

Technical Advisory Group Meeting

January 24, 2025

Funded by the Texas General Land Office, Community Development Block Grant, Disaster Recovery Program.

Also Funded by the Texas Water Development Board and Texas Department of Transportation.

Agenda

- I. Duke-TRWD Conservation Priority Mapping Project
- **II. Progress to Date**
- III. Flood Control Prioritization Mapping – Stacking Model
- IV. Expansion of Corridor Development Certificate Process

- V. North Study Area H&H Modeling Update
- VI. Denton County Greenbelt Plan
- VII. Outreach to Local Governments
- VIII. Next Steps and Upcoming Events

Duke-TRWD Conservation Priority Mapping Project

TARRANT REGIONAL WATER DISTRICT

Katie Myers

Duke MEM Project: Prioritizing Land Conservation for Water Supply

TSI TAG

Katie Myers, Rural Programs Supervisor, TRWD

Sarah Sussman and Samantha White, Duke University MEM Candidates May 2025

Advised by Jim Heffernan, PhD

Background

- TRWD owns 4 reservoirs and stores water in 3 additional reservoirs
- In a growing metro, the longevity and quality of these water supplies is paramount to meeting future needs
- Additionally, the urbanizing NW fringe of the metro will result in higher runoff flows through the Fort Worth Floodway system
- Conserved landscapes act as natural infrastructure with regulating services including infiltration and erosion control

Project Overview

Primary Goals

- Identify priority areas for potential conservation within TRWD-affiliated watersheds that provide maximum water supply impact
 - Resulting product will be useful in partner conversations with land trusts and land-holding entities
 - Identification of maximum impact areas bolsters future internal programmatic/budget conversations for this work

Secondary Goals

- Provide a valuable real-world work experience for the next generation of environmental professionals
- Bring attention to the region as an area where there's a lot of great work to be done

Data and Methods

Conservation Value =

Environmental Factors + Social Factors + Proximity to Protected Areas

Land Cover Slope Soil k Factor Riparian Areas

Development Pressure Household Income Property Ownership Proximity to Existing Protected Areas

- Primary tool of analysis was ArcGIS Pro
- Data sourced from TRWD, USGS, and US Census
- Framework allows for adjusted weightings in the future and for each analysis to stand alone
- All factors normalized 0-1 for uniformity when stacking

Planning Units

- Students developed planning units using watersheds tool and hydroDEM
- HUC 12 (readily available) was too large to give us the outputs we wanted; parcels were far too granular

Environmental: Land Cover

Land Use/Land Cover	Reclassification (0,1)
Unclassified (0)	0
Open Water (11)	0
Perennial Ice/snow (12)	0
Developed (21-24)	0
Barren Land (31)	0
Forest types (41-43)	1
Scrub types (51-52)	1
Grassland (71)	1
Sedge/Herbaceous (72)	1
Lichens (73), Moss (74)	1
Pasture/Hay (81)	1
Cultivated Crops (82)	0
Woody Wetlands (90)	1
Emergent Herbaceous Wetlands (95)	1

Environmental: Slope

Slope %	Reclassification
0 - 5	0
6 - 10	0.25
11 - 20	0.50
21 - 30	0.75
31 - 50	1

Environmental: Soil Erodibility

- Based on soil K factor
- Clays and sands have the lowest K factor; loams are intermediate; silts are highest (past land use can make this less accurate)

Soil k Factor	Reclassification
0.02 - 0.19	0
0.2 - 0.35	0.25
0.36 - 0.52	0.75
0.53 - 0.69	1

Environmental: Riparian Areas

Riparian Area (30m)	Reclassification
Riparian Areas? YES	1
Riparian Area? NO	0

Environmental: Final Weighting

Factor	Additional Weight
Riparian Areas	0.15
Slope	0.10
Land Cover	0.25
Soil k factor	0.50

Final Environmental Weight = (Riparian Areas * 0.15) + (Slope * 0.10) + (Land Cover * 0.25) + (Soil k factor * 0.50)

Social: Development Pressure

Cities % population growth (2020 - 2023)	Reclassification
< 2%	0
2% - 4%	0.5
> 4%	1

