNING:

The data given are approximate and should only be used with extreme caution. These times can vary from situation to situation. LPG tanks have been known to BLEVE within minutes. Therefore, never risk life based on these times.

	g water rate	Litres/min USgal/min	26	51	115	163	230	381	527	736	962
	Cooling water flow rate	Litres/min	26	195	435	615	870	1443	1994	2786	3640
	ation nce	Meters (Feet)	(1007)	(1601)	(2736)	(3445)	(4341)	(9209)	(7218)	(7218)	(7218)
	Preferred evacuation distance	Meters	307	488	834	1050	1323	1852	2200	2200	2200
	num ation nce	(Feet)	(202)	(801)	(1368)	(1722)	(2169)	(3038)	(3770)	(4708)	(5627)
	Minimum evacuation distance	Meters (Feet)	154	244	417	525	661	926	1149	1435	1715
	ency inse ince	(Feet)	(295)	(295)	(364)	(459)	(577)	(810)	(1004)	(1257)	(1499)
	Emergency response distance	Meters (Feet)	06	06	ŧ	140	176	247	306	383	457
BLEVE (USE WITH CAUTION)	Fireball	Meters (Feet)	(33)	(53)	(95)	(115)	(144)	(203)	(253)	(315)	(374)
		Meters	9	16	88	32	4	62	12	96	114
	Approximate time to empty for engulfing fire	Minutes	8	12	18	20	23	78	32	40	45
(USE	Minimum time to failure for severe torch	Minutes	4	4	ιΩ	ഹ	9	7	7	ω	6
	Propane Mass	(Pounds)	(88)	(353)	(1764)	(3527)	(2022)	(19400)	(37037)	(72310)	(123457)
		Kilograms (Pounds)	40	160	800	1600	3200	8800	16800	32800	26000
	Length		(4.9)	(4.9)	(9.8)	(16.1)	(21.3)	(22)	(38.7)	(42)	(56.4)
		Meters	1.5	1.5	ო	4.9	6.5	6.7	11.8	13.7	17.2
	Diameter	(Feet)	(1)	(2)	(3.2)	(3.3)	(4.1)	(6.9)	(6.9)	(6)	(10.8)
	Dian	Meters	0.3	0.61	96.0	-	1.25	2.1	5:1	2.75	3.3
	Capacity	(Gallons) Meters (Feet) Meters (Feet)	(26.4)	(106)	(528)	(1057)	(2113)	(5812)	(11095)	(21662)	(36984)
	Cap	Litres	100	400	2000	4000	8000	22000	42000	82000	140000

CRIMINAL OR TERRORIST USE OF CHEMICAL, BIOLOGICAL AND RADIOLOGICAL AGENTS

If you suspect an intentional release of a chemical, biological or radiological agent (CBRN), you should immediately contact your local emergency response authorities (911). Additionally, for CBRN incidents occurring:

- within the United States, call the National Response Center at 1-800-424-8802
- within Canada, call CANUTEC at 613-996-6666 (1-888-226-8832)
- within Mexico, call CENACOM at 555128-0000 extensions 36428, 36422, 36469, 37807, 37810
- in other countries, consult page 392

The following is general guidance and does not serve as specialized incident response training. Do not enter the scene without appropriate training and equipment.

First responders can use the following information to make an initial assessment of a situation they suspect involves criminal or terrorist use of chemical agents, biological agents and/or radioactive materials (CBRN). To help with this, the following paragraphs have a list of observable indicators that a CB agent or radioactive material has been used or is present. This section ends with a Safe Stand-Off Distance Chart for various threats when improvised explosive devices (IEDs) are involved.

DIFFERENCES BETWEEN A CHEMICAL, BIOLOGICAL AND RADIOLOGICAL AGENT

Chemical and biological agents as well as radioactive materials can be dispersed in the air we breathe, the water we drink, or on surfaces we physically contact. Dispersion methods may be as simple as opening a container or using conventional (garden) spray devices, or as elaborate as detonating an improvised explosive device.

Chemical incidents are characterized by the rapid onset of medical symptoms (in minutes to hours) and easily observed signatures (colored residue, dead foliage, pungent odor, dead insects and animals).

Biological incidents are characterized by the onset of symptoms in hours to days. Typically, there will be no characteristic signatures because biological agents are usually odorless and colorless. Because of the delayed onset of symptoms, the affected area may be greater due to the movement of infected people.

Radiological incidents are characterized by the onset of symptoms, if any, in days to weeks or longer. Typically, there will be no characteristic signatures because radioactive materials are usually odorless and colorless. Specialized equipment is needed to determine the size of the affected area, and if the level of radioactivity is an immediate or long-term health hazard. Because it is impossible to detect radioactivity without special equipment, the affected area may be greater due to the migration of contaminated people.

The most probable sources would not generate enough radiation to kill people or cause severe illness. In a radiological incident generated by a "dirty bomb," or radiological dispersal device (RDD), in which a conventional explosive is detonated to spread radioactive contamination, the primary hazard is from the explosion. However, certain radioactive materials dispersed in the air could contaminate up to several city blocks, creating fear and possibly panic, and needing potentially costly cleanup.

INDICATORS OF A POSSIBLE CHEMICAL INCIDENT

Dead animals/birds/fish Not just an occasional road kill, but numerous animals

(wild and domestic, small and large), birds, and fish in

the same area.

Lack of insect life If normal insect activity (ground, air, and/or water) is

missing, check the ground, water surface or shore line for dead insects. If near water, check for dead fish and/

or aquatic birds.

Unexplained odors Possible odors include fruity, flowery, sharp, pungent,

garlic, horseradish-like, bitter almonds, peach kernels, or newly mown hay. The odor is completely out of character

with its surroundings.

