ADVANTAGES OF USING SMARTWAY TECHNOLOGIES

Energy Center Workshop
Tarrant County Community College
April 28, 2016

Jasper Alve, Air Quality Planner
North Central Texas Council of Governments
Structure of Presentation

Introduction to NCTCOG

Overview of Trucking Industry

Energy Consumption and Emissions of Heavy-Duty Trucks

Projected Challenges

Mandates

SmartWay Technologies

SMARTE Program
North Central Texas Council of Governments

Council of Governments (COG)

Metropolitan Planning Organization (MPO)

230 member governments

Goals

• Planning for common needs
• Cooperating for mutual benefit
• Coordinating for sound regional development
Ground level ozone (O_3) formation: Nitrogen Oxides (NOx) and Volatile Organic Compounds (VOCs) along with sunlight

10 counties are designated in nonattainment of the 2008 8-hour ozone standards

Expanding to include Hood county (2015 revised standard)

Pollutants harmful to public health and environment

Figure 2: 8-Hour Ozone Historical Trends
Mobile Source Air Quality Programs

http://www.nctcog.org/trans/air/programs/
Trucking Industry

Overview (2013)

- Trucks moved around 13.7 billion tons of freight shipments
- Value of shipment was approximately $10.8 billion
- Employed 30.5% of all transportation and warehousing sector employment
- Account 4.1%, but heavy duty trucks (HDTs) account approximately 1% of all highway vehicles
- Account roughly 9.2% of all highway vehicle miles traveled (VMT) – (HDTs) account for 5.6%

Figure 3: 2013 U.S. Freight Shipment by Mode

- Medium and HD Trucks
- Rail
- Water
- Air
- Multiple Modes
- Pipeline
- Other & Unknown

76%

2%

3%

8%

9%

2%
Transportation Sector Petroleum Consumption

- Consumed, on average, approximately 13.64 million barrels of petroleum per day
- Trucking industry, medium and heavy-duty trucks, account for approximately 26%

Figure 4: Consumption by Sector (percent)

- Residential: 1%
- Commercial: 3%
- Industrial: 2%
- Transportation: 24%
- Electric Power: 70%

Figure 5: Consumption by Mode (percent)

- Light Vehicles: 63%
- Buses: 8%
- Medium-Duty Trucks (Class 3-6): 4%
- Heavy-Duty Trucks (Class 7-8): 18%
- Air: 4%
- Water: 1%
- Rail: 2%

Source: U.S. DOE. *March 2016 Monthly Energy Review*. Figure 3.7 (barrels, Dec 2015).

Source: U. S. DOE. *Transportation Energy Data Book*, Table 1.16 (gallons, 2013). Classification: Class 7 (26,000 to 33,000 pounds) and Class 8 (33,000 pounds or more).
• HDT registrations jumped by 173% from 905K to 2.5M
• VMT increased by around 380% from 35B to 168B

Figure 6: 1970 – 2013 Vehicle Miles Traveled and Number of Registration

Source: U. S. DOE. Transportation Energy Data Book, Table 5.2 (2013).
Historical Fuel Consumption

- Consumed, on average, about 28.5 billion gallons of fuel; roughly 290% increase from 1970
- 4.8 mpg (1970) to 5.8 mpg (2013); increase of 21%

Figure 7: 1970 – 2013 Fuel Consumption and Economy

Source: U. S. DOE. Transportation Energy Data Book, Table 5.2 (2013).
Greenhouse Gas Emissions

- Percent share: 15% (1990) vs. 21% (2013)
- 67% increase (230 MMT to 393 MMT)
- Gallon gasoline (19.64 pounds) vs. diesel (22.38 pounds)

Regional Nitrogen Oxides Emissions

- On-Road NOx emissions 130.77 tons per day (tpd) or approximately 44%
- HDTs NOx emissions 50.8 tpd or approximately 39% (on-road) 17% (total)

Sources: Texas Commission on Environmental Quality. 2017 Dallas-Fort Worth 8-Hour Attainment Demonstration State Implementation Plan. EPA. Average In-Use Emissions from Heavy-Duty Trucks.
Reducing Fossil Fuel Consumption

STRATEGIES

Vehicle Miles Traveled

Alternative Energy

Vehicle Efficiency
- On average, in 2013, a HDT traveled about 68,165 miles
- Shipment by truck projected to increase by approximately 4%, increase in energy consumption by 7%

Figure 11: Projected Goods Movement by Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>2012</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck</td>
<td>74%</td>
<td>78%</td>
</tr>
<tr>
<td>Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Share by Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>2012</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Rail</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>Pipeline</td>
<td>8%</td>
<td>5%</td>
</tr>
<tr>
<td>Marine</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Multiple</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Air</td>
<td>0.02%</td>
<td>0.03%</td>
</tr>
<tr>
<td>Truck</td>
<td>74%</td>
<td>78%</td>
</tr>
</tbody>
</table>

