Research Study: Accuracy of Texas CCS Water Quality Monitoring Data (Texas Stream Team)

Kelly Albus, PhD Texas A&M AgriLife Extension Texas Water Resources Institute kelly.albus@ag.tamu.edu

What is Community Citizen Science (CCS)?

a.k.a. Participatory Science, Volunteer Monitoring, Crowdsourcing, and many more...

The participation of students, amateurs, or volunteers (any non-professional scientist) in the process of scientific research.

Recent Growth

Technological advancements (smartphones) Enhanced data collection, Educational and societal impacts

Groups and Resources Citizen Science Association, SciStarter, iNaturalist, Master Volunteers, Texas Stream Team

Benefits of CCS

Data Collection

- Eyes on the ground
- Data gaps
- Accessibility (off limits)
- Machine learning (Al)

Education and Outreach

- Broaden engagement
- Project-based Learning
- Virtual options
- Curricular materials

Impacts

- Community input & support
- Learning gains
- Funding opportunities
- Sustainability goals

Photo credit: From Texas Stream Team website (https://www.meadowscenter.txstate.edu/Service/TexasStreamTeam. tml) and from: www.WFAA.com

Volunteer Water Quality Monitoring

- Volunteers from all over the US have been collecting data for decades with citizen science (CS) programs
- Water monitoring one of the most prevalent types of CS program worldwide

RICHARD GREYSON

Stream

leam

Caring for Our Waters

Question: What is volunteer CCS data used for?

- Uses of TST data limited, largely unknown at time of publication
- Still no "official" management or regulatory uses
- Few citations in peer-reviewed articles

Texas Stream Team: **Data Uses**

Common issue throughout CCS water monitoring

Volunteer datasets **not fully utilized** by professionals and scientists Top concerns about **accuracy and applicability** of data

Top reason not used in publications: **researcher's perceptions of volunteer data quality**

<u>Comprehensive Literature Review: 26 WQ Comparison Studies</u>

- General "Good" agreement between volunteer and professional
- Pros and cons of comparison studies

A little sus? Or not?

Research: Volunteer Water Quality Monitoring Data Accuracy

Texas Stream Team Opportunity:

- Long-term continuous data collection over large area
- with QAPP
- at sites that correspond to professional samples.

Assess relative accuracy of TST water quality data (*DO*, *pH*, *conductivity*) by comparing to professional data & analyzing variations across scales

- First comparison study to
 - Utilize TST data
 - Combine large and small-scale analysis
 - Analyze existing and experimental datasets

RESEARCH QUESTION 1

• Existing, Statewide, 1992-2016 (long-term, large-scale)

RESEARCH QUESTION 2

• Existing, City of Denton, 2009-2017 (long-term, local scale)

RESEARCH QUESTION 3

• Experimental, City of Denton, 2017-2018 (short-term, local)

RQ 1: Statewide

Figure 1. Map of Study Stations. Existing Statewide Water Monitoring Station Locations, with River Basins

(12 stations, 5 river basins)

Results - RQ 1: Existing, statewide

• 234 professional, 350 volunteer samples, 12 stations, 38 station years

Samples analyzed by year/station for each of the parameters (DO, pH, conductivity)

Result: 82 station/year ANOVAs

Answered the question: Is there a significant difference between volunteers and professionals at that station for that year, for that parameter? (DO, pH or conductivity) **Table 2.** Statewide ANOVA Metadata. Percent agreement between TST volunteer and TCEQ professional data based on ANOVA results (Table 1) for all statewide models run and for each parameter.

Data Category	# ANOVAs	# Statistically Significant	Total Percent Agreement
Total Statewide	82	16	<mark>80.49%</mark>
DO	30	7	76.67%
рН	24	5	79.17%
Conductivity	28	4	85.71%

Research Question 2: Existing, City of Denton, 2009-2017 (long-term, local scale)

Results - RQ 2: Existing city of Denton

- 159 vol/pro paired samples, 6 stations, 24 sampling years
 - (Same as RQ 1) Samples analyzed by year/station for each parameter (DO, pH, conductivity)
- Result: 70 total analyses
 - (ANOVAs for DO and conductivity, and KST for pH)
- More controls = less variation in datasets → Group Analysis of entire dataset
 - Provide more detailed information about parameters over time
 - Found pattern in DO and pH data

DO – Systematic bias

- Group Analysis of City of Denton volunteer and professional sampling data =
- Found: consistent pattern for DO across all sites for all years
 - Reproducibility for all samples = <u>systematic bias or error</u>
 - Reproduceable, consistent magnitude = not a reflection of actual variation in dataset (Taylor 1997)
 - Calibration confirmed:
 - Add 2 mg/L to all volunteer DO samples to remove bias = no significant difference (Figure 5).
 - Note: Adding 2 mg/L to the volunteer data only one option

• Applied to all City of Denton results (RQ 2 and 3)

DO – Systematic bias adjustment

Figure **4**. Boxplot of City of Denton DO data – Bias Uncorrected. All professional (COD) DO samples compared to all volunteer (TST) DO samples showing systematic bias across all years and stations.