Percentage of the areas for priority conservation based on Development Pressure

Social: Household Income

boo

Household income (Zip Code)	Reclassification
< \$ 10,000	0
\$10,000 - \$14,999	0.1
\$15,000 - \$24,999	0.2
\$25,000 - \$34,999	0.3
\$35,000 - \$49,999	0.4
\$50,000 - \$74,999	0.6
\$75,000 - \$99,999	0.7
\$100,000 - \$149,999	0.8
\$150,000 - \$199,999	0.9
> \$200,000 year	1

Percentage of the areas for priority conservation based on Household Income

Social: Ownership

% Land Own or Rent (ZIP)	Reclassification
Own	1
Rent	0

Social: Final Weighting

Factor	Additional Weight
Development Pressure	0.68
Land Ownership	0.45
Household Income	0.24

Final Social Weight = (Development pressure * 0.68) + (Land Ownership * 0.45) + (Household Income * 0.24)

Proximity to Protected Areas

Protected Lands	Reclassification
Within 1 mile? YES	1
Within 1 mile? NO	0

Final Stack All Factors

Final Combined Weight = Environmental Factors + Social Factors + Protected Areas

Potential skew toward Lake Arlington on strength of social factors and near universal proximity to public/protected space in suburban spaces

- Final weightings within this stack can be adjusted to favor environmental factors
- Additional information about average parcel size per planning unit could be useful for conservation partners

Update on Project Progress

NCTCOG

Kate Zielke, CFM

Progress to Date

Outreach Tasks

- 3 rounds of meetings in study area
- 8 Technical Advisory Group meetings
- 6 Steering Committee meetings
- 3 Workshops
- **16** Community site visits
- Stakeholder Engagement Plan

integrating **Transportation** & **Stormwater Infrastructure**

LOCAL GOVERNMENT FAQ

What is the integrated Transportation and Stormwater Infrastructure (TSI) study?

This planning study coordinates transportation planning, stormwater management, and environmental planning to mitigate flooding risks and

KEY TERMS

Community: A local governmer

A local government or political entity that adopts and enforces

Technical Tasks

Literature review Pilot studies H&H SOPs Storm shifting SOPs H&H – West Study Area Stacking model – West Study Area Optimization study – West Study Area

H&H launch – North Study Area

Flood Control Prioritization Mapping – Stacking Model

TEXAS A&M AGRILIFE EXTENSION SERVICES

Yufan Zhang, Ph.D.

Fouad Jaber, Ph.D., P.E. TEXAS A&M

Stacking Model (GIS-Based Multi-Criteria Decision-Making Approach)

- It is used to find some areas with both high flood potential and low resilience, or either of them
- It is the first step in the planning framework to provide guidance where the control measures (detention ponds, rain gardens, constructed wetlands, etc.) should go
- It is different from hydrologic and hydraulic modeling, it is geospatial analysis
- It can also help to identify the transportation infrastructure (e.g. roadways) under the high flood potential in the existing and future condition

Flood Conditioning Factor

Factors	Category	Data sources	Year	Processing	Relation to flooding
Elevation		USGS TNM	2021	Direct download	Negative
Slope		DEM-derived	-	Slope	Negative
Plan curvature	Towoonahiaal	DEM-derived	-	Curvature	Negative
	Topographical			Flow direction,	
TWI		DEM-derived	-	flow	Positive
				accumulation	
Extreme rainfall	Meteorological	NOAA Atlas 14		Direct download	Positive
depth	Wieteorological	NOAA Atlas 14	-	Direct dowinoad	rostuve
		USGS NLCD,			
CN		SSURGO,	2023, 2023,	Union	Desitive
CN	Tandarana	USDA Forest	2021	Union	rositive
	Lanuscape	Service			
NDVI		USGS Earth	2023	2023 Direct download	Nagativa
		Explorer			
Stugon donaity	Hydrological	DFM derived	-	Stream order,	Positive
		DEM-derived		Kernel density	1 OSITIVE
Road density		NCTCOG,	2023	Kernel density	Positive
Road delisity		TxDOT	2025	2025 Kerner density	1 OSITIVE
Road traffic		NCTCOG,	2023	Kernel density	Positive
density	TxDOT	2025	Remer density	TOSITIVE	
Dam density	Infrastructural	NID	2024	Kernel density	Negative
Bridge		TyDOT	2024	Kernel density	Positive
vulnerability		TADOT	2024	Reflict defisity	1 0511170
Bridge traffic		TyDOT	2024	Kernel density	Positive
density		12001	2024	ixerner density	1 0511170
SVI	Socio-economic	CDC/ATSDR	2022	Direct download	Positive

