Dallas Midtown Automated Transportation System Study
Study Review Committee Meeting #4

November 12, 2018
Safety Topic

Stress, depression and the holidays: Tips for Coping

1. Acknowledge your feelings
2. Reach out
3. Be realistic
4. Set aside differences
5. Stick to a budget
6. Plan ahead
7. Learn to say no
8. Don’t abandon healthy habits
9. Take a breather
10. Seek professional help if you need it

Agenda

• Parking Strategy
• System Alignment Analysis
• ATS Station Location Analysis
• System Technology Alternatives
• Discussion
• Next Steps
Parking Strategy
In seeking to maximize support of the ATS, how do we determine how much new parking to build, and where to build it?
METHODOLOGY AND FINDINGS

“Status Quo”: Building Parking Per Existing Off-Street Parking Regulations

- Use-based (certain number of parking spaces based on use square footage or number of units)
- Additive (no efficiencies assumed for sharing parking among uses)
- Individual (required for each and every project)

<table>
<thead>
<tr>
<th>Use</th>
<th>Required Parking Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>1 BR: 1.15/unit</td>
</tr>
<tr>
<td></td>
<td>2 BR: 1.65/unit</td>
</tr>
<tr>
<td></td>
<td>3 BR: 2.00/unit</td>
</tr>
<tr>
<td>Office</td>
<td>3.33/1,000 sf</td>
</tr>
<tr>
<td>Hotel</td>
<td>1/room</td>
</tr>
<tr>
<td>Retail/Restaurant</td>
<td>4/1,000 sf</td>
</tr>
</tbody>
</table>
METHODOLOGY AND FINDINGS

“Status Quo”: Building Parking Per Existing Off-Street Parking Regulations

Roughly 68,000 spaces needed $1.9 Billion in parking construction costs
METHODOLOGY AND FINDINGS

“Status Quo”: Likely Benefits

• Requires no amendments to existing PD or other parking-related ordinances

• Conservative, standard approach to parking

• Minimal coordination needed between separate private entities
METHODOLOGY AND FINDINGS

“Status Quo”: Likely Challenges

• ATS ridership internal to the site would be **effectively eliminated** as no predictable demand would exist—primarily driven by the increase in single occupancy vehicle trips to and through the site (**additional 50,000 +/-**)
• Any internally-derived ATS ridership would **rely solely on the personal whims/desires of riders, not predictable demand**
• Additional capital cost of **roughly $940 million**
• Roughly **3 million additional square feet of parking, with more parking built than needed to meet demand**
METHODOLOGY AND FINDINGS

Shared Parking: Building Parking Per Actual Demand

- Demand-based, taking into account:
 - Use-based parking ratios
 - % of people likely to drive single-occupancy vehicles
 - Ability of certain uses (e.g. office uses and residential uses) to share parking assets due to differences in hourly demand distribution
METHODOLOGY AND FINDINGS

Shared Parking: Building Parking Per Actual Demand

Roughly 42,000 spaces needed $1 Billion in parking construction costs
METHODOLOGY AND FINDINGS

Shared Parking: Likely Benefits

- Support of the ATS as parking is shared and not provided for each individual use, therefore necessitating alternative methods of internal mobility
- Reduction of 50,000 (+/-) SOV trips at the peak hour
- Savings for developers and property owners who no longer have to build and maintain their own parking (roughly $20-30K per space or a total projected savings of $940 million)
- More efficient use of land as parking is shared and centrally located-up to 3 million additional square feet to build active uses
- More collective control over parking-related capital expenditures and operational decisions
METHODOLOGY AND FINDINGS

Shared Parking: Likely Challenges

- Amendments to PD and parking-related ordinances required
- Establishment of management authority or entity to manage parking and parking- and transportation-related decisions required
- Less standard, but still widely-accepted approach to parking
METHODOLOGY AND FINDINGS

<table>
<thead>
<tr>
<th>Option</th>
<th>Support of ATS</th>
<th>Parking Spaces Needed</th>
<th>Cost Implications</th>
<th>Land Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Quo</td>
<td>Encourages and facilitates use of SOVs for internal trips from use to use, eliminating effectively all internal demand for ATS</td>
<td>68,000</td>
<td>Would increase parking construction costs by nearly $1 billion</td>
<td>Would require 26,000 more parking spaces than Shared Parking scenario, increasing spatial needs for parking by roughly 3 million square feet</td>
</tr>
<tr>
<td>Shared Parking</td>
<td>Encourages and facilitates use of ATS through shared and centrally-located parking assets</td>
<td>42,000</td>
<td>Would result in nearly $1 billion in parking construction cost savings</td>
<td>Would right-size parking to demand, therefore reducing spatial need for parking by roughly 3 million square feet</td>
</tr>
</tbody>
</table>
METHODOLOGY AND FINDINGS

How do we determine **where** to build parking assets?