<u>Figure 5.</u> Boxplot of City of Denton DO data – Bias Corrected. All professional (COD) DO samples compared to all volunteer (TST) DO samples when systematic bias corrected by adding 2 mg/L to all volunteer samples.

	<i>Table 7</i> . Cit between T based on A each paran	cy of Denton ANOVA M ST volunteer and City of NOVA/KST results (<i>Table</i> neter	etadata. Percent agreem Denton professional data e 6) for all models run and	ent 🤇 for
Data Category	# Analyses	# Statistically Significant Analyses	Total Percent Agreement	
Total Denton	70	6	<mark>91.43%</mark>	
DO	23	2	91.30%	
рН	24	4	83.33%	
Conductivity	23	0	100%	C

Table 8. Group ANOVAs forHistoric City of Denton Data.The statistical variation (Pr>F)between volunteer andprofessional data across allstations and years (2009-2017)for both DO and conductivity.

Results – RQ 2 – Group Analyses (DO, Cond.)

- Paired samples, more localized dataset = group analysis between vol and pro across all stations and years
- No significant difference between volunteer and professionals for DO and Conductivity

Parameter	# Samples	DF	Type III SS	Coeff Var	F Value	Pr>F
DO	184	1	3.4060	30.546	0.40	0.5275
Cond	184	1	0.0330	5.6719	0.24	<mark>0.6230</mark>

pH Group Analysis

Table 9. Group KST test for pH for Historic City of Denton Data. The non-parametric test showing the statistical variation (Pr>KSa) between volunteer and professional pH data across all stations and years (2009-2017).

Figure 6. Distribution of pH for Historic City of Denton Data. The

distribution of the volunteer (TST) and professional (COD) data at all stations for all years (2009-2017), with the KST statistic showing a significant difference between the two datasets.

Raw data: 90% of volunteer pH data either a 7 or 7.5

		Despite post-hoc c	onstraints:	
0	LARGE-SCALE	EXISTING	UNPAIRED	
	 Increased variability in time, space, and collecting agencies 	 No experimental controls, No standardization of equipment or protocol 	 Vol/Pro samples possibly months apart Sites up to 6om apart No seasonal controls 	

"Texas Stream Team trains 10,000th citizen scientist"

Existing TST citizen scientist data show 80% overall agreement with professional data for DO, pH and conductivity over program's entire duration, statewide

> Local analysis with paired samples even higher (91%)

Inform increased utilization of large-scale TST datasets that already exist
 CS WQ programs worldwide with similar program structure

Current Research & Teacher Workshops

ACCESS Water Program

- Educator workshops to promote CCS water quality data collection
 - Texas Stream Team
 - New Research (Tampling)
- Curricular resources, materials and supplies, hands on training, ArcGIS tools

Optical Brighteners (OBS)

- Found in detergents and soaps, don't break down quickly
- Should be removed in treatment process
- Presence of OB's in waterways can alert to the presence of human sewage contamination as a proxy to bacterial sampling
- Fluoresce under a black light glow blue
- Adsorb to **COTTON** (on a string...)
 - Presence/Absence Data
 - "Red Flag" events

https://www.meadowscenter.txstate.edu/Leadership/TexasStreamTeam/Waterways-Newsletter/September-2021/Lower-Cypress-Creek-Pilot-Project?mc_cid=046ec66e4b&mc_eid=523f42722e

"After attending the ACCESS workshop...."

"I can do a better job giving my students hope for the future, and they will feel like they can actually make a difference in the world"

"I will be able to seamlessly integrate into my courses without much effort."

Project Reach (as of December 2022)

"My students will become more familiar with their local water bodies and have a deeper understanding about the issues."

Project Reach (as of December 2022)

- 42 Teachers Trained
- 6000+ Students reached
- 105 GIS products (maps, Storymaps) created by teachers and students

local water bodies and have a deeper understanding about the issues."

Social Media Engagement

TikTok:

93 videos

• 8.815 views

Instagram:

- 7121 views
- Facebook:
 - 5811 views

"It was the most enjoyable PD I have gone to!"

7th/8th grade Science Teacher

The ACCESS Water Team: Texas Water Resources Institute (TWRI) Texas A&M AgriLife Extension Texas A&M Engineering Experiment Station (TEES) and SPARK! Sponsored by: Texas State Soil and Water Conservation Board

Website

TEXAS A&M AGRILIFE

Kelly Albus, PhD Extension Program Specialist III AgriLife Extension, Dallas Center – Urban WISH Team

Kelly.albus@ag.tamu.edu

CCS Fact Sheet (Albus, Bowling 2022)

AgriLife Learn - free download here:

https://agrilifelearn.tamu.edu/s /product/citizen-andcommunity-science-inclusiveresearch-for-a-sustainablefuture/o1t4x00007U3TqAAK