Maps for each individual factor

& Stormwater Infrastructure

Stream density(distance from streams)

Kernel analysis *search radius: assigned varying search radius to reflect their impact ranges (from headwater to the ultimate convergence)

 Road density (distance from roads)

Road traffic density

*Search radius: Main - 500m(1640ft); Local - 250m(820ft) *Population density: Daily Vehicle Miles Traveled (DVMT)

Bridge vulnerability \succ

- Vulnerability = historical significance (HIST_SIG) * (10 waterway adequacy (APPRSL_RTN_4))
- Historical significance considers the cultural, structural, or functional importance of the bridge, emphasizing the potential societal and economic impacts of its failure.
- The appraisal rating for waterway adequacy evaluates the bridge's capacity to handle water flow, accounting for the chance of overtopping the bridge deck or its approaches during extreme rainfall or flood conditions.

Appraisal rating for waterway adequacy

Code	Description
9	Superior to present desirable criteria
8	Equal to present desirable criteria
7	Better than present minimum criteria
6	Equal to present minimum criteria
5	Somewhat better than minimum adequacy to tolerate being left in place as is
4	Meets minimum tolerable limits to be left in place as is
3	Basically intolerable requiring high priority of corrective action
2	Basically intolerable requiring high priority of replacement
1	This value of rating code not used
0	Bridge closed

Future scenario (Year 2045)

Future scenario (Year 2045)

Stacking model (GIS-Based Multi-Criteria Decision-Making Approach)

Flood susceptibility mapping

Model Validation

- AUC = 1.0 → Perfect classifier. •
- AUC > $0.9 \rightarrow$ Excellent model. •
- AUC between 0.7 and 0.9 → Good model. •
- AUC between 0.5 and 0.7 → Poor model. •
- AUC = 0.5 → Random guessing.

а ue

Stacking Model (GIS-Based Multi-Criteria Decision-Making Approach)

Flood vulnerability mapping, flood control prioritization mapping

Infrastructural Same approach as Road traffic density, Bridge traffic density , Bridge vulnerability flood susceptibility mapping (overlay, Socio-economical AHP) Flood SUSCEDtibility Flood Vulnerability ocial vulnerability index Negative related High FSI & high FVI High FSI & moderate FVI High FSI & low FVI Moderate FSI & high FVI Moderate FSI & moderate FVI Moderate FSI & low FVI Low FSI & high FVI Low FSI & moderate FVI Low FSI & low FVI Flood control prioritization mapping FSI: flood susceptibility index

FVI: flood vulnerability index

integrating Transportation & Stormwater Infrastructure

Map Links to ArcGIS Online

• Flood susceptibility map (current condition, west):

https://tamu.maps.arcgis.com/home/item.html?id=4eaee3a528434f4ba647912b28b70992

• Flood susceptibility map (future condition, west):

https://tamu.maps.arcgis.com/home/item.html?id=e8951c8b04054abeb2d86b042863033c

• Flood vulnerability map (current condition, west):

https://tamu.maps.arcgis.com/home/item.html?id=370d094b72624c2d963cb082157ed87b

• Flood vulnerability map (future condition, west):

https://tamu.maps.arcgis.com/home/item.html?id=ae151e80f38c45aeaf20d3e5fee2d121

• Flood control prioritization map (current condition, west):

https://tamu.maps.arcgis.com/home/item.html?id=e618155602a44655b7e165bff0e7f5bb

• Flood control prioritization map (future condition, west):

https://tamu.maps.arcgis.com/home/item.html?id=c5537dbd02bf4586b374964df070eb93

Thank you for listening!

Questions?