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Purpose/Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity to ATS stop (< 1/10 mile preferred)</td>
<td>B+ walking distance LOS or better</td>
</tr>
<tr>
<td>Accessibility to main road</td>
<td>Reduce internal circulation and traffic on roads panned to be pedestrian/bicycle friendly</td>
</tr>
<tr>
<td>Potential to incorporate with transit</td>
<td>Support ridership goals of planned transit lanes, and provide a flexible, shareable parking supply</td>
</tr>
<tr>
<td>Potential for sharing among multiple uses</td>
<td>Efficient use of parking assets, reduction in the number of spaces needed to be built.</td>
</tr>
</tbody>
</table>

Note: An LOS B+ or better walking distance would be 520 feet or less.
PARKING STRATEGY NEXT STEPS

What can the City do to create off-street parking requirements that support ATS ridership and prevent overbuilding?

- Collaborate with property owners and developers to create opportunities for parking asset construction and maintenance cost-sharing
- Consider amending off-street parking ordinances to eliminate minimum parking requirements and institute a maximum parking limit
- Offer allowances in off-street parking ordinances for shared parking and demand-based parking adjustments
System Alignment
ATS System Alignment

- **Analysis Goals**
 - Use Dallas Midtown Plan to lay out possible internal circulation system alignments
 - Consideration into constructability needs such as ROW, specialized infrastructure, thoroughfare access, etc.
 - Provide system alignment that would enable operational efficiency as well as equal coverage of Dallas Midtown area
 - Provide system that would enable efficient and convenient connections to regional transit connections

- **Evaluation Criteria**
 - Does alignment meet analysis goals?
 - Does alignment reach optimum walkability scores?
 - 0.10 mile catchment area (optimum walkable score)
 - 0.25 mile catchment area (passing walkable score)
Alignment Overview
Alignment Alternatives

Key Factors

- Feasibility of alignment (ROW and vehicle technology)
- Optimization of alignment/ station locations
 - Transit catchment areas
 - Visibility/ wayfinding/ ease of use
- Level of Service (LOS)
 - Operational LOS
 - Failure management flexibility
- Multi-modal connectivity
- Scale Impacts
- Expandability
- Traffic Impacts
- Passenger Types
Option 1

System Length: 1.9 miles

Percent of total Midtown area within catchment area:
- < 528' (1/10 mile): 60%
- < 1320' (1/4 mile): 99%

Pros:
- Runs along side of park
- Uses more established James Temple Dr

Cons:
- Misses high-density LBJ development
- Potential safety conflicts along park (if at-grade)
Option 2

System Length: 2.2 miles

Percent of total Midtown area within catchment area:
< 528' (1/10 mile): 70%
< 1320' (1/4 mile): 99%

Pros:
• ~5M SQFT of planned development along LBJ
• Could represent 15-20% of total district development
• Parking Catchment Area along boundary of Midtown

Cons:
• Existing ROW pinch along southern stretch
• Midtown Park would be ~800-3,000 feet away from ATS

> 528 ft (2 min walk)
> 1,320 ft (5 min walk)
ATS Station Location Analysis
ATS Station Location Analysis

❖ Analysis Goals
- Coordinate station locations with proposed parking strategy
- Locate possible station locations along preferred alignment that optimize connectivity to park, district development, roadway network and regional connections
- Develop conceptual station layout that enhances safety and circulation

❖ Evaluation Criteria
- ¼ Mile Station Spacing
- Parking Distribution / Vehicular Access
- Proximity to Midtown Park
- Sight Line / Visibility
- Multimodal Transfer
- Development Density / Land Use
- ROW Availability
- Civic Presence
- Street Character
Maximize connection from every station to Midtown Park

Potential regional connection and multi-modal transfer locations

Utilize existing / proposed thoroughfares for travel consistency
Option 1

Maximize connection from every station to Midtown Park

Potential regional connection and multi-modal transfer locations

Utilize existing / proposed thoroughfares for travel consistency
Maximize connection from every station to Midtown Park

Potential regional connection and multi-modal transfer locations

Utilize existing / proposed thoroughfares for travel consistency
Option 2

Maximize connection from every station to Midtown Park

Potential regional connection and multi-modal transfer locations

Utilize existing / proposed thoroughfares for travel consistency
Station Evaluation Criteria Check