Unusual numbers of dying or sick people (mass casualties)

Health problems including nausea, disorientation, difficulty in breathing, convulsions, localized sweating, conjunctivitis (reddening of eyes), erythema (reddening

of skin) and death.

indoors, by the air ventilation system.

Blisters or rashes Numerous people experiencing unexplained water-like

blisters, weals (like bee stings), and/or rashes.

Illness in confined area Different casualty rates for people working indoors versus

outdoors dependent on where the agent was released.

Unusual liquid droplets Numerous surfaces show oily droplets or film; numerous

water surfaces have an oily film (no recent rain).

Different-looking areas Not just a patch of dead weeds, but trees, shrubs, bushes,

food crops, and/or lawns that are dead, discolored, or

withered (no current drought).

Low-lying clouds Low-lying cloud or fog-like condition not consistent with

its surroundings.

Unusual metal debris Unexplained bomb or munitions-like material, especially

if it contains a liquid.

INDICATORS OF A POSSIBLE BIOLOGICAL INCIDENT

Unusual numbers of sick or dving people or animals

Any number of symptoms may occur. Casualties may occur hours to days after an incident has occurred. The time required before symptoms are observed is

dependent on the agent.

Unscheduled and unusual spray being disseminated

Especially if outdoors during periods of darkness.

Abandoned spray devices

Devices may not have distinct odors.

INDICATORS OF A POSSIBLE RADIOLOGICAL INCIDENT

Radiation Symbols Containers may display a "propeller" radiation symbol.

Unusual metal debris Unexplained bomb or munitions-like material.

Heat-emitting material Material that is hot or seems to emit heat without any

sign of an external heat source.

Glowing material Strongly radioactive material may emit or cause

radioluminescence.

Sick people/animals In very improbable scenarios there may be unusual

numbers of sick or dying people or animals. Casualties may occur hours to days or weeks after an incident has occurred. The time required before symptoms are observed is dependent on the radioactive material used, and the dose received. Possible symptoms include skin

reddening or vomiting.

PERSONAL SAFETY CONSIDERATIONS

When you approach a scene that may involve CB agents or radioactive materials, the most critical thing to consider is your safety and that of other responders.

Use protective clothing and respiratory protection of an appropriate level of safety. In incidents where you suspect that CBRN materials have been used as weapons, NIOSH-certified respirators with CBRN protection are highly recommended. Be aware that you may not be able to verify or identify CB agents or radioactive materials, especially in the case of biological or radiological agents.

The following actions apply to a chemical, biological or radiological incident. This guidance is general. Responders will need to apply it on a case-by-case basis.

Approach and response strategies:

- Minimize exposure time.
- Maximize the distance between you and the item that is likely to harm you.
- Use cover as protection.

- Wear appropriate personal protective equipment and respiratory protection.
- Identify and estimate the hazard by using the indicators above.
- · Isolate the area and secure the scene.
- Isolate and decontaminate potentially contaminated people as soon as possible.
- To the extent possible, take measures to limit the spread of contamination.

In the event of a **chemical** incident, the fading of chemical odors does not necessarily indicate reduced vapor concentrations. Some chemicals deaden the senses, giving you the false perception that the chemical is no longer present.

If there is any indication that an area may be contaminated with **radioactive** materials, including the site of any non-accidental explosion, responders:

- should be equipped with radiation detection equipment
- · should have adequate training in how to use this equipment

This equipment should be designed to also alert responders when an unacceptable ambient dose rate or ambient dose has been reached.

Initial actions to consider in a potential CBRN/terrorism event:

- Avoid using cell phones, radios, etc. within 100 meters (300 feet) of a suspect device.
- Notify your local police by calling 911.
- Set up incident command upwind and uphill of the area.
- Do not touch or move suspicious packages or containers.
- Be cautious about the potential presence of secondary devices (e.g., improvised explosive devices (IEDs)).
- Avoid contamination.
- Limit access to only those responsible for rescue of victims or assessment of unknown materials or devices.
- Evacuate and isolate people who were potentially exposed to hazardous materials/ dangerous goods.
- Isolate contaminated areas and secure the scene for analysis of material.

DECONTAMINATION MEASURES

For chemical and biological agents: Emergency responders should follow standard decontamination procedures (flush-strip-flush). Mass casualty decontamination should begin as soon as possible by stripping all clothing, and flushing with soap and water. For further information, contact the agencies listed on the inside back cover of this guidebook.

For people contaminated with radioactive material: Take care to minimize the spread of the contamination to the extent possible. Move them to a low radiation area if necessary, and if it can be done safely. Remove their clothing and place it in a clearly marked and sealed receptacle, such as a plastic bag, for later testing. Use decontamination methods

described above, but avoid breaking the skin (e.g., vigorous brushing). External radiological contamination on intact skin rarely causes a high enough dose to be a hazard, to either the contaminated individual or the first responders. For this reason, prioritize medical stabilization for a contaminated injured individual.

NOTE: The above information was developed in part by the Department of National Defence (Canada), the U.S. Department of the Army, Aberdeen Proving Ground and the Federal Bureau of Investigation (FBI).

IMPROVISED EXPLOSIVE DEVICE (IED)

An IED is a "homemade" bomb and/or destructive device used to destroy, incapacitate, harass, or distract. Because they are improvised, IEDs can come in many forms, ranging from a small pipe bomb to a sophisticated device capable of causing massive damage and loss of life.

The following table predicts the damage radius based on the volume or weight of explosive (TNT equivalent) and the type of bomb.

Improvised Explosive Device (IED) SAFE STAND-OFF DISTANCE

	Threat Description	cription	Explosives Capacity¹	Capacity¹	Mandatory Evacuation Distance ²	ıtory Distance²	Shelter-in-Place Zone	Place Zone	Preferred Evacuation Distance ³	red Distance³
		Pipe Bomb	sql 9	2.3 kg	1J 0./	21 m	71 - 1,199 ft	22 - 365 m	+1,200 ft	366 m
(;	• 《	Suicide Bomber	20 lbs	9 kg	110 ft	34 m	111 - 1,699 ft	35 - 518 m	+1,700 ft	519 m
inəlaviu	<u> </u>	Briefcase/Suitcase	sql 09	23 kg	120 ft	46 m	151 - 1,849 ft	47 - 563 m	+1,850 ft	564 m
p3 TNT)		Car	sql 009	227 kg	320 ft	98 m	321 - 1,899 ft	99 - 579 m	+1,900 ft	580 m
səvisol		SUV/Van	1,000 lbs	454 kg	400 ft	122 m	401 - 2,399 ft	123 - 731 m	+2,400 ft	732 m
dx3 dgil		Small Delivery Truck	4,000 lbs	1,814 kg	640 ft	195 m	641 - 3,799 ft	196 - 1,158 m	+3,800 ft	1,159 m
Н		Container/Water Truck	10,000 lbs	4,536 kg	1) 098	263 m	861 - 5,099 ft	264 - 1,554 m	+5,100 ft	1,555 m
		Semi-Trailer	sql 000'09	27,216 kg	1,570 ft	475 m	1,571 - 9,299 ft 476 - 2,834 m	476 - 2,834 m	# 006,6+	2,835 m

¹ Based on the maximum amount of material that could reasonably fit into a container or vehicle. Variations possible.

² Governed by the ability of an unreinforced building to withstand severe damage or collapse.

³ Governed by the greater of fragment throw distance or glass breakage/falling glass hazard distance. These distances can be reduced for personnel wearing ballistic protection.
Note that the pipe bomb, suicide bomb, and briefcase/suitcase bomb are assumed to have a fragmentation characteristic that requires greater stand-off distances than an equal amount of explosives in a vehicle.

Improvised Explosive Device (IED) SAFE STAND-OFF DISTANCE

Threat Description	LPG Mass / Volume ¹	'Volume¹	Fireball Diameter ²	meter ²	Safe Distance ^{3, 4}	tance ^{3, 4}
Small LPG Tank	20 lbs / 5 gal	9 kg / 19 L	40 ft	12 m	160 ft	48 m
Large LPG Tank	100 lbs / 25 gal	45 kg / 95 L	# 69	21 m	276 ft	84 m
Commercial/Residential LPG Tank	2,000 lbs / 500 gal	907 kg / 1,893 L	184 ft	56 m	736 ft	224 m
Small LPG Truck	8,000 lbs / 2,000 gal	3,630 kg / 7,570 L	292 ft	89 m	1,168 ft	356 m
Semitanker LPG	40,000 lbs / 10,000 gal	18,144 kg / 37,850 L	499 ft	152 m	1,996 ft	608 m

¹ Based on the maximum amount of LPG that could reasonably fit into a container or vehicle. Variations possible.

² Assuming efficient mixing of the flammable gas with ambient air.

³ Determined by U.S. firefighting practices wherein safe distances are approximately 4 times the flame height.

⁴ This table is for a loaded LPG tank with explosives on the exterior. Note that an LPG tank filled with high explosives would require a significantly greater stand-off distance than if it were filled with LPG.

Adsorbed gas

A gas which sticks (adsorbs) to the surface of a solid and porous material (such as activated charcoal) contained within a metal cylinder. This results in an internal cylinder pressure of less than 101.3 kPa at 20°C (14 psi at 68°F) and less than 300 kPa at 50°C (43 psi at 122°F). These pressures are much lower than those of conventional cylinders containing compressed or liquefied gases.

AEGL(s)

Acute Exposure Guideline Level(s), AEGLs represent threshold exposure limits for the general public after a once-in-a-lifetime, or rare, exposure and are applicable to emergency exposure periods ranging from 10 minutes to 8 hours. Three levels AEGL-1, AEGL-2 and AEGL-3 are developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects; see AEGL-1, AEGL-2 and AEGL-3.

AEGL-1

AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per cubic meter [ppm or mg/m³]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL-2

AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL-3

AEGL-3 is the airborne concentration (expressed as ppm or mg/ m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Alcohol-resistant foam

A foam that is resistant to polar chemicals such as ketones and esters which may break down other types of foam.

Biological agents

Pathogens (bacteria, viruses, etc.) or the toxins they produce (such as anthrax) that are dispersed with criminal intent. They can cause disease or death in otherwise healthy humans. **Refer**

to GUIDE 158.

RI FVF

Boiling Liquid Expanding Vapor Explosion

Blister agents (vesicants)

Substances that cause blistering of the skin. Exposure is through liquid or vapor contact with any exposed tissue (eyes, skin, lungs). Mustard (H), Distilled Mustard (HD), Nitrogen Mustard (HN) and Lewisite (L) are blister agents.

Symptoms: Red eyes, skin irritation, burning of skin, blisters, upper respiratory damage, cough, hoarseness.

Blood agents

Substances that injure a person by interfering with cell respiration (the exchange of oxygen and carbon dioxide between blood and tissues). Hydrogen cyanide (AC) and Cyanogen chloride (CK) are blood agents.

Symptoms: Respiratory distress, headache, unresponsiveness, seizures, coma.

Boil over A sudden increase in fire intensity associated with the expulsion

of burning flammable liquid caused by the boiling of water that

has accumulated in the bottom of a tank car.

Burn Refers to either a chemical or thermal burn, the former may

be caused by corrosive substances and the latter by liquefied cryogenic gases, hot molten substances, or flames.

cryogenic gases, not moiten substances, or names.