Expansion of Corridor Development Certificate Process

US ARMY CORPS OF ENGINEERS Vincent A. Geracci, PE, CFM

Trinity River Corridor Development Certificate

CORRIDOR DEVELOPMENT CERTIFICATE MANUAL

TRINITY RIVER CORRIDOR – NORTH CENTRAL TEXAS

JOINTLY PREPARED BY:

CITIES: ARLINGTON, CARROLLTON, COPPELL, DALLAS, FARMERS BRANCH, FORT WORTH, GRAND PRAIRIE, IRVING, LEWISVILLE

> COUNTIES: DALLAS, TARRANT

SPECIAL DISTRICTS: FEDERAL EMERGENCY MANAGEMENT AGENCY – REGION VI, NORTH CENTRAL TEXAS COUNCIL OF GOVERNMENTS, TARRANT REGIONAL WATER DISTRICT, TRINITY RIVER AUTHORITY OF TEXAS, UNITED STATES ARMY CORPS OF ENGINEERS - FORT WORTH DISTRICT

> FOURTH EDITION July 2009 Amended October 2020

USACE 1988 Regional Environmental Impact Statement Trinity River and Tributaries:

- the cumulative impact of allowing individual development projects in the Trinity River floodplain could be both <u>measurable</u> and <u>significant</u>
- The permitting approach adopted by USACE had the potential to significantly reduce flood hazards

USACE 1990 Upper Trinity River Study:

With only National Flood Insurance Program (NFIP) criteria, Standard Project Flood would:

- Flood 42,460 acres in the Upper Trinity River Basin
- Cause \$11.1 billion in damages

With CDC criteria, Standard Project Flood would:

- Flood 22,720 acres in the Upper Trinity River Basin
- Cause \$4.25 billion in damages

44

Trinity River Corridor Development Certificate

Important Note:

The Corridor Development Certificate Process (CDC) <u>affirms local government authority</u> for local floodplain management and establishes a set of Common Regional Criteria and procedures for development within the Trinity River Corridor.

Criteria:

- "No rise in the 100-year or SPF elevation for the proposed condition will be allowed."
- "The maximum allowable loss in storage capacity for the 100-year and SPF, 0% and 5% respectively."
- "Alterations in the floodplain may not create or increase an erosive water velocity on or off-site."

Current Regulatory Zone

Trinity River Corridor Development Certificate

🛓 Steady Flow Analysis			_		×		
File Options Help							
Plan: CDC: 50% to 0.2% AEP, SPF [WF/CF] Short ID: CDC Plan 11							
Geometry File:	CDC: 50% to 0.2% AEP, S		•				
Steady Flow File:			-				
Flow Regime Subcritical C Supercritical C Mixed Optional Programs Floodplain Mapping	NFIP: 0.2% AEP [WF/EF/TRMS] NFIP: 10%,4%,2%,1%,0.2%,1%+ AEP [WF/CF] NFIP: FEMA Floodway 1% AEP [WF/EF/TRMS] NFIP: FEMA Floodway 1% AEP [WF/CF] NFIP: 1%+ AEP [WF/EF/TRMS] CDC: 50% to 0.2% AEP, SPF [WF/CF] CDC: 50% to 1% AEP [WF/EF/TRMS] CDC: 0.2% AEP, SPF [WF/EF/TRMS]						
Compute							
Select flow file for plan							

Benefits:

- Common Regional Criteria
- State-of-the-art floodplain mapping
- Hydrologic modeling based on year 2055 Upper Trinity River watershed development
- A hydraulic model incorporating CDC permitted floodplain development
- U.S. Army Corps of Engineers technical review
- Regional review and comment
- Guarantee of local control of floodplain development decisions

Ę

Expansion of the Corridor Development Certificate Process

Pilot Study:

- Communities within the TSI project were presented the opportunity to participate in the Pilot Study
- **City of Weatherford** selected due to high population, not a current CDC participant, and availability of H&H modeling to use as a basis
- Town Creek watershed Flood Risk Identification
 (FRI) study provided to USACE

Goals and Deliverables:

- Use Town Creek FRI study as a basis to develop pilot study CDC H&H models as funding allows
- Create scope, replicable guidance, and document lessons learned for inclusion in final TSI report
- Provide template USACE Floodplain Management Services (FPMS) funding application