Figure 12: Projected Energy 2040 Consumption by Mode

Source: U.S. DOE. *Annual Energy Outlook 2015 with Projections to 2040*, Figures 10. Due to independent rounding, shares may not equal 100 percent.
Regional Heavy-Duty Truck Traffic Projection

- Freight flows expected to increase by 121%
- AADTT expected to increase by 40%

Table 1: DFW Freight Flows by Truck (tons in millions)

<table>
<thead>
<tr>
<th>Trade Corridors</th>
<th>2011</th>
<th>2040</th>
<th>Change (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH-35 San Antonio - Dallas</td>
<td>26.83</td>
<td>61.52</td>
<td>129</td>
</tr>
<tr>
<td>IH-45 Houston - Dallas</td>
<td>18.48</td>
<td>35.26</td>
<td>91</td>
</tr>
<tr>
<td>IH-30 Dallas - Arkansas</td>
<td>9.82</td>
<td>24.88</td>
<td>153</td>
</tr>
<tr>
<td>IH-35 Dallas - Oklahoma</td>
<td>6.73</td>
<td>14.78</td>
<td>120</td>
</tr>
<tr>
<td>US 287 Dallas - Amarillo</td>
<td>4.50</td>
<td>9.78</td>
<td>117</td>
</tr>
<tr>
<td>IH-20 IH 10 - Dallas</td>
<td>4.31</td>
<td>11.42</td>
<td>165</td>
</tr>
<tr>
<td>US 75 Dallas - Oklahoma</td>
<td>3.18</td>
<td>6.02</td>
<td>89</td>
</tr>
<tr>
<td>IH-20 Dallas - Lousiana</td>
<td>0.94</td>
<td>1.46</td>
<td>55</td>
</tr>
<tr>
<td>Total</td>
<td>74.79</td>
<td>165.12</td>
<td>121</td>
</tr>
</tbody>
</table>

Source: TxDOT. 2012 International Trade Corridor Plan, pg. 22.

Table 2: AADTT IN DFW

<table>
<thead>
<tr>
<th>Route</th>
<th>From</th>
<th>To</th>
<th>Length (mile)</th>
<th>AADTT (2013)</th>
<th>AADTT (2033)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH-20</td>
<td>US-377</td>
<td>US-175</td>
<td>52</td>
<td>15,769</td>
<td>22,114</td>
</tr>
<tr>
<td>IH-30</td>
<td>IH-35W</td>
<td>IH-635</td>
<td>42</td>
<td>11,458</td>
<td>16,040</td>
</tr>
<tr>
<td>IH-35E</td>
<td>IH-20</td>
<td>US-380</td>
<td>50</td>
<td>12,198</td>
<td>17,078</td>
</tr>
<tr>
<td>IH-35W</td>
<td>IH-20</td>
<td>US-380</td>
<td>45</td>
<td>10,501</td>
<td>14,701</td>
</tr>
<tr>
<td>IH-635</td>
<td>SH-121</td>
<td>IH-20</td>
<td>38</td>
<td>17,655</td>
<td>24,716</td>
</tr>
<tr>
<td>US-75</td>
<td>IH-30</td>
<td>US-380</td>
<td>32</td>
<td>13,635</td>
<td>19,088</td>
</tr>
</tbody>
</table>

Source: Dr. Mohammad Najafi. Presentation on Integrating Underground Freight Transportation (UFT) Into Existing Intermodal System, slide 17. AADTT: Average annual daily truck traffic.
Alternative Energy

- Range of 62 miles, takes 3 to 4 hours to fully charge (BMW)
- Natural gas around 2%

Source: Google image library.

Heavy-Duty Truck Emission and Fuel Standards

Phase 1

- First GHG emission and fuel standards for medium and heavy-duty trucks
- Applies to model years (MYs) 2014 – 2018
- 7 to 20% reduction in CO₂ (EPA) and fuel consumption (NHTSA) by MY 2017
- Reduce approximately 250 MT of CO₂
- Average 6.9 mpg

Phase 2

- Applies to MYs 2021 – 2027
- Achieve 24% lower CO₂ emissions and fuel consumption relative to Phase 1 standards
- Approximately cuts GHG emissions by approximately 1 billion MT, saves 1.8 billion barrels of oil, and reduce fuel cost by $170 billion
- Average 8.5 mpg

SmartWay Program

Goals

• Develop public and private partnership
• Improve freight efficiency
• Reduce emissions

Results

• Over 3,000 partners
• Saved 170.3 million barrels of oil
• Reduce emissions: 72M metric tons (MT) of CO$_2$, 1.4M MT NOx, and 72K MT of Particulate Matter

