George W. Shannon Wetjands at Richland-Chambers

Region C: 2060 Long-Range Water Management Strategies

1990 Long-Range Plan concluded that the District

 should pursue the option to divert water from the Trinity into its reservoirs
Water Resource Challenges

Water Quality: Eutrophication

20-Year Trend Study
Chlorophyll-a

	Media n Lake $(\mathrm{u} / \mathrm{gL})$	仓े Trend $(\%$ APR $)$
Arlington	27.5	6.23
Cedar Crk	20.0	3.60
Eagle Mtn	18.8	2.84
Richland	11.4	2.70
Benbrook	16.7	2.48
Bridgeport	3.5	1.79

3 Types of Reuse Considered by TRWD

Wetlands

Aquaculture

Constructed Wetlands for Water Reuse

IRWD WETLANDS

Project Timeline

TRWD Pilot-Scale Wetland Project

RC Reservoir Construction Mitigation

TPWD RCWMA North Unit: 5,000 acres South Unit: 8,000 acres

Field Scale Construction 2000-2003

Full Scale Wetland Operation October 2013

Constructed Wetlands

- 5 major components:
- River Pump Station
- Sedimentation Basins
- Conveyance Canals
- Wetland Cells
- Relift Pump Station

WETLAND LAYOUT

TYPICAL WETLAND CELL

WETLAND SYSTEM STRUCTURES

COLLECTION POOL
OUTFLOW STRUCTURE

SB3, 4, \& 5 INFLOW STRUCTURE

WETLAND SYSTEM STRUCTURES

TYP. PH II INTERMEDIATE STRUCTURE

TYP. FIELD SCALE OUTFLOW STRUCTURE

- Wetland Plants Play a Key Role in Wetland Treatment Performance by:
- Shading the water column
- Providing media for microbial growth
- Aiding in cycling organic carbon and nutrients
- Wetland Plant Types
- Emergent vegetation
- Submerged Aquatic Vegetation (SAV)
- A diverse mixture of emergent and submerged aquatic species is desirable to provide robust water quality improvement.

EMERGENT VEGETATION FIELD-SCALE AND PHASE I

SUBMERGED AQUATIC VEGETATION

Wetland Monitoring

pH

Dissolved oxygen
Temperature
Flow
Nitrogen
Phosphorus
Turbidity (suspended sediment)

TRWD Field Scale Wetlands Vegetation Monitoring Sites

Wetland vs. RC Tributary: Water Quality (April 2015)

Wetland Treatment Performance Full Scale Operation

Full Scale Operation Oct 2013 - March 2015 ($\mathrm{n}=45$)

	Average Concentration In (mg L-1)			Average Concentration Out $\left(\mathrm{mg} \mathrm{L}^{-1}\right)$			Percent Concentration Reduction		
Location	TSS	TN	TP	TSS	TN	TP	TSS	TN	TP
Sed Basins	139.10	8.53	1.03	35.27	8.03	0.94	75%	6%	8%
Wetlands	35.27	8.03	0.94	15.30	2.27	0.44	57%	72%	53%
Overall System	139.10	8.53	1.03	15.30	2.27	0.44	89%	73%	57%

Wetland Treatment Performance Full Scale Operation

Wetland Treatment Performance Full Scale Operation

Removal of Trinity River Total Nitrogen at Alligator Creek

Wetland Treatment Performance Full Scale Operation

Removal of Trinity River Total Phosphorus at Alligator Creek

Questions?

chris.zachry@trwd.com