Option 1: ATS Alignment along Midtown Park

<table>
<thead>
<tr>
<th>STATION LOCATION:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4 MILE STATION SPACING (1/8 MILE WALKING DISTANCE = 750')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARKING DISTRIBUTIONS / VECULAR ACCESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARK PROXIMITY (WALKING DISTANCE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGHT LINE / VISABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULTIMODAL TRANSFER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT DENSITY / LAND USE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.O.W. AVAILABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVIC PRESENCE / OPEN SPACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREET CHARACTER / WALKABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option 2: ATS Alignment through LBJ Office Block

<table>
<thead>
<tr>
<th>STATION LOCATION:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4 MILE STATION SPACING (1/8 MILE WALKING DISTANCE = 750')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARKING DISTRIBUTIONS / VECULAR ACCESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARK PROXIMITY (WALKING DISTANCE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGHT LINE / VISABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULTIMODAL TRANSFER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT DENSITY / LAND USE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.O.W. AVAILABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVIC PRESENCE / OPEN SPACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREET CHARACTER / WALKABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- **GOOD**
- **N/A**
- **FATAL FLAW**
- **DIFFERENCE**

29
Elevated ATS Station Concept
Street-Level ATS Station Concept
System Technology Alternatives
System Technology Alternatives

Analysis Goals
- Qualitatively evaluate automated technologies identified in Technology White Paper for system compatibility with Dallas Midtown demand / characteristics
- Estimate ridership demand for internal circulator and regional connections
- Select four diverse alternative technologies for further evaluation on operational efficiency within Midtown
- Identify operational compatibility and estimate cost for four alternative automated technologies

Evaluation Criteria
- Performance
- Level of Service
- Urban Impact
- Cost
- Technology Maturity
Preliminary Screening

- Evaluated existing automated technologies
- Qualitative ranking based on performance against criteria

Technologies that met criteria:
1. Automated People Mover (APM)
2. Monorail
3. Cable-Propelled APM
4. Group Rapid Transit
5. Automated Vehicle Shuttle

Evaluation Criteria

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>★</td>
<td>X</td>
</tr>
<tr>
<td>Level of Service</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Urban Insertion Impact</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Cost</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Technology Maturity</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>

- ★ - Candidate technology provides lower risk for evaluation criterion
- ▲ - Candidate technology provides moderate risk for evaluation criterion
- ■ - Candidate technology provides higher risk for evaluation criterion
- X - Candidate technology cannot meet evaluation criteria
Ridership Update

Ridership Estimate Assumptions

- Full district build-out (according to approved demographics from SRC 2)
- Regional connections
 - Red and Blue Line
 - Green Line
 - Cotton Belt
- Shared parking strategy*
- 6 ATS stations in Midtown*
- “Option 2” alignment*

*Assumptions not previously included in ridership estimate during August SRC 3 presentation
Selection of 4 Alternatives

Selection Criteria

- Qualitative Screening
- Ridership Demand Estimates
- Infrastructure Needs
- System Compatibility
- Diverse Technologies
Operational Characteristics

<table>
<thead>
<tr>
<th></th>
<th>APM</th>
<th>Monorail</th>
<th>GRT</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Capacity</td>
<td>105/car</td>
<td>100-150/2-car train set</td>
<td>12-21/vehicle</td>
<td>6-12/vehicle</td>
</tr>
<tr>
<td>Fleet Size (per direction)</td>
<td>(2) One-car trains – each direction, one spare – total – (5) cars</td>
<td>(2) Two-car train sets each direction, one spare – total (5) two-car train sets</td>
<td>(9) Cars each direction, 4 spares – total 22 cars</td>
<td>(15) Cars but loop size restricts total cars to (13)* - each direction, 5 spares – total 31 cars</td>
</tr>
<tr>
<td>Headway Capabilities & Max. Speed</td>
<td>• 2-4 minute Capability • 50 mph</td>
<td>• 2-4 minute Capability • 50 mph</td>
<td>• 1 minute • 30 mph</td>
<td>• 1 minute • 12-13 mph</td>
</tr>
<tr>
<td>System Maturity</td>
<td>1971</td>
<td>2005 – (small Monorail)</td>
<td>2011</td>
<td>2016</td>
</tr>
<tr>
<td>Construction Disruptions</td>
<td>• Guideway foundations in Roadway / Median • Maintenance facility structure</td>
<td>• Guideway foundations in Roadway / Median • Maintenance facility structure</td>
<td>• Dedicated travel lane • DSRC communications with traffic signals • Maintenance facility structure</td>
<td>• Dedicated travel lane • DSRC communications with traffic signals • Maintenance facility structure</td>
</tr>
<tr>
<td>Environmental Impacts</td>
<td>• Guideway • Structure • Visual Impact</td>
<td>• Guideway • Structure • Visual Impact</td>
<td>• None (Electric vehicle)</td>
<td>• None (Electric vehicle)</td>
</tr>
<tr>
<td>Land Use Requirements</td>
<td>• Specialized infrastructure along alignment • Maintenance facility / parking footprint</td>
<td>• Specialized infrastructure along alignment • Maintenance facility / parking footprint</td>
<td>• Can use typical roadway infrastructure • Maintenance facility / parking footprint</td>
<td>• Can use typical roadway infrastructure • Maintenance facility / parking footprint</td>
</tr>
<tr>
<td>Expandability</td>
<td>Major construction and vehicle procurement</td>
<td>Major construction and vehicle procurement</td>
<td>Highly expandable</td>
<td>Highly expandable</td>
</tr>
</tbody>
</table>