SmartWay Strategies

Technologies

• Aerodynamics
• Idling Reduction
• Low Rolling Resistance Tires
• SmartWay Tractors
• SmartWay Trailers

Other Fuel Saving Strategies

• Alternative Fuels
• Engine Repower
• Speed Management Practices
• Weight Reduction Strategies
Cab Roof
• 4 to 8%
• Saves, on average, around 700 fuel gallons
• Equivalent to $1,400 savings in fuel cost
• 7.2 MT CO₂ reduction

Side Extender
• 1 to 2%
• 175 fuel gallons
• Saves $350 in fuel cost
• 1.8 MT CO₂ reduction

Trailer Side Skirts and Tails

Side Skirts
• 4 to 7%
• Saves 645 gallons
• Reduces fuel cost by around $1,300
• 13.1 MT CO₂

Tails
• 1 to 2%
• 175 fuel gallons
• Saves $350 in fuel cost
• 1.8 MT CO₂ reduction

Idling Reduction Devices

Auxiliary Power Unit

Heavy-duty trucks, on average, spend 2,400 idling hrs/year, burning 0.6 gal/hr

Use
- Heating
- Air conditioning
- Electrical accessories

Benefits
- 1,440 gallons saved
- $2,880 fuel savings
- 14.6 MT CO₂

Low Rolling Resistance Tires

Single Wide Tires or Dual Tires

- 3% reduction in fuel consumption (6.19 mpg)
- Fuel reduction equivalent to 500 gallons
- Fuel cost savings $1,000
- 14.6 MT CO$_2$

List of SmartWay tires is available online at https://www.epa.gov/verified-diesel-tech/smartway-verified-list-low-rolling-resistance-lrr-tires-and-retread
Benefits

- 0.60% increase in fuel economy
- Fuel reduction equivalent to 100 gallons
- Fuel cost savings $200
- 1.12 MT CO₂

Reduce flexing and bending of tires

SmartWay Certified Tractors and Trailers

Benefits

• Reduce fuel consumption by up to 20%
• Equivalent to 2,000 to 4,000 gallons of diesel per year
• Fuel savings between $4,000 to $8,000 per year
• Reduces CO₂ between 20.3 MT to 40.7 MT

Sources: EPA, SmartWay Designated Tractors and Trailers and U.S. DOE, Transportation Energy Data Book, Table 5.2 (2013).
SuperTruck Program (2010)

Goal
Increase overall fuel economy to 9.75 mpg

Partners
• Daimler Truck North America
• Cummins & Peterbilt
• Volvo
• Navistar

Annual Projections
• Spend nearly $30B less on fuel
• Consumer nearly 300M fewer barrels of oil

Saving Money and Reducing Truck Emissions (SMARTE)

Reduce fuel consumption and fuel-related emissions from the trucking industry

Program Objective

Conduct outreach in order to provide awareness owner-operators and small-to-medium size trucking companies

- Regulations
- Funding opportunities
- Technological and operational solutions

Program Resources

- Driver, Fleet Manager, and Vendor information folders
- Informational brochure
- Application assistance

www.nctcog.org/SMARTE
SMARTE Program Results

Number of Technology Upgrades
- 74 idle reduction devices
- 25 aerodynamic devices
- 2 low rolling resistance tires

Annual Fuel Consumption and Cost Reduced
- 90,229 gallons
- $180,458

Annual Pollutants Reduced (tons)
- 1,001 ton of CO$_2$
- 15.93 ton of NOx
Concluding Remarks

Impact on Environment

• Despite just around 5% of on-road vehicles, HDTs account for nearly 18% and 21% of, respectively, fuel consumption and CO₂ emissions
• Roughly 36% of NOx emissions in DFW is attributed to heavy-duty diesel trucks

Challenges

• HDTs will continue to play a significant role in the movement of goods
• Energy demand from HDTs is expected to increase by roughly 33% by 2040
• Average annual daily truck traffic in DFW is projected to rise 40% by 2033

Improving Fuel Economy

• SmartWay technologies expected to increase fuel efficiency up to 20% (saves 2,000 to 4,000 gallons)
• SuperTruck Program: achieve 9.5 mpg or above (10.7 and 12.2)
Contact Information

Jasper Alve
Air Quality Planner
jalve@nctcog.org
817-695-9247

Jason Brown
Air Quality Operations Manager
jbrown@nctcog.org
817-704-2514

Websites
www.nctcog.org/airquality
www.nctcog.org/smartway
www.nctcog.org/smarte

North Central Texas Council of Governments

2016 SmartWay Affiliate Challenge Honoree
Proud Supporter of SmartWay