Expansion of the Corridor Development Certificate Process

HEC-RAS v5.0.3:

Ę

HEC-HMS v4.2:

Expansion of the Corridor Development Certificate Process

 \times

Basin Model [TOWN_CDC_100-year losses]

HEC-HMS v4.12:

Subbasin Initial Loss (IN) Constant Rate (IN/HR) Imperv (%6) Snyder Unit Hydrograph (TOWN_CDC_100-year loss — … </th <th colspan="4"></th> <th colspan="7">Filter: -None Sorting: Watershed Explore</th>					Filter: -None Sorting: Watershed Explore						
Binder Lake Creek 4.29 0.10 Image: Solution of the standard of					Subbasin	Initial Loss (IN)	Constant Rate (IN/HR)	Impervio (%)			
Snyder Unit Hydrograph [TOWN_CDC_100-year loss Image: Constraint of the					Holland Lake Creek	4.29	0.10				
Sorting: Watershed Explor TWN_02 0.87 0.09 Standard Ft Worth Tulsa TWN_04 0.88 0.10 Standard Ft Worth Tulsa TWN_05 0.86 0.09 Subbasin Snyder Method Lag Time (HR) Peaking Coefficient (HR) TWN_05 0.86 0.09 Holland Lake Creek Standard 0.916 0.655 TWN_02 Standard 0.681 0.655 TWN_03 Standard 0.352 0.655 0.65	Snyder Unit Hydrograph [TOWN_CDC_100-year loss			TWN_01	0.87	0.09					
Sorting: Watershed Explor TWN_03 0.87 0.09 Standard Ft Worth Tulsa TWN_04 0.88 0.10 Subbasin Snyder Method Lag Time (HR) Peaking Coefficient (HR) TWN_05 0.86 0.09 Holland Lake Creek Standard 0.811 0.65 TWN_02 Standard 0.916 0.55 TWN_02 Standard 0.681 0.65 0.65 0.91 0.10 TWN_03 Standard 0.681 0.65 0.65 0.91 0.10 TWN_04 Standard 0.352 0.65 0.65 0.91 0.10					TWN_02	0.87	0.09				
Standard Ft Worth Tulsa TWN_04 0.88 0.10 Subbasin Snyder Method Lag Time (HR) Peaking Coefficient TWN_05 0.86 0.09 Holland Lake Creek Standard 0.811 0.65 TWN_01 Standard 0.916 0.65 TWN_02 Standard 0.681 0.65 0.65 TWN_03 Standard 0.352 0.65 TWN_04 Standard 0.352 0.65	Filter:None Sorting: Watershed Explor				TWN_03	0.87	0.09				
Standard Ft Worth Tulsa TWN_05 0.86 0.09 Subbasin Snyder Method Lag Time (HR) Peaking Coefficient (HR) TWN_06 0.91 0.10 Holland Lake Creek Standard 0.811 0.65 0.65 0.86 0.91 0.10 TWN_01 Standard 0.916 0.655 0.65 0.65 0.65 0.65 0.65 0.65 0.91 0.10 0.65 0.91 0.10					TWN_04	0.88	0.10				
Subbasin Snyder Method Lag Time (HR) Peaking Coefficient (HR) TWN_06 0.91 0.10 Holland Lake Creek Standard 0.811 0.65 TWN_01 Standard 0.916 0.65 TWN_02 Standard 0.681 0.65 TWN_03 Standard 0.352 0.65 TWN_04 Standard 0.352 0.65	Standard Ft Worth Tulsa			TWN_05	0.86	0.09					
Holland Lake Creek Standard 0.811 0.65 TWN_01 Standard 0.916 0.65 TWN_02 Standard 0.885 0.65 TWN_03 Standard 0.681 0.65 TWN_04 Standard 0.352 0.65	Subbasin	Snyder Method	Lag Time (HR)	Peaking Coefficient	TWN_06	0.91	0.10				
TWN_01 Standard 0.916 0.65 TWN_02 Standard 0.885 0.65 TWN_03 Standard 0.681 0.65 TWN_04 Standard 0.352 0.65	Holland Lake Creek	Standard	0.811	0.65							
TWN_02 Standard 0.885 0.65 TWN_03 Standard 0.681 0.65 TWN_04 Standard 0.352 0.65	TWN_01	Standard	0.916	0.65							
TWN_03 Standard 0.681 0.65 TWN_04 Standard 0.352 0.65	TWN_02	Standard	0.885	0.65							
TWN_04 Standard 0.352 0.65	TWN_03	Standard	0.681	0.65							
	TWN_04	Standard	0.352	0.65							
IVWN_US Standard 0.618 0.65	TWN_05	Standard	0.618	0.65							
TWN_06 Standard 0.137 0.65	TWN_06	Standard	0.137	0.65							