Carcinogen A substance or mixture which induces cancer or increases its

incidence.

Category A An infectious substance that poses a high risk to the health of

individuals and/or animals or public health. These substances can cause serious disease and can lead to death. Effective treatment

and preventative measures may not be available.

Category B An infectious substance that poses a low to moderate risk to

individuals and/or animals and/or public health. These substances are unlikely to cause serious disease. Effective treatment and

preventative measures are available.

CBRN Chemical, biological, radiological or nuclear agent.

Choking agents Substances that cause physical injury to the lungs. Exposure is

through inhalation. In extreme cases, membranes swell and lungs become filled with liquid (pulmonary edema). Death results from lack of oxygen; hence, the victim is "choked". Phosgene (CG) is

a choking agent.

Symptoms: Irritation to eyes/nose/throat, respiratory distress,

nausea and vomiting, burning of exposed skin.

CO₂ Carbon dioxide gas.

Cold zone

Area where the command post and support functions that are necessary to control the incident are located. This is also referred to as the clean zone, green zone or support zone in other documents. (EPA Standard Operating Safety Guidelines, OSHA 29 CFR 1910.120, NFPA 472).

Combustible liquid

Liquids which have a flash point greater than 60°C (140°F) and below 93°C (200°F). U.S. regulations permit a flammable liquid with a flash point between 38°C (100°F) and 60°C (140°F) to be reclassed as a combustible liquid.

Compatibility Group

Letters identify explosives that are deemed to be compatible. The definition of these Compatibility Groups in this Glossary are intended to be descriptive. Please consult the transportation of hazardous materials/dangerous goods or explosives regulations of your jurisdiction for the exact wording of the definitions. Class 1 materials are considered to be "compatible" if they can be transported together without significantly increasing either the probability of an incident or, for a given quantity, the magnitude of the effects of such an incident.

- A Substances which are expected to mass detonate very soon after fire reaches them.
- B Articles which are expected to mass detonate very soon after fire reaches them.
- C Substances or articles which may be readily ignited and burn violently without necessarily exploding.
- D Substances or articles which may mass detonate (with blast and/or fragment hazard) when exposed to fire.
- E & F Articles which may mass detonate in a fire.
- G Substances and articles which may mass explode and give off smoke or toxic gases.
- H Articles which in a fire may eject hazardous projectiles and dense white smoke.
- J Articles which may mass explode.
- K Articles which in a fire may eject hazardous projectiles and toxic gases.
- L Substances and articles which present a special risk and could be activated by exposure to air or water.

Compatibility Group (continued)	N	Articles which contain only extremely insensitive detonating substances and demonstrate a negligible
		probability of accidental ignition or propagation.

S Packaged substances or articles which, if accidentally initiated, produce effects that are usually confined to the immediate vicinity.

Control zones

Designated areas at hazardous materials/dangerous goods incidents, based on safety and the degree of hazard. Many terms are used to describe control zones; however, in this guidebook, these zones are defined as the hot/exclusion/red/restricted zone, warm/contamination reduction/yellow/limited access zone, and cold/support/green/clean zone. (EPA Standard Operating Safety Guidelines. OSHA 29 CFR 1910.120. NFPA 472).

Cryogenic liquid

A refrigerated, liquefied gas that has a boiling point colder than -90°C (-130°F) at atmospheric pressure or is handled or transported at a temperature equal to or less than -100°C (-148°F).

Decomposition products

Products of a chemical or thermal break-down of a substance.

Decontamination

The removal of hazardous materials/dangerous goods from personnel and equipment to the extent necessary to prevent potential adverse health effects. See "Decontamination", page 362.

Dry chemical

A preparation designed for fighting fires involving flammable liquids, pyrophoric substances and electrical equipment. Common types contain sodium bicarbonate or potassium bicarbonate.

Edema

The accumulation of an excessive amount of watery fluid in cells and tissues. Pulmonary edema is an excessive buildup of water in the lungs, for instance, after inhalation of a gas that is corrosive to lung tissue.

ERPG(s)

Emergency Response Planning Guideline(s). Values intended to provide estimates of concentration ranges above which one could reasonably anticipate observing adverse health effects; see ERPG-1. ERPG-2 and ERPG-3.

ERPG-1

The maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to 1 hour without experiencing more than mild, transient adverse health effects or without perceiving a clearly defined objectionable odor.

ERPG-2

The maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to 1 hour without experiencing or developing irreversible or other serious health effects or symptoms that could impair an individual's ability to take protective action.

FRPG-3

The maximum airborne concentration below which it is believed nearly all individuals could be exposed for up to 1 hour without experiencing or developing life-threatening health effects.

Flammable liquid

A liquid that has a flash point of 60°C (140°F) or lower.

Flash point

Lowest temperature at which a liquid or solid gives off vapor in such a concentration that, when the vapor combines with air near the surface of the liquid or solid, a flammable mixture is formed. Hence, the lower the flash point, the more flammable the material.

Flooding quantities

Minimum of 1900 L/min (500 US gal/min) of water.

Hazard zones (Inhalation Hazard Zones) HAZARD Gases: LC50 of less than or equal to

HAZARD

ZONE A:

Gases: LC50 of less than or equal to 200 ppm, Liquids: V equal to or greater than 500 LC50 and

LC50 less than or equal to 200 ppm.

ZONE B:

Gases: LC50 greater than 200 ppm and less than or equal to 1000 ppm, Liquids: V equal to

or greater than 10 LC50; LC50 less than or equal to 1000 ppm and criteria for Hazard Zone A are

not met.

HAZARD

LC50 greater than 1000 ppm and less than or

ZONE C: equal to 3000 ppm.

HAZARD

LC50 greater than 3000 ppm and less than or

ZONE D: equal to 5000 ppm.

Please note: even though the term "zone" is used, hazard zones are not an actual area or distance. How zones are assigned is strictly a function of the lethal concentration 50 (LC50) of the product. For example, TIH Zone A is more toxic than Zone D.

High expansion foam

Foams that have a high expansion ratio (over 1:200) with a low water content

Hot zone

Area immediately surrounding a hazardous materials/dangerous goods incident which extends far enough to prevent adverse effects from the released product to personnel outside the zone. This zone is also referred to as exclusion zone, red zone or restricted zone in other documents. (EPA Standard Operating Safety Guidelines, OSHA 29 CFR 1910.120, NFPA 472).

IED

See "Improvised Explosive Device".

Immiscible In this guidebook, means that a material does not mix readily

with water.

Improvised Explosive

Device

A bomb that is manufactured from commercial, military or

homemade explosives.

Large spill A spill that involves quantities that are greater than 208 liters (55)

US gallons). This usually involves a spill from a large package,

or multiple spills from many small packages.

LC50 Lethal concentration 50. The concentration of a material

administered by inhalation that is expected to cause the death of 50% of an experimental animal population within a specified time. (Concentration is reported in either ppm or mg/m³).

instantaneously.

MAWP Maximum Allowable Working Pressure: The maximum allowable

internal pressure that the tank may experience during normal

operations.

mg/m³ Milligrams of a material per cubic meter of air.

Miscible In this guidebook, means that a material mixes readily with water.

mL/m³ Milliliters of a material per cubic meter of air. (1 mL/m³ equals

1 ppm).

Mutagen An agent giving rise to an increased occurrence of mutations

in populations of cells and/or organisms. Mutation means a permanent change in the amount or structure of the genetic

material in a cell.

Narcotic A substance which acts as a central nervous system depressor

producing effects such as drowsiness, narcosis, reduced alertness, loss of reflexes, lack of coordination, and vertigo. These effects can also be manifested as severe headache or nausea, and can lead to reduced judgment, dizziness, irritability, fatigue, impaired memory function, deficit in perception and coordination,

reaction time, or sleepiness.

Nerve agents Substances that interfere with the central nervous system.

Exposure is primarily through contact with the liquid (via skin and eyes) and secondarily through inhalation of the vapor. Tabun (GA),

Sarin (GB), Soman (GD) and VX are nerve agents.

Symptoms: Pinpoint pupils, extreme headache, severe tightness in the chest, dyspnea, runny nose, coughing, salivation,

unresponsiveness, seizures.

n.o.s. These letters refer to "not otherwise specified". The entries which

use this description are generic names such as "Corrosive liquid, n.o.s." This means that the actual chemical name for that corrosive liquid is not listed in the regulations; therefore, a generic name

must be used to describe it on shipping papers.

Noxious In this guidebook, means that a material may be harmful or

injurious to health or physical well-being.

Organic Peroxide An organic (carbon-containing) compound having two oxygen

atoms joined together. Organic peroxides are thermally unstable chemicals. They may have one or more of the following properties: be liable to explosive decomposition; burn rapidly; be sensitive to impact or friction; react dangerously with other substances.

Oxidizer A chemical which supplies its own oxygen and which helps other

combustible material burn more readily.

P See "Polymerization".

Packing Group The Packing Group (PG) is assigned based on the degree of danger presented by the hazardous material/dangerous good:

PG I: Great danger

PG II : Medium danger PG III : Minor danger

PG See "Packing Group".

pH pH is a value that represents the acidity or alkalinity of a water

solution. Pure water has a pH of 7. A pH value below 7 indicates an acid solution (a pH of 1 is extremely acidic). A pH above 7 indicates an alkaline solution (a pH of 14 is extremely alkaline). Acids and alkalies (bases) are commonly referred to as corrosive

materials.

PIH Poison Inhalation Hazard, See "TIH".

Polar See "Miscible".

Polymerization A chemical reaction that often produces heat and pressure.

Once initiated, the reaction is accelerated by the heat that it produces. The uncontrolled buildup of heat and pressure can cause a fire or an explosion, or can rupture closed containers. The letter (P) following a guide number in the yellow-bordered and blue-bordered pages identifies a material that may polymerize violently under high temperature conditions or contamination with other products during a transportation incident. It is also used to identify materials that have a strong potential for polymerization in the absence of an inhibitor due to depletion of this inhibitor

caused by accident conditions.

ppm

Parts per million. (1 ppm equals 1 mL/m³).

Protective clothing

In this guidebook, protective clothing includes both respiratory and physical protection. One cannot assign a level of protection to clothing or respiratory devices separately. These levels were accepted and defined by response organizations such as U.S. Coast Guard, NIOSH, and U.S. EPA.

Level A: SCBA plus totally encapsulating chemical resistant clothing (permeation resistant).

Level B: SCBA plus hooded chemical resistant clothing (splash suit).

Level C: Full or half-face respirator plus hooded chemical resistant clothing (splash suit).

Level D: Coverall, including structural firefighters' protective clothing (SFPC), with no respiratory protection.

SCBA: Self-contained breathing apparatus.
Consult "Protective Clothing", pages 360-361

Pyrophoric

A material which ignites spontaneously upon exposure to air (or oxygen).

Radiation Authority

As referred to in GUIDES 161 through 166 for radioactive materials, the Radiation Authority is either a Federal, state/provincial agency or state/province designated official. The responsibilities of this authority include evaluating radiological hazard conditions during normal operations and during emergencies. If the identity and telephone number of the authority are not known by emergency responders, or included in the local response plan, the information can be obtained from the agencies listed on the inside back cover. They maintain a periodically updated list of radiation authorities.

Radioactivity

The property of some substances to emit invisible and potentially harmful radiation.

Refrigerated liquid

See "Refrigerated liquefied gas".

Refrigerated liquefied gas

A gas which when packaged for transport is made partially liquid because of its low temperature. See "Cryogenic liquid".

Respiratory sensitizer

A substance that induces hypersensitivity of the airways following inhalation of the substance.

Right-of-way

A defined area on a property containing one or more highpressure natural gas pipelines.

Shelter-in-place

People should seek shelter inside a building and remain inside until the danger passes. Sheltering-in-place is used when evacuating the public would cause greater risk than staying where they are, or when an evacuation cannot be performed. Direct the people inside to close all doors and windows and to shut off all ventilating, heating and cooling systems. In-place protection (shelter-in-place) may not be the best option if (a) the vapors are flammable; (b) if it will take a long time for the gas to clear the area; or (c) if buildings cannot be closed tightly. Vehicles can offer some protection for a short period if the windows are closed and the ventilating systems are shut off. Vehicles are not as effective as buildings for in-place protection.

Skin corrosion

The production of irreversible damage to the skin following the application of a test substance for up to 4 hours.

Skin irritation

The production of reversible damage to the skin following the application of a test substance for up to 4 hours.

Skin sensitizer

A substance that will induce an allergic response following skin contact.

Small spill

A spill that involves quantities that are 208 liters (55 US gallons) or less. This generally corresponds to a spill from a single small package (for example, a drum), a small cylinder, or a small leak from a large package.

Specific gravity

Weight of a substance compared to the weight of an equal volume of water at a given temperature. Specific gravity less than 1 indicates a substance is lighter than water; specific gravity greater than 1 indicates a substance is heavier than water.

Straight (solid) stream

Method used to apply or distribute water from the end of a hose. The water is delivered under pressure for penetration. In an efficient straight (solid) stream, approximately 90% of the water passes through an imaginary circle 38 cm (15 inches) in diameter at the breaking point. Hose (solid or straight) streams are frequently used to cool tanks and other equipment exposed to flammable liquid fires, or for washing burning spills away from danger points. However, straight streams will cause a spill fire to spread if improperly used or when directed into open containers of flammable and combustible liquids.

TIH

Toxic Inhalation Hazard. Term used to describe gases and volatile liquids that are toxic when inhaled (same as PIH). These materials pose a known hazard to human health during transport or is presumed to be toxic to humans because of animal-based studies.

V Saturated vapor concentration in air of a material in mL/m³ (ppm)

at 20°C and standard atmospheric pressure.

Vapor density Weight of a volume of pure vapor or gas (with no air present)

compared to the weight of an equal volume of dry air at the same temperature and pressure. A vapor density less than 1 (one) indicates that the vapor is lighter than air and will tend to rise. A vapor density greater than 1 (one) indicates that the vapor is

heavier than air and may travel along the ground

Vapor pressure Pressure at which a liquid and its vapor are in equilibrium at a

given temperature. Liquids with high vapor pressures evaporate

rapidly.

Viscosity Measure of a liquid's internal resistance to flow. This property is

important because it indicates how fast a material will leak out

through holes in containers or tanks.

Warm zone Area between Hot and Cold zones where personnel and

equipment decontamination and hot zone support take place. It includes control points for the access corridor and thus assists in reducing the spread of contamination. Also referred to as the contamination reduction corridor (CRC), contamination reduction zone (CRZ), yellow zone or limited access zone in other documents. (EPA Standard Operating Safety Guidelines,

OSHA 29 CFR 1910.120, NFPA 472).

Water Reactive Material In this guidebook, materials which produce significant toxic gas

when it comes in contact with water.

Water-sensitive Substances which may produce flammable and/or toxic

decomposition products upon contact with water.

Water spray (fog)

Method or way to apply or distribute water. The water is finely divided to provide for high heat absorption. Water spray patterns can range from about 10 to 90 degrees. Water spray streams can be used to extinguish or control the burning of a fire or to provide exposure protection for personnel, equipment, buildings, etc. (This method can be used to absorb vapors, knockdown vapors or disperse vapors. Direct a water spray (fog), rather than a straight (solid) stream, into the vapor cloud to accomplish any of the above).

Water spray is particularly effective on fires of flammable liquids and volatile solids having flash points above 37.8°C (100°F).

Regardless of the above, water spray can be used successfully on flammable liquids with low flash points. The effectiveness depends particularly on the method of application. With proper nozzles, even gasoline spill fires of some types have been extinguished when coordinated hose lines were used to sweep the flames off the surface of the liquid. Furthermore, water spray carefully applied has frequently been used with success in extinguishing fires involving flammable liquids with high flash points (or any viscous liquids) by causing frothing to occur only on the surface, and this foaming action blankets and extinguishes the fire.

PUBLICATION DATA

The 2020 Emergency Response Guidebook (ERG2020) was prepared by the staff of Transport Canada, the U.S. Department of Transportation, and the Secretariat of Communications and Transport of Mexico with the assistance of many interested parties from government and industry including the collaboration of CIQUIME of Argentina. Printing and publication services are provided through U.S. DOT's Pipeline and Hazardous Materials Safety Administration (PHMSA), Outreach, Engagement, and Grants Division.

ERG2020 is based on earlier Transport Canada, U.S. DOT, and Secretariat of Communications and Transport emergency response guidebooks. ERG2020 is published in three languages: English, French and Spanish. The Emergency Response Guidebook has been translated and printed in other languages, including Chinese, German, Hebrew, Japanese, Portuguese, Korean, Hungarian, Polish, Turkish and Thai.

We encourage countries that wish to translate this Guidebook to please contact any of the websites or telephone numbers in the next paragraph.

DISTRIBUTION OF THIS GUIDEBOOK

The primary objective is to place one copy of the ERG2020 in each publicly owned emergency service vehicle through distribution to Federal, state, provincial and local public safety authorities. The distribution of this guidebook is being accomplished through the voluntary cooperation of a network of key agencies. Emergency service organizations that have not yet received copies of ERG2020 should contact the respective distribution center in their country, state or province. In the U.S., information about the distribution center for your location may be obtained from the Office of Hazardous Materials Safety website at https://www.phmsa.dot.gov/hazmat/erg/emergency-response-guidebook-erg or call 202-366-4900. In Canada, contact CANUTEC at 1-888-706-0195 or via the website at https://www.tc.gc.ca/canutec for information. In Mexico, call SCT at +52 55-57-23-93-00 ext. 20010 or 20577, or via email at cserrano@sct.gob.mx. In Argentina, call CIQUIME at +54-11-5199-1409, or via the website at http://www.ciquime.org or via email at gre@ciquime.org.

REPRODUCTION AND RESALE

Copies of this document which are provided free-of-charge to fire, police and other emergency services may not be resold. ERG2020 (PHH50-ERG2020) may be reproduced without further permission subject to the following:

The names and the seals of the participating governments may not be reproduced on a copy of this document unless that copy accurately reproduces the entire content (text, format, and coloration) of this document without modification. In addition, the publisher's full name and address must be displayed on the outside back cover of each copy, replacing the wording placed on the center of the back cover.

Constructive comments concerning ERG2020 are solicited; in particular, comments concerning its use in handling incidents involving hazardous materials/dangerous goods. Comments should be addressed to:

In Canada:

Director, CANUTEC
Transport Dangerous Goods
Transport Canada
Ottawa, Ontario
Canada K1A 0N5

Phone: 613-992-4624 (information) Fax: 613-954-5101 Email: canutec@tc.gc.ca

In the U.S.:

U. S. Department of Transportation
Pipeline and Hazardous Materials Safety Administration
Outreach, Engagement, and Grants Division (PHH-50)
Washington, DC 20590-0001

Phone: 202-366-4900 Fax: 202-366-7342 Email: ERGComments@dot.gov

In Mexico:

Secretaría de Comunicaciones y Transportes Dirección General de Autotransporte Federal Dirección General Adjunta de Normas y Especificaciones Técnicas y de Seguridad en el Autotransporte Calzada de las Bombas No. 411-2 piso, Col. Los Girasoles.

Col. Los Girasoles, Alcaldía de Coyoacán, Código Postal 04920, Ciudad de México

Phone: +52 55-57-23-93-00 ext. 20010 or 20577 Email: cserrano@sct.gob.mx

In Argentina:

Centro de Información Química para Emergencias (CIQUIME) Av. Alvarez Thomas 636 C1427CCT Buenos Aires, Argentina Phone: +54-11-5199-1409

Email: gre@ciguime.org

The Emergency Response Guidebook is normally revised and reissued every four years. However, in the event of a significant mistake, omission or change in the state of knowledge, special instructions to change the guidebook (in pen-and-ink, with paste-over stickers, or with a supplement) may be issued.

Users of this guidebook should check periodically (about every 6 months) to make sure their version is current. Changes should be annotated below. Contact:

DOT/PHMSA

https://www.phmsa.dot.gov/hazmat/erg/emergency-response-guidebook-erg

TRANSPORT CANADA

https://www.tc.gc.ca/eng/canutec/menu.htm

CIQUIME

http://www.ciquime.org

This guidebook incorporates changes dated:

CANADA AND UNITED STATES NATIONAL RESPONSE CENTERS

For the purposes of this guidebook, the terms hazardous materials/dangerous goods are synonymous.

CANADA

1. CANUTEC

CANUTEC is the **Canadian Transport Emergency Centre** operated by the Transportation of Dangerous Goods Directorate of Transport Canada.

CANUTEC provides a national bilingual (French and English) advisory service and is staffed by professional scientists experienced and trained in interpreting technical information and providing emergency response advice.

In an emergency, CANUTEC may be called at 1-888-CANUTEC (226-8832) or collect at 613-996-6666 (24 hours)

*666 cellular (Press Star 666, Canada only)

In a non-emergency situation, please call the information line at 613-992-4624 (24 hours).

2. PROVINCIAL/TERRITORIAL AGENCIES

Although technical information and emergency response assistance can be obtained from **CANUTEC**, there are federal, provincial and territorial regulations requiring the reporting of dangerous goods incidents to certain authorities.

The following list of provincial/territorial agencies is supplied for your convenience.

Province	Emergency Authority and/or Telephone Number
Alberta	Local Police and Provincial Authorities 1-800-272-9600 or 780-422-9600
British Columbia	Local Police and Provincial Authorities 1-800-663-3456
Manitoba	Provincial Authority 204-945-4888 and Local Police or fire brigade, as appropriate
New Brunswick	Local Police or 1-800-565-1633
Newfoundland and Labrador	Local Police and 709-772-2083
Northwest Territories	867-920-8130
Nova Scotia	Local Police or 1-800-565-1633
Nunavut	Local Police and 867-920-8130
Ontario	Local Police
Prince Edward Island	Local Police or 1-800-565-1633
Quebec	Local Police
Saskatchewan	Local Police or 1-800-667-7525
Yukon Territory	867-667-7244

NOTE:

- 1. The appropriate federal agency must be notified in the case of rail, air or marine incidents.
- 2. The nearest police department must be notified in the case of lost, stolen or misplaced explosives, radioactive materials or infectious substances.
- CANUTEC must be notified in the case of:
 - a. lost, stolen or unlawfully interfered with dangerous goods (except Class 9)
 - b. an incident involving infectious substances
 - c. an accidental release from a cylinder that has suffered a catastrophic failure
 - d. an incident where the shipping papers display CANUTEC's telephone number 1-888-CANUTEC (226-8832) or 613-996-6666 as the emergency telephone number or
 - a dangerous goods incident in which a railway vehicle, a ship, an aircraft, an aerodrome or an air cargo facility is involved

3. EMERGENCY RESPONSE ASSISTANCE PLANS (Applies in Canada ONLY)

An ERAP or Emergency Response Assistance Plan is an approved plan that describes what is to be done in the event of a transportation accident involving certain higher risk dangerous goods. The ERAP is required by the Canadian *Transportation of Dangerous Goods Act* for dangerous goods that require special expertise and response equipment to respond to an incident. The plan is intended to assist local emergency responders by providing them with technical experts and specially trained and equipped emergency response personnel at the scene of a dangerous goods incident.

The ERAP will describe the specialized response capabilities, equipment and procedures that will be used to support a response to incidents involving high risk dangerous goods. The plan will also address emergency preparedness, including personnel training, response exercises and equipment maintenance. The ERAP plans supplement those of the carrier and of the local and provincial authorities, and must be integrated with other organizations to help mitigate the consequences of an accident.

For shipments that require an ERAP, the ERAP number and the phone number to activate the ERAP will be included on the shipping paper. If additional information is required, or to determine if the product involved in the emergency requires an ERAP, contact **CANUTEC**.

CANUTEC may be called at 1-888-CANUTEC (226-8832) or collect at 613-996-6666 (24 hours)
*666 on cellular phone (Press star 666) In Canada Only

UNITED STATES

NATIONAL RESPONSE CENTER (NRC)

The NRC, which is operated by the U.S. Coast Guard, receives reports required when hazardous materials are spilled. After receiving notification of an incident, the NRC will immediately notify the appropriate Federal On-Scene Coordinator and concerned Federal agencies. Federal law requires that anyone who releases into the environment a reportable quantity of a hazardous material (including oil when water is, or may be affected) or a material identified as a marine pollutant, must **immediately** notify the NRC. When in doubt as to whether the amount released equals the required reporting levels for these materials, the NRC should be notified.

CALL **NRC** (24 hours) **1-800-424-8802**

(Toll-free in the U.S., Canada, and the U.S. Virgin Islands)

202-267-2675 in the District of Columbia

Calling the emergency response telephone number, CHEMTREC®, CHEMTEL, INC., INFOTRAC or 3E COMPANY, does not constitute compliance with regulatory requirements to call the NRC.

24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS

MEXICO

1. CENACOM

555128-0000 extensions 36428, 36422, 36469, 37807, 37810

2. CONASENUSA

800-11-131-68 in the Republic of Mexico

3. SETIQ

800-00-21-400 or 55-5559-1588 For calls originating elsewhere, call: +52-55-5559-1588

ARGENTINA

1. CIQUIME

0-800-222-2933 in the Republic of Argentina For calls originating elsewhere, call: **+54-11-4552-8747***

BRAZIL

1. PRÓ-QUÍMICA

0-800-118270 in Brazil
For calls originating elsewhere, call: **+55-19-3833-5310***

COLOMBIA

1. CISPROQUIM

01-800-091-6012 in Colombia
For calls originating in Bogotá, Colombia call: 288-6012
For calls originating elsewhere call: +57-1-288-6012

CHILE

1. CITUC QUÍMICO

2-2247-3600 in the Republic of Chile For calls originating elsewhere call **+56-2-2247-3600**

^{*} Collect calls are accepted

24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS

CANADA

1. CANUTEC

1-888-CANUTEC (226-8832) or 613-996-6666 * *666 (STAR 666) cellular (in Canada only)

UNITED STATES

1. CHEMTREC

1-800-424-9300

(in the U.S., Canada and the U.S. Virgin Islands) For calls originating elsewhere: **703-527-3887** *

2. CHEMTEL, INC.

1-888-255-3924

(in the U.S., Canada, Puerto Rico and the U.S. Virgin Islands) For calls originating elsewhere: **813-248-0573** *

3. INFOTRAC

1-800-535-5053

(in the U.S., Canada and the U.S. Virgin Islands) For calls originating elsewhere: **352-323-3500** *

4. VERISK 3E

1-800-451-8346

(in the U.S., Canada and the U.S. Virgin Islands) For calls originating elsewhere: **760-602-8703** *

The emergency response information services shown above maintain periodically updated lists of state and Federal radiation authorities who provide information and technical assistance on handling incidents involving radioactive materials.

5. MILITARY SHIPMENTS, for assistance at incidents involving materials being shipped by, for, or to the Department of Defense (DOD), call one of the following numbers:

703-697-0218 * - Explosives/ammunition incidents (U.S. Army Operations Center)
1-800-851-8061 - All other hazardous materials/dangerous goods incidents (Defense Logistics Agency)

6. NATIONWIDE POISON CONTROL CENTER (United States only)
1-800-222-1222

A guidebook intended for use by first responders during the initial phase of a <u>transportation incident</u> involving hazardous materials/dangerous goods

THIS DOCUMENT SHOULD NOT BE USED TO
DETERMINE COMPLIANCE WITH THE
HAZARDOUS MATERIALS/
DANGEROUS GOODS REGULATIONS
OR
TO CREATE WORKER SAFETY DOCUMENTS
FOR SPECIFIC CHEMICALS

NOT FOR SALE

This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors.

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration https://www.phmsa.dot.gov/hazmat

Transport Transports
Canada Canada

https://www.tc.gc.ca/TDG