*AV alternative would not have the space to meet the system demand at full build-out under current ridership assumptions

**GRT is currently operating on specialized infrastructure but it moving to capabilities that will enable it to act like AV on typical roadway infrastructure
Fleet / Capacity Analysis

Analysis Assumptions:
- Peak demand: 742 passengers/hr
- Headways: < 5 minutes
- Dwell time: 20 seconds
- Track length: 2.2 miles
- Station count: 6

<table>
<thead>
<tr>
<th></th>
<th>APM</th>
<th>Monorail</th>
<th>GRT</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full loop duration per load</td>
<td>6 min 42 sec</td>
<td>6 min 42 sec</td>
<td>6 min 42 sec</td>
<td>13 min</td>
</tr>
<tr>
<td>Required headway</td>
<td>3 min 21 sec</td>
<td>3 min 21 sec</td>
<td>1 ½ min</td>
<td>1 min</td>
</tr>
<tr>
<td>Max number of revenue vehicles needed</td>
<td>(2) One-car trains – each direction</td>
<td>(2) One-car trains – each direction</td>
<td>9 cars each direction</td>
<td>13 cars each direction</td>
</tr>
<tr>
<td>Passenger Capacity</td>
<td>1800 p/hr</td>
<td>1800 p/hr</td>
<td>840 p/hr</td>
<td>720 p/hr</td>
</tr>
<tr>
<td>Operational Efficiency</td>
<td>41%</td>
<td>41%</td>
<td>88%</td>
<td>103%</td>
</tr>
</tbody>
</table>
Systems Cost Analysis

<table>
<thead>
<tr>
<th></th>
<th>APM</th>
<th>Monorail</th>
<th>GRT</th>
<th>AV</th>
<th>LRT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right of Way ($M/mile)</td>
<td>$11</td>
<td>$11</td>
<td>$8.5</td>
<td>$8.5</td>
<td>$8.5</td>
</tr>
<tr>
<td>Utilities ($M/mile)</td>
<td>$3</td>
<td>$3</td>
<td>$3</td>
<td>$3</td>
<td>$3</td>
</tr>
<tr>
<td>Traffic Improvements</td>
<td>$2</td>
<td>$2</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
</tr>
<tr>
<td>(S/M/mile)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stations ($M/station)</td>
<td>$25.5</td>
<td>$25.5</td>
<td>$22</td>
<td>$22</td>
<td>$22</td>
</tr>
<tr>
<td>Vehicules (/car)</td>
<td>$3M</td>
<td>$2.5M</td>
<td>$360k</td>
<td>$300k</td>
<td>-</td>
</tr>
<tr>
<td>O&M Cost ($M/year)</td>
<td>$5</td>
<td>$5</td>
<td>$1.4</td>
<td>$0.5</td>
<td>-</td>
</tr>
<tr>
<td>Maintenance Facilities ($M)</td>
<td>$2</td>
<td>$2</td>
<td>$0.25</td>
<td>$0.25</td>
<td>-</td>
</tr>
<tr>
<td>Construction ($M/mile)</td>
<td>$40</td>
<td>$50</td>
<td>$1.5</td>
<td>$1.5</td>
<td>$80</td>
</tr>
</tbody>
</table>

TOTAL SYSTEM COST ($M)