Initial and Constant [TOWN_CDC_100-...

💋 Subbasin Characte	eristics [TOWN_CDC_	100-year losses]									- L	
Filter:None	~									Sorting:	Watershed E	xplore
Subbasin	Longest Flowpath Length (MI)	Longest Flowpath Slope (FT/FT)	Centroidal Flowpath Length (MI)	Centroidal Flowpath Slope (FT/FT)	10-85 Flowpath Length (MI)	10-85 Flowpath Slope (FT/FT)	Basin Slope (FT/FT)	Basin Relief (FT)	Relief Ratio	Elongation Ratio	Drainage De (MI/MI²)	nsity)
Holland Lake Creek	2.70196	0.01406	1.34820	0.01072	2.02647	0.01242	0.05447	200.51819	0.01406	0.53291	2.0	7165
TWN_01	2.98339	0.00905	1.02285	0.00818	2.23754	0.00866	0.04598	146.69861	0.00931	0.52403	2.6	51278
TWN_02	2.85123	0.01041	1.15717	0.00622	2.13842	0.01034	0.04808	162.26514	0.01078	0.53964	2.8	31766
TWN_03	2.27835	0.01223	1.03085	0.00980	1.70876	0.01055	0.04778	149.78491	0.01245	0.60142	2.5	6994
TWN_04	1.26487	0.02173	0.48598	0.01900	0.94865	0.01976	0.05267	142.96399	0.02141	0.70347	2.0	9246
TWN_05	1.77544	0.00652	0.78896	0.00201	1.33158	0.00420	0.03948	132.26904	0.01411	0.61866	2.4	1358
TWN_06	0.35836	0.01491	0.07380	0.00974	0.26877	0.01518	0.06820	52.94580	0.02798	0.63293	3.4	0779
TM/N 07	1 / 2207	0.01624	0 00024	0.01055	1 07405	0.01200	0.04617	1/10 70520	0.01091	0 40024	27	0/07
Re-compute											Apply	Clos

er 🗸 us 54 22 23 33 41 40 44

- -

49

Expansion of the Corridor Development Certificate Process

HEC-RAS v6.6:

Ļ

Next Steps:

- Develop SPF hydrology, consolidated NFIP-CDC model for Town Creek, and inundation mapping as funding allows
- Create scope, replicable guidance, and document lessons learned for inclusion in final TSI report
 - To include steps taken for pilot study modeling and alternative processes for communities that do not have effective model products as a basis
- Provide template USACE Floodplain Management Services (FPMS) funding application

50

North Study Area H&H Modeling Update

HALFF

Sam Sarkar, PE

Hydrology Modeling

- ✓ Hydrology SOP✓ Subbasins Delineation
- ✓ HEC-HMS Model Development
- ✓ Runoff Parameters
 - ✓ Losses
 - ✓ Baseflow
 - ✓ Lag Times

Runoff Model

✓ Loss
 ✓ Initial and Constant
 ✓ Percent Impervious
 ✓ Transform

✓ Snyder UH

✓ Baseflow

 \checkmark Recession

✓ NLCD 2016✓ Trinity InFRM WHA

Routing

✓ Modified Puls
 ✓ Trinity InFRM WHA
 ✓ BLE Models

Next Steps

- Complete routing
- Incorporate precipitation
- Run HMS and calibrate against Trinity InFRM WHA
- Identify pilot study area to implement TSI process
 - ✓ Existing Conditions H&H
 - ✓Future Conditions H&H
 - ✓ Hazard Assessment
 - ✓ Alternatives Analysis

Denton County Greenbelt Plan

UPPER TRINITY REGIONAL WATER DISTRICT

Blake Alldredge

Denton County Greenbelt Plan

Blake Alldredge Upper Trinity Conservation Trust / UTRWD

Our Waterways

Thousands of miles of streams and creeks
 Three major water supply reservoirs
 Hundreds of miles of hike/bike trails

Why is Watershed Management Important?

- Protects Drinking Water Sources
- Protects Human Health / Aquatic Life
- Recreational / Economic Benefits

Upper Trinity Conservation Trust

- Established in 2010
- 501 (C)(3) Non-Profit Land Trust
- Landowner Outreach and

Education

- Preserve Greenbelts and other **Key Watershed Features**
- Land Trust Alliance Focuses on Lakes Lewisville, Together, conserving the places you love Ray Roberts, Grapevine & Lake Ralph Hall

Benefits of Greenbelts

CALL LATO OF TICK

Little Elm Creek, NE Denton County

- Serves as a buffer to protect water quality.
- Lessen flooding impacts.
- Preserve wildlife and aquatic habitat.

Riparian Vegetation is

Key

- Stabilizes streambank soil
- Dissipates floodwater energy
- Filters water

Denton County Greenbelt Plan

- Adopted by Denton County, UTRWD & UTCT in 2017.
- Guides preservation of greenbelts and related areas to protect water quality.
- Identifies high-priority areas.
- Advocates a common vision.
- Provides a toolbox of implementation strategies - - on a voluntary basis.

Aligns with Transportation & Stormwater Infrastructure Initiative

integrating **Transportation** & **Stormwater Infrastructure**

Practices for Flood Reduction

- Development Standards &
 Ordinances
- Conservation Easements
- Alternative Development Ideas
- Green Stormwater Infrastructure
- Mowing Regimes

- N .

6

Denton Creek downstream of Grapevine Lake

Long Prairie Rd looking south towards 121

Social Benefits of Preserving Greenbelts

Greenbelt within Lantana community

✓ Recreation/Exercise → Lower Chronic

Disease

- ✓ Connection to Nature → Greater Well-Being
- \rightarrow Lower Stress & Anxiety \rightarrow Improved Mental

Health

Better Physical, Mental and

Emotional Health

"Healthy Trees, Healthy Lives" (Texas

A&M Forest Service)

Economic Benefits of Preserving Greenbelts

Lewisville Lake in 2016:

✓ 2.7 million visits
 ✓ \$65 million in visitor spending within 30 miles
 ✓ Supports 601 jobs
 *USACE Lewisville Lake 2020 Master Plan

Water Treatment Costs? Flood Damage?

Benefits of Conserved Lands

- Every \$1 invested in conservation yields up to \$9 return on investment.
 - Water Quality
 - Water Quantity
 - Flood Protection
 - Agricultural Productivity

*Valuing Economic Benefits of Texas Conservation Lands (Texas Land Trust Council)

Benefits of Conserved Lands

- Saves <u>\$69 million</u> per year in projected water treatment costs.
- Capture <u>\$316 million</u> in usable water.
- Every **\$1** spent on flood risk reduction can decrease disaster costs by **\$4**.

Green Stormwater Infrastructure

North Central Texas Council of Governments iSWM Program – iswm.nctcog.org

Capture and filter excess stormwater in urban areas

DENTON COUNTY GREENBELT PLAN

For the Futur

Entities Adopted the Greenbelt Plan

City of Aubrey City of Corinth City of Denton Town of Double Oak Town of Flower Mound Town of Hickory Creek

City of Justin Lake Cities MUA Lantana City of Lewisville City of Pilot Point City of Sanger

...interested?

Stay Connected!

Outreach to Local Governments

Local Government FAQ

- What is the integrated Transportation and Stormwater Infrastructure (TSI) study?
- How will the study help protect the safety of people and property in my community?
- What regulatory tools or guidance will the TSI study produce?
- What recommendations from the study will benefit my community?
- How can my community fund the TSI study's recommendations?
- How can my community participate in the study?
- Why should my community participate in the TSI study?

integrating Transportation & Stormwater Infrastructure

North Central Texas Council of Governments

www.nctcog.org/tsi

LOCAL GOVERNMENT FAQ

What is the integrated Transportation and Stormwater Infrastructure (TSI) study?

This planning study coordinates transportation planning, stormwater management, and environmental planning to mitigate flooding risks and optimize infrastructure while supporting sustainable development. The study will recommend tools and best practices to address community health, safety, and growth. The study is led by the North Central Texas Council of Governments with support from local, state, and federal partner agencies.

How will the study help protect the safety of people and property in my community?

The TSI study will provide models of current and future flood risks and maps of potential locations for stormwater detention and green stormwater infrastructure. Additionally, the study will recommend strategies to improve the resiliency and siting of current and future transportation infrastructure. This will be accomplished using advanced hydrology and hydraulics modeling and future growth scenarios. Additionally, the study will recommend improvements to real-time flood warning systems to ensure communities stay informed during emergencies.

What regulatory tools or guidance will the

KEY TERMS

Community:

A local government or political entity that adopts and enforces ordinances, orders, or regulations applicable to the area under its jurisdiction.

Flood Warning Systems:

Systems that provide real-time data and alerts regarding flood risks. They are designed to monitor flood events, enabling communities to take timely actions to protect lives and property.

Green Stormwater Infrastructure:

Vegetation and soil systems that have been engineered to improve urban flood management and water quality by mimicking natural hydrological processes.

Hydrology:

Community Site Visits

To schedule a site visit, please email tsi@nctcog.org or kzielke@nctcog.org

County Watershed Workshop

- Date TBD looking at days in June
- Hybrid NCTCOG offices and Microsoft Teams
- Seeking additional speaker/s related to floodplain management, stormwater, and transportation
- Discussion of state code
- Discussion of implementation from 2017 Menu of Regionally Recommended Standards in Watershed Management For New Development Within County Regulated Areas

Upstream/Downstream Workshop

- Target timeline Fall 2025
- Opportunity for neighboring communities to discuss growth and future collaboration
- To participate, please email tsi@nctcog.org or kzielke@nctcog.org

Next Steps and Upcoming Events

NCTCOG

Kate Zielke, CFM

Next Steps

West

Finalization of storm shifting SOPs

Hydraulic work

Finalization of optimization study

Policy inventory and research

Community site visits

North

Continued hydrologic work

GIS stacking model

Alternatives analysis SOP

Policy inventory and research

Community site visits

Upcoming Events

- RISE Coalition Meeting May 14, 9:30-11:30 a.m., https://www.addevent.com/event/hY24288000
- Trinity River COMMON VISION Flood Management Task Force meeting May 16, 9:30-11:30 a.m., <u>https://www.addevent.com/event/Ut25508952</u>
- Regional Stormwater Management Coordinating Council, May 21, 9:30-11:30 a.m., <u>https://www.addevent.com/event/Aa25070471</u>
- iSWM Manual Updates to be involved in the updates, please contact Katie Hunter, <u>khunter@nctcog.org</u>

Speaker Contacts

Tarrant Regional Water District

Katie Myers | Rural Programs Supervisor, Watershed Protection

817.720.4419 | katie.myers@trwd.com

Aaron Hoff | Watershed Programs Manager

817-720-4453 | aaron.hoff@trwd.com

Texas A&M AgriLife Extension Service

Dr. Fouad Jaber, Ph.D., P.E. | Professor and Extension Specialist

972.952.9672 | fouad.jaber@ag.tamu.edu

Dr. Yufan Zhang, Ph.D., E.I.T. | Post-doc Extension Associate

217.721.0624 | yufan.zhang@ag.tamu.edu

US Army Corps of Engineers

Vincent A. Geracci, PE, CFM. | Hydraulic Engineer 817.886.1549 | <u>Vincent.A.Geracci@usace.army.mil</u>

Halff

Sam Sarkar, PE | Senior Project Manager 214.346.6368 | <u>ssarkar@halff.com</u>

Upper Trinity Regional Water District Blake E. Alldredge

972.219.1228 | balldredge@utrwd.com

North Central Texas Council of Governments Kate Zielke, CFM | Program Supervisor

817.695.9227 | <u>kzielke@nctcog.org</u>