<table>
<thead>
<tr>
<th></th>
<th>APM</th>
<th>Monorail</th>
<th>GRT</th>
<th>AV</th>
<th>LRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Circulator (2.2 mile loop)**</td>
<td>$293</td>
<td>$313</td>
<td>$172</td>
<td>$173</td>
<td>-</td>
</tr>
<tr>
<td>Regional Connections (14 miles)***</td>
<td>$988</td>
<td>$1,128</td>
<td>-</td>
<td>-</td>
<td>$1,471</td>
</tr>
</tbody>
</table>

* LRT considered for regional connections only and assumed to be at-grade with no consideration into special characteristics such as vehicles, bridges, tunnels, etc.
** Only include total system implementation costs, annual O&M costs not included
*** Does not include Vehicle, O&M or Facilities costs as operational analysis was not performed for regional connections
Discussion
Discussion and Recommendations

Discussion Goals

- Participant discussion to determine final recommendations
- Consensus regarding recommendations for final report
Next Steps
Next Steps

- **Study Conclusion Timeline**
 - December January – Team to work on implementation and governance options
 - March/April – Team to produce Final Report
 - Late April – Final Report Submitted

- **Future SRC Meetings**
 - Late January
 - Present Implementation Options and Analysis
 - Present Governance Options and Analysis
 - Early March
 - Finalize Implementation Options
 - Finalize Governance Options
 - Finalize Final Project Recommendations for Final Report

- **Future Public Meetings**
 - December 11th, 2018 – One Galleria Tower
 - Spring 2018- TBD
Thank you for attending!

Dallas Midtown Parking Study

Karla Weaver, AICP – NCTCOG – Program Manager
- KWeeaver@nctcog.org

Shawn Conrad – NCTCOG – Project Manager
- SConrad@nctcog.org

Casey Wagner, PE – Walker Consultants – Sr. Project Manager
- CWagner@walkerconsultants.com

Mallory Baker – Walker Consultants – Project Manager
- MBaker@walkerconsultants.com

Jeff Weckstein – Walker Consultants – Technical Consultant
- JWeckstein@walkerconsultants.com

Dallas Midtown ATS Study

Dan Lamers, PE – NCTCOG – Sr. Program Manager
- DLamers@nctcog.org

Kevin Feldt, AICP – NCTCOG – Program Manager
- KFeldt@nctcog.org

Brian Crooks – NCTCOG – Project Manager
- BCrooks@nctcog.org

Jeremy Wyndham, PE – Jacobs – Sr. Project Manager
- Jeremy.Wyndham@Jacobs.com

Marcus Ashdown, AICP – Jacobs – Project Manager
- Marcus.Ashdown@Jacobs.com

Amanda O’Neal – K Strategies – Public Involvement
- AONeal@kstrategies.com
Preliminary Screening (expanded)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity / Performance</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Safety / Availability</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Level of Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Time</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Headways / Wait Time</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Minimal Transfers</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Safety / Availability</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Urban Issuance Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptable Noise or Vibration</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Visually Acceptable Infrastructure</td>
<td>▲</td>
<td>○</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Impacts to Existing Infrastructure</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Fixed Facility Space Requirements</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Constructability</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Cost Comparison</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>O&M Cost Comparison</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Technology Maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service-Proven Technology</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Supply and Manufacturing Capability</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Operations & Maintenance Capability</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Commercial Considerations</td>
<td>●</td>
<td>●</td>
<td>▲</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

- ●: Candidate technology provides lower risk for evaluation criterion
- ▲: Candidate technology provides moderate risk for evaluation criterion
- ■: Candidate technology provides higher risk for evaluation criterion
- X: Candidate technology cannot meet evaluation criteria
Vehicle Characteristics

<table>
<thead>
<tr>
<th></th>
<th>APM</th>
<th>Monorail</th>
<th>GRT</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (ft)</td>
<td>37-40</td>
<td>25-48</td>
<td>13-16</td>
<td>13-15</td>
</tr>
<tr>
<td>Width (ft)</td>
<td>8.5-9.5</td>
<td>8-10</td>
<td>7</td>
<td>6 - 7</td>
</tr>
<tr>
<td>Height (ft)</td>
<td>11-12</td>
<td>14-17</td>
<td>9</td>
<td>8 - 9</td>
</tr>
<tr>
<td>Weight (AW0) (lbs)</td>
<td>32K-33K</td>
<td>28K-55K</td>
<td>5K-9K</td>
<td>4-5K</td>
</tr>
<tr>
<td>Capacity (persons)</td>
<td>100-105</td>
<td>100-150</td>
<td>12-21</td>
<td>6-12</td>
</tr>
<tr>
<td>Maximum Speed (mph)</td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>12-13</td>
</tr>
</tbody>
</